research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 203-205

Crystal structure of trans-(1,8-di­butyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane-κ4N3,N6,N10,N13)bis­­(isonicotinato-κO)copper(II) from synchrotron data

aBeamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 790-784, South Korea
*Correspondence e-mail: dmoon@postech.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 January 2015; accepted 19 January 2015; online 24 January 2015)

The title compound, [Cu(C6H4NO2)2(C16H38N6)] has been synthesized and characterized by structure analysis based on synchrotron data and by FT–IR spectroscopy. The asymmetric unit consists of half of the CuII complex, the other half being completed by inversion symmetry. The CuII ion has a tetra­gonally distorted octa­hedral coordination sphere with four secondary N atoms of the aza­macrocyclic ligand in the equatorial plane [Cu—Neq = 2.018 (12) Å] and two O atoms of the isonicotinate anions at the axial positions [Cu—Oax = 2.4100 (11) Å]. Intra­molecular N—H⋯O hydrogen bonds between one of the secondary amine N—H groups of the aza­macrocyclic ligand and the non-coordinating O atom of the isonicotinate ions stabilize the mol­ecular structure. Inter­molecular N—H⋯N hydrogen bonds between the other macrocyclic N—H group and the pyridine N atom of an adjacent isonicotinate anion as well as ππ inter­actions [centroid-to-centroid distance 3.711 (2) Å] lead to the formation of rods parallel to [001].

1. Chemical context

The coordination chemistry of macrocyclic ligands has attracted extensive inter­est due to their potential applications in material science, chemistry and metalloenzymes (Lehn, 1995[Lehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.]; Carnes et al., 2014[Carnes, M. E., Collins, M. S. & Johnson, D. W. (2014). Chem. Soc. Rev. 43, 1825-1834.]). In particular, CuII macrocylic complexes involving vacant sites in an axial position are feasible candidates for assembling supra­molecular materials, with potential applications as gas-storage materials (Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]) as well as catalysts for co-polymerization of carbon dioxide and cyclo­hexene oxide (Tsai et al., 2014[Tsai, C.-Y., Huang, B.-H., Hsiao, M.-W., Lin, C.-C. & Ko, B.-T. (2014). Inorg. Chem. 53, 5109-5116.]). Moreover, CuII complexes with tetra­aza­macrocyclic ligands involving alkyl moieties have been investigated as magnetic materials with various auxiliary ligands such as metal cyanide, azide, and dicyanamide (Bi et al., 2012[Bi, J.-H., Bi, W.-T. & Hu, N.-L. (2012). Asian J. Chem. 24, 943-944.]).

Isonicotinic acid is a versatile anion which can easily bind to transition metals via the carboxyl group or the pyridine N atom, thus allowing the assembly of multidimensionally structured compounds or heterometallic complexes (Liu et al., 2006[Liu, F.-C., Zeng, Y.-F., Jiao, J., Li, J.-R., Bu, X.-H., Ribas, J. & Batten, S. R. (2006). Inorg. Chem. 45, 6129-6131.]).

Here, we report on the synthesis and crystal structure of a CuII aza­macrocyclic complex with two isonicotinato co-ligands, trans-(1,8-dibutyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane-κ4N3,N6,N10,N13)bis­(isonicotinato-κO)copper(II), (I)[link].

[Scheme 1]

2. Structural commentary

In compound (I)[link], the CuII ion lies on an inversion center and is coordinated by the four secondary amine N atoms of the aza­macrocyclic ligand in the equatorial plane and by two O atoms from the isonicotinate anions at the axial positions, resulting in a tetra­gonally distorted octa­hedral geometry, as shown in Fig. 1[link]. The average Cu—Neq bond length is 2.018 (12) and the Cu—Oax bond length is 2.4100 (11) Å. This difference can be attributed either to a large Jahn–Teller distortion effect of the CuII ion and/or to a ring contraction of the aza­macrocyclic ligand (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). The six-membered chelate ring (Cu1–N1–C2–N3–C3–N2) adopts a chair conformation and the five-membered chelate ring (Cu1–N1–C1–C4–N2) a gauche conformation (Min & Suh, 2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]). The two C—O bond lengths of the carboxyl­ate group are 1.255 (2) and 1.258 (2) Å, indicating that this group is fully delocalized with a bond angle (O1—C9—O2) of 126.8 (1)°. Intra­molecular N1—H1⋯O2 hydrogen bonds between one of the secondary amine groups of the aza­macrocyclic ligand and the O atoms of a coordinating isonicotinate anion stabilize the mol­ecular structure (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 1.00 1.98 2.9179 (16) 155
N2—H2⋯N4i 1.00 2.21 3.1160 (16) 150
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. Intra­molecular N—H⋯O hydrogen bonds are shown as red dashed lines. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

