metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II) aceto­nitrile monosolvate

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 November 2022; accepted 30 November 2022; online 6 December 2022)

In the title complex, [ZnCl2(C12H12N2)]·CH3CN, the zinc(II) atom is fourfold coordinated by two chloride ligands and a bidentate 4,4′-dimethyl-2,2′-bi­pyridine ligand in a distorted tetra­hedral shape with a mol­ecule of aceto­nitrile sitting in the outer coordination sphere of the complex. ππ stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns parallel to the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the last decade, metal complexes of 4,4′-dimethyl-2,2′-bi­pyridine have garnered significant attention due to their photophysical properties (Tamer et al., 2020[Tamer, Ö., Avcı, D., Dege, N. & Atalay, Y. (2020). J. Mol. Struct. 1202, 127288.]; Queiroz et al., 2022[Queiroz, E. C., Franco, C. H., Ferreira, M. S., Freire, R. O. & Machado, F. C. (2022). J. Lumin. 249, 118990.]), electrocatalytic activity (Ogihara et al., 2018[Ogihara, H., Maezuru, T., Ogishima, Y. & Yamanaka, I. (2018). Electrocatalysis, 9, 220-225.]; Taylor et al., 2018[Taylor, J. O., Leavey, R. D. & Hartl, F. (2018). ChemElectroChem, 5, 3155-3161.]), and potential as anti­tumor agents (Amani et al., 2014[Amani, V., Abedi, A., Ghabeshi, S., Khavasi, H. R., Hosseini, S. M. & Safari, N. (2014). Polyhedron, 79, 104-115.]). Recently, platinum complexes incorporating 4,4′-dimethyl-2,2′-bi­pyridine were found to be effective against several cancer cell lines, including L1210 murine leukemia, HT29 human colon carcinoma, and U87 human glioblastoma (Pages et al., 2015[Pages, B. J., Zhang, Y., Li, F., Sakoff, J., Gilbert, J. & Aldrich-Wright, J. R. (2015). Eur. J. Inorg. Chem. pp. 4167-4175.]). Our research group inter­est currently lies in synthesizing metal complexes with applications in biological systems; as part of our research in this area, herein, we describe the synthesis and structure of the title complex, which promises to be a useful starting material in the synthesis of novel zinc(II) complexes.

The asymmetric unit contains one mol­ecule of the title compound and one solvent mol­ecule of aceto­nitrile. The zinc(II) atom exhibits a distorted tetra­hedral cooordination environment defined by two pyridine nitro­gen atoms from the 4,4′-dimethyl-2,2′-bi­pyridine ligand and two chlorido ligands (Fig. 1[link]). The Zn—N bond lengths are in good agreement with the comparable bromide analog complex currently available in the CSD (version 5.43 with update June 2022; Alizadeh et al., 2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.], refcode DURYAR) and with other 2,2′-bi­pyridine-based zinc(II) complexes (Khan & Tuck, 1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.], refcode CEFFOI; Hossienifard et al., 2011[Hossienifard, M., Hashemi, L., Amani, V., Kalateh, K. & Morsali, A. (2011). J. Inorg. Organomet. Polym. 21, 527-533.], refcode DAKMUZ; Nauha et al., 2016[Nauha, E., Naumov, P. & Lusi, M. (2016). CrystEngComm, 18, 4699-4703.], refcode EMERAR; Khalighi et al., 2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.], refcode POFKOL). Similar behavior is observed for the Zn—Cl bond lengths. The small bite angle N2—Zn1—N1 of 80.19 (7)° reflects the distortion from the ideal tetra­hedral coordination. Numerical data of relevant bonds and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl1 2.2065 (6) Zn1—N1 2.0570 (17)
Zn1—Cl2 2.2005 (6) Zn1—N2 2.0562 (17)
       
Cl2—Zn1—Cl1 116.82 (2) N2—Zn1—Cl1 110.49 (5)
N1—Zn1—Cl1 117.12 (5) N2—Zn1—Cl2 117.59 (5)
N1—Zn1—Cl2 109.48 (5) N2—Zn1—N1 80.19 (7)
[Figure 1]
Figure 1
The structures of the mol­ecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

The title complex packs into layers extending parallel to the bc plane that are packed along the a-axis direction (Fig. 2[link]). Contiguous pyridine rings show ππ stacking inter­actions, with centroid-to-centroid distances (CgCg) alternating between 3.718 (1) Å and 3.725 (1) Å, and offset distances of 1.166 and 1.191 Å, respectively (Fig. 3[link]). No other significant supra­molecular inter­action is present in the crystal packing of the title compound.

[Figure 2]
Figure 2
Perspective view of the crystal packing of the title complex approximately along the b axis; H atoms are omitted for clarity.
[Figure 3]
Figure 3
Capped sticks representation of the title mol­ecule showing ππ stacking inter­actions (red). H atoms and aceto­nitrile mol­ecule are omitted for clarity.

Synthesis and crystallization

Zinc(II) chloride (0.370 g, 2.71 mmol) was added to a methanol solution (40 ml) of 4,4′-dimethyl-2,2′-bi­pyridine (0.500 g, 2.71 mmol). After stirring for 30 min, the resulting suspension was filtrated to obtain a white precipitate of the title compound (0.470 g, 54%). Crystals suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether over a saturated aceto­nitrile solution of the title compound at 277 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl2(C12H12N2)]·C2H3N
Mr 361.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.2893 (1), 13.3443 (2), 16.1667 (3)
β (°) 92.486 (2)
V3) 1571.06 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.23
Crystal size (mm) 0.26 × 0.10 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.467, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15078, 3137, 2851
Rint 0.040
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.07
No. of reflections 3137
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.75
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Dichlorido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) acetonitrile monosolvate top
Crystal data top
[ZnCl2(C12H12N2)]·C2H3NF(000) = 736
Mr = 361.56Dx = 1.529 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.2893 (1) ÅCell parameters from 7600 reflections
b = 13.3443 (2) Åθ = 4.3–75.6°
c = 16.1667 (3) ŵ = 5.23 mm1
β = 92.486 (2)°T = 100 K
V = 1571.06 (4) Å3Plank, clear colourless
Z = 40.26 × 0.10 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3137 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2851 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 4.3°
ω scansh = 98
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 1611
Tmin = 0.467, Tmax = 1.000l = 2018
15078 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.740P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3137 reflectionsΔρmax = 0.47 e Å3
184 parametersΔρmin = 0.75 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26341 (4)0.28826 (2)0.57710 (2)0.02312 (11)
Cl10.52433 (7)0.21775 (4)0.61998 (3)0.03091 (14)
Cl20.01137 (8)0.20050 (4)0.59191 (4)0.03469 (15)
N10.2201 (2)0.43399 (12)0.61281 (10)0.0234 (3)
N20.2934 (2)0.35984 (12)0.46587 (10)0.0238 (3)
C60.2711 (3