The N atoms of the isonicotinate ions form inter­molecular N2—H2⋯N4 hydrogen bonds (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., John Wiley & Sons, Ltd, Chichester.]) with the adjacent secondary amine group of the aza­macrocyclic ligand (Fig. 2[link] and Table 1[link]). The pyridine rings of the iso­nico­tinate co-ligand are involved in ππ stacking inter­actions [centroid-to-centroid distance 3.711 (2) Å]. The inter­planar separation and dihedral angle between the pyridine rings in adjacent isonicotinate anions are 3.522 (2) Å and 0.0°, respectively, implying a parallel assignment to each other (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]). The hydrogen-bonding and ππ inter­actions generate rods of inter­acting mol­ecules parallel to [001].

[Figure 2]
Figure 2
View of the crystal packing of (I)[link], with N—H⋯O hydrogen bonds and ππ inter­actions shown as dashed lines (red: intra­molecular hydrogen bonds, green: inter­molecular hydrogen bonds, cyan: ππ inter­actions).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) indicate that only one CuII aza­macrocyclic complex having butyl pendant groups has been reported (Kim et al., 2015[Kim, D.-W., Shin, J. W. & Moon, D. (2015). Acta Cryst. E71, 136-138.]).

5. Synthesis and crystallization

Compound (I)[link] was prepared as follows. The starting complex, [Cu(C16H38N6)(ClO4)2], was obtained by a slight modification of the reported method (Kim et al., 2015[Kim, D.-W., Shin, J. W. & Moon, D. (2015). Acta Cryst. E71, 136-138.]). To an MeCN (10 mL) solution of [Cu(C16H38N6)(ClO4)2] (0.15 g, 0.26 mmol) was slowly added an MeCN solution (5 mL) containing iso­nicotinic acid (0.064 g, 0.52 mmol) and excess tri­ethyl­amine (0.06 g, 0.60 mmol) at room temperature. The formed purple precipitate was filtered off, washed with MeCN, and diethyl ether, and dried in air. Single crystals of the title compound were obtained by layering a MeCN solution of isonicotinic acid on the MeCN solution of [Cu(C16H38N6)(ClO4)2] for several days. Yield: 0.087 g (54%). FT–IR (ATR, cm−1): 3197, 3097, 2954, 2929, 1596, 1544, 1365, 1280, 1016, 964.

Safety note: Although we have experienced no problem with the compounds involved in this study, perchlorate salts of metal complexes are often explosive and should be handled with great caution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.98–0.99 Å (open-chain H atoms) and an N—H distance of 1.0 Å with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C6H4NO2)2(C16H38N6)]
Mr 622.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0490 (16), 8.3000 (17), 11.175 (2)
α, β, γ (°) 81.16 (3), 87.14 (3), 86.68 (3)
V3) 735.8 (3)
Z 1
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.57
Crystal size (mm) 0.08 × 0.03 × 0.03
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.])
Tmin, Tmax 0.958, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 7574, 3882, 3608
Rint 0.018
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.09
No. of reflections 3882
No. of parameters 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.62
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND4. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The coordination chemistry of macrocyclic ligands has attracted extensive inter­est due to their potential applications in material science, chemistry and metalloenzymes (Lehn, 1995; Carnes et al., 2014). In particular, CuII macrocylic complexes involving vacant sites in an axial position are feasible candidates for assembling supra­molecular materials, with potential applications as gas-storage materials (Suh et al., 2012) as well as catalysts for co-polymerization of carbon dioxide and cyclo­hexene oxide (Tsai et al., 2014). Moreover, CuII complexes with tetra­aza­macrocyclic ligands involving alkyl moieties have been investigated as magnetic materials with various auxiliary ligands such as metal cyanide, azide, and dicyanamide (Bi et al., 2012).

Isonicotinic acid is a versatile anion which can easily bind to transition metals via the carboxyl group or the pyridine N atom, thus allowing the assembly of multidimensionally structured compounds or heterometallic complexes (Liu et al., 2006).

Here, we report on the synthesis and crystal structure of a CuII aza­macrocyclic complex with two isonicotinato co-ligands, trans-(1,8-di­butyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane-κ4N3,N6,N10,N13)bis­(isonicotinato-κO)copper(II), (I).

Structural commentary top

In compound (I), the CuII ion lies on an inversion center and is coordinated by the four secondary amine N atoms of the aza­macrocyclic ligand in the equatorial plane and by two O atoms from the isonicotinate anions at the axial positions, resulting in a tetra­gonally distorted o­cta­hedral geometry, as shown in Fig. 1. The average Cu—Neq bond length is 2.018 (12) and the Cu—Oax bond length is 2.4100 (11) Å. This difference can be attributed either to a large Jahn–Teller distortion effect of the CuII ion and/or to a ring contraction of the aza­macrocyclic ligand (Halcrow, 2013). The six-membered chelate ring (Cu1–N1–C2–N3–C3–N2) adopts a chair conformation and the five-membered chelate ring (Cu1–N1–C1–C4–N2) a gauche conformation (Min & Suh, 2001). The two C—O bond lengths of the carboxyl­ate group are 1.255 (2) and 1.258 (2) Å, indicating that this group is fully delocalized with a bond angle (O1—C9—O2) of 126.8 (1)°. Intra­molecular N1—H1···O2 hydrogen bonds between one of the the secondary amine groups of the aza­macrocyclic ligand and the O atoms of a coordinating isonicotinate anion stabilize the molecular structure (Fig. 1 and Table 1).

Supra­molecular features top

The N atoms of the isonicotinate ions form inter­molecular N2—H2···N4 hydrogen bonds (Steed & Atwood, 2009) with the adjacent secondary amine group of the aza­macrocyclic ligand (Fig. 2 and Table 1). The pyridine rings of the isonicotinate co-ligand are involved in ππ stacking inter­actions [centroid-to-centroid distance 3.711 (2) Å]. The inter­planar separation and dihedral angle between the pyridine rings in adjacent isonicotinate anions are 3.522 (2) Å and 0.0°, respectively, implying a parallel assignment to each other (Hunter & Sanders, 1990). The hydrogen-bonding and ππ inter­actions generate rods of inter­acting molecules parallel to [001].

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 2014 with three updates; Groom & Allen, 2014) indicate that only one CuII aza­macrocyclic complex having butyl pendant groups has been reported (Kim et al., 2015).

Synthesis and crystallization top

Compound (I) was prepared as follows. The starting complex, [Cu(C16H38N6)(ClO4)2], was obtained by a slight modification of the reported method (Kim et al., 2015). To an MeCN (10 ml) solution of [Cu(C16H38N6)(ClO4)2] (0.15 g, 0.26 mmol) was slowly added an MeCN solution (5 ml) containing isonicotinic acid (0.064 g, 0.52 mmol) and excess tri­ethyl­amine (0.06 g, 0.60 mmol) at room temperature. The formed purple precipitate was filtered off, washed with MeCN, and di­ethyl ether, and dried in air. Single crystals of the title compound were obtained by layering a MeCN solution of isonicotinic acid on the MeCN solution of [Cu(C16H38N6)(ClO4)2] for several days. Yield: 0.087 g (54%). FT–IR (ATR, cm-1): 3197, 3097, 2954, 2929, 1596, 1544, 1365, 1280, 1016, 964.

Safety note: Although we have experienced no problem with the compounds involved in this study, perchlorate salts of metal complexes are often explosive and should be handled with great caution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.98–0.99 Å (open-chain H atoms) and an N—H distance of 1.0 Å with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Related literature top

For related literature, see: Bi et al. (2012); Carnes et al. (2014); Groom & Allen (2014); Halcrow (2013); Hunter & Sanders (1990); Kim et al. (2015); Lehn (1995); Liu et al. (2006); Min & Suh (2001); Steed & Atwood (2009); Suh et al. (2012); Tsai et al. (2014).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2008, 2015b); molecular graphics: DIAMOND4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. Intramolecular N—H···O hydrogen bonds are shown as red dashed lines. [Symmetry code: (i) –x + 1, –y + 1, –z + 1.]
[Figure 2] Fig. 2. View of the crystal packing of (I), with N—H···O hydrogen bonds and ππ interactions shown as dashed lines (red: intramolecular hydrogen bonds, green: intermolecular hydrogen bonds, cyan: ππ interactions).
trans-(1,8-Dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane-κ4N3,N6,N10,N13)bis(isonicotinato-κO)copper(II) top
Crystal data top
[Cu(C6H4NO2)2(C16H38N6)]Z = 1
Mr = 622.27F(000) = 331
Triclinic, P1Dx = 1.404 Mg m3
a = 8.0490 (16) ÅSynchrotron radiation, λ = 0.630 Å
b = 8.3000 (17) ÅCell parameters from 21514 reflections
c = 11.175 (2) Åθ = 0.4–33.6°
α = 81.16 (3)°µ = 0.57 mm1
β = 87.14 (3)°T = 100 K
γ = 86.68 (3)°Needle, purple
V = 735.8 (3) Å30.08 × 0.03 × 0.03 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
3608 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.018
ω scanθmax = 26.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.958, Tmax = 0.983k = 1111
7574 measured reflectionsl = 1515
3882 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1939P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3882 reflectionsΔρmax = 0.43 e Å3
188 parametersΔρmin = 0.62 e Å3
Crystal data top
[Cu(C6H4NO2)2(C16H38N6)]γ = 86.68 (3)°
Mr = 622.27V = 735.8 (3) Å3
Triclinic, P1Z = 1
a = 8.0490 (16) ÅSynchrotron radiation, λ = 0.630 Å
b = 8.3000 (17) ŵ = 0.57 mm1
c = 11.175 (2) ÅT = 100 K
α = 81.16 (3)°0.08 × 0.03 × 0.03 mm
β = 87.14 (3)°
Data collection top
ADSC Q210 CCD area detector
diffractometer
3882 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
3608 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.983Rint = 0.018
7574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
3882 reflectionsΔρmin = 0.62 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01489 (8)
O10.43502 (12)0.38249 (14)0.32476 (8)0.0228 (2)
O20.19078 (12)0.51588 (15)0.27708 (9)0.0250 (2)
N10.27675 (13)0.62129 (14)0.50255 (9)0.0174 (2)
H10.22110.61110.42620.021*
N20.60724 (13)0.68104 (14)0.38483 (9)0.0174 (2)
H20.57570.67200.30080.021*
N30.37958 (16)0.88517 (15)0.40936 (10)0.0241 (2)
N40.36803 (15)0.28785 (16)0.10314 (10)0.0234 (2)
C10.17805 (15)0.53580 (19)0.60560 (11)0.0208 (3)
H1A0.05800.56520.59600.025*
H1B0.21090.56780.68250.025*
C20.28664 (18)0.79685 (18)0.50926 (11)0.0231 (3)
H2A0.17220.84710.51230.028*
H2B0.33890.80840.58560.028*
C30.55623 (18)0.84773 (18)0.40891 (12)0.0239 (3)
H3A0.59730.86170.48850.029*
H3B0.61100.92760.34660.029*
C40.78914 (16)0.64587 (18)0.39220 (11)0.0211 (3)
H4A0.82910.67920.46660.025*
H4B0.84840.70700.32120.025*
C50.30584 (19)0.90191 (18)0.29031 (12)0.0241 (3)
H5A0.28790.79200.27090.029*
H5B0.38480.95520.22790.029*
C60.13998 (19)1.00201 (18)0.28563 (12)0.0241 (3)
H6A0.05990.94810.34700.029*
H6B0.15721.11190.30560.029*
C70.06801 (19)1.0188 (2)0.16070 (13)0.0270 (3)
H7A0.04600.90910.14250.032*
H7B0.15051.06760.09900.032*
C80.0932 (2)1.1251 (2)0.15327 (15)0.0373 (4)
H8A0.17671.07450.21190.056*
H8B0.13471.13570.07130.056*
H8C0.07201.23350.17190.056*
C90.31897 (15)0.43043 (17)0.25450 (10)0.0177 (2)
C100.48401 (17)0.2439 (2)0.02071 (12)0.0246 (3)
H100.57920.18020.04290.029*
C110.47339 (16)0.28583 (18)0.09515 (11)0.0204 (3)
H110.55870.25020.15040.024*
C120.33664 (14)0.38038 (16)0.12895 (10)0.0157 (2)
C130.21551 (16)0.42803 (18)0.04430 (11)0.0198 (2)
H130.12010.49350.06360.024*
C140.23614 (17)0.37841 (19)0.06890 (11)0.0223 (3)
H140.15170.41060.12540.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01176 (11)0.02337 (13)0.00843 (10)0.00026 (7)0.00131 (6)0.00020 (7)
O10.0233 (5)0.0349 (6)0.0105 (4)0.0010 (4)0.0053 (3)0.0035 (4)
O20.0172 (4)0.0447 (6)0.0148 (4)0.0016 (4)0.0002 (3)0.0113 (4)
N10.0156 (5)0.0287 (6)0.0070 (4)0.0019 (4)0.0007 (3)0.0012 (4)
N20.0161 (5)0.0262 (6)0.0094 (4)0.0021 (4)0.0000 (3)0.0002 (4)
N30.0318 (6)0.0249 (6)0.0143 (5)0.0043 (5)0.0003 (4)0.0009 (4)
N40.0251 (6)0.0351 (7)0.0098 (4)0.0011 (5)0.0002 (4)0.0042 (4)
C10.0136 (5)0.0381 (7)0.0095 (5)0.0004 (5)0.0026 (4)0.0016 (5)
C20.0297 (7)0.0266 (7)0.0116 (5)0.0075 (5)0.0013 (5)0.0026 (5)
C30.0306 (7)0.0231 (6)0.0182 (6)0.0035 (5)0.0010 (5)0.0029 (5)
C40.0154 (5)0.0353 (7)0.0120 (5)0.0057 (5)0.0016 (4)0.0009 (5)
C50.0326 (7)0.0241 (7)0.0136 (5)0.0050 (5)0.0005 (5)0.0003 (5)
C60.0310 (7)0.0232 (6)0.0166 (6)0.0032 (5)0.0005 (5)0.0004 (5)
C70.0299 (7)0.0314 (7)0.0182 (6)0.0027 (6)0.0001 (5)0.0010 (5)
C80.0307 (8)0.0520 (10)0.0250 (7)0.0082 (7)0.0013 (6)0.0032 (7)
C90.0163 (5)0.0290 (7)0.0080 (5)0.0057 (4)0.0003 (4)0.0022 (4)
C100.0233 (6)0.0365 (8)0.0135 (5)0.0061 (5)0.0009 (5)0.0057 (5)
C110.0186 (6)0.0314 (7)0.0104 (5)0.0025 (5)0.0020 (4)0.0014 (5)
C120.0146 (5)0.0254 (6)0.0069 (4)0.0034 (4)0.0005 (4)0.0007 (4)
C130.0170 (5)0.0326 (7)0.0094 (5)0.0023 (5)0.0008 (4)0.0027 (5)
C140.0216 (6)0.0362 (7)0.0088 (5)0.0015 (5)0.0031 (4)0.0029 (5)
Geometric parameters (Å, º) top
Cu1—N1i2.0093 (12)C3—H3B0.9900
Cu1—N12.0093 (12)C4—C1i1.512 (2)
Cu1—N22.0260 (13)C4—H4A0.9900
Cu1—N2i2.0261 (13)C4—H4B0.9900
Cu1—O1i2.4100 (11)C5—C61.530 (2)
Cu1—O12.4100 (11)C5—H5A0.9900
O1—C91.2576 (16)C5—H5B0.9900
O2—C91.2551 (17)C6—C71.522 (2)
N1—C21.4775 (19)C6—H6A0.9900
N1—C11.4778 (16)C6—H6B0.9900
N1—H11.0000C7—C81.525 (2)
N2—C41.4801 (16)C7—H7A0.9900
N2—C31.4807 (19)C7—H7B0.9900
N2—H21.0000C8—H8A0.9800
N3—C31.4377 (19)C8—H8B0.9800
N3—C21.4394 (19)C8—H8C0.9800
N3—C51.4676 (18)C9—C121.5211 (17)
N4—C141.3393 (18)C10—C111.3888 (18)
N4—C101.3402 (18)C10—H100.9500
C1—C4i1.512 (2)C11—C121.3855 (18)
C1—H1A0.9900C11—H110.9500
C1—H1B0.9900C12—C131.3908 (16)
C2—H2A0.9900C13—C141.3887 (17)
C2—H2B0.9900C13—H130.9500
C3—H3A0.9900C14—H140.9500
N1i—Cu1—N1180.0H3A—C3—H3B107.6
N1i—Cu1—N286.38 (5)N2—C4—C1i107.66 (11)
N1—Cu1—N293.62 (5)N2—C4—H4A110.2
N1i—Cu1—N2i93.62 (5)C1i—C4—H4A110.2
N1—Cu1—N2i86.38 (5)N2—C4—H4B110.2
N2—Cu1—N2i180.00 (5)C1i—C4—H4B110.2
N1i—Cu1—O1i91.88 (5)H4A—C4—H4B108.5
N1—Cu1—O1i88.12 (5)N3—C5—C6112.45 (12)
N2—Cu1—O1i92.34 (4)N3—C5—H5A109.1
N2i—Cu1—O1i87.66 (4)C6—C5—H5A109.1
N1i—Cu1—O188.12 (5)N3—C5—H5B109.1
N1—Cu1—O191.88 (5)C6—C5—H5B109.1
N2—Cu1—O187.66 (4)H5A—C5—H5B107.8
N2i—Cu1—O192.34 (4)C7—C6—C5111.11 (12)
O1i—Cu1—O1180.0C7—C6—H6A109.4
C9—O1—Cu1126.16 (9)C5—C6—H6A109.4
C2—N1—C1112.34 (10)C7—C6—H6B109.4
C2—N1—Cu1113.64 (9)C5—C6—H6B109.4
C1—N1—Cu1106.52 (8)H6A—C6—H6B108.0
C2—N1—H1108.0C6—C7—C8111.54 (13)
C1—N1—H1108.0C6—C7—H7A109.3
Cu1—N1—H1108.0C8—C7—H7A109.3
C4—N2—C3112.40 (11)C6—C7—H7B109.3
C4—N2—Cu1105.83 (8)C8—C7—H7B109.3
C3—N2—Cu1114.38 (8)H7A—C7—H7B108.0
C4—N2—H2108.0C7—C8—H8A109.5
C3—N2—H2108.0C7—C8—H8B109.5
Cu1—N2—H2108.0H8A—C8—H8B109.5
C3—N3—C2114.61 (11)C7—C8—H8C109.5
C3—N3—C5114.92 (11)H8A—C8—H8C109.5
C2—N3—C5116.23 (12)H8B—C8—H8C109.5
C14—N4—C10116.32 (12)O2—C9—O1126.75 (12)
N1—C1—C4i108.03 (10)O2—C9—C12116.76 (11)
N1—C1—H1A110.1O1—C9—C12116.49 (11)
C4i—C1—H1A110.1N4—C10—C11123.95 (13)
N1—C1—H1B110.1N4—C10—H10118.0
C4i—C1—H1B110.1C11—C10—H10118.0
H1A—C1—H1B108.4C12—C11—C10119.03 (12)
N3—C2—N1114.08 (11)C12—C11—H11120.5
N3—C2—H2A108.7C10—C11—H11120.5
N1—C2—H2A108.7C11—C12—C13117.81 (11)
N3—C2—H2B108.7C11—C12—C9121.25 (11)
N1—C2—H2B108.7C13—C12—C9120.94 (11)
H2A—C2—H2B107.6C14—C13—C12118.98 (12)
N3—C3—N2114.67 (12)C14—C13—H13120.5
N3—C3—H3A108.6C12—C13—H13120.5
N2—C3—H3A108.6N4—C14—C13123.90 (12)
N3—C3—H3B108.6N4—C14—H14118.1
N2—C3—H3B108.6C13—C14—H14118.1
C2—N1—C1—C4i166.01 (10)C5—C6—C7—C8177.30 (14)
Cu1—N1—C1—C4i40.98 (11)Cu1—O1—C9—O220.4 (2)
C3—N3—C2—N170.73 (16)Cu1—O1—C9—C12159.19 (8)
C5—N3—C2—N167.19 (15)C14—N4—C10—C110.4 (2)
C1—N1—C2—N3179.05 (10)N4—C10—C11—C120.8 (2)
Cu1—N1—C2—N359.93 (13)C10—C11—C12—C130.3 (2)
C2—N3—C3—N268.49 (15)C10—C11—C12—C9179.76 (13)
C5—N3—C3—N269.99 (15)O2—C9—C12—C11179.88 (13)
C4—N2—C3—N3176.79 (10)O1—C9—C12—C110.48 (19)
Cu1—N2—C3—N356.07 (13)O2—C9—C12—C130.02 (19)
C3—N2—C4—C1i167.50 (10)O1—C9—C12—C13179.62 (12)
Cu1—N2—C4—C1i41.99 (10)C11—C12—C13—C140.4 (2)
C3—N3—C5—C6158.17 (12)C9—C12—C13—C14179.48 (12)
C2—N3—C5—C664.03 (16)C10—N4—C14—C130.4 (2)
N3—C5—C6—C7179.31 (12)C12—C13—C14—N40.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21.001.982.9179 (16)155
N2—H2···N4ii1.002.213.1160 (16)150
Symmetry code: (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21.001.982.9179 (16)154.7
N2—H2···N4i1.002.213.1160 (16)149.9
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H4NO2)2(C16H38N6)]
Mr622.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0490 (16), 8.3000 (17), 11.175 (2)
α, β, γ (°)81.16 (3), 87.14 (3), 86.68 (3)
V3)735.8 (3)
Z1
Radiation typeSynchrotron, λ = 0.630 Å
µ (mm1)0.57
Crystal size (mm)0.08 × 0.03 × 0.03
Data collection
DiffractometerADSC Q210 CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.958, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7574, 3882, 3608
Rint0.018
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.09
No. of reflections3882
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.62

Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2008, 2015b), DIAMOND4 (Putz & Brandenburg, 2014), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A2058815) and supported by the Institute for Basic Science (IBS, IBS-R007-D1-2014-a01). The X-ray crystallography 2D-SMC beamline and FT–IR experiment at PLS-II were supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBi, J.-H., Bi, W.-T. & Hu, N.-L. (2012). Asian J. Chem. 24, 943–944.  Google Scholar
First citationCarnes, M. E., Collins, M. S. & Johnson, D. W. (2014). Chem. Soc. Rev. 43, 1825–1834.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHunter, C. A. & Sanders, K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationKim, D.-W., Shin, J. W. & Moon, D. (2015). Acta Cryst. E71, 136–138.  Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Jiao, J., Li, J.-R., Bu, X.-H., Ribas, J. & Batten, S. R. (2006). Inorg. Chem. 45, 6129–6131.  Google Scholar
First citationMin, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND4. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., John Wiley & Sons, Ltd, Chichester.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsai, C.-Y., Huang, B.-H., Hsiao, M.-W., Lin, C.-C. & Ko, B.-T. (2014). Inorg. Chem. 53, 5109–5116.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 203-205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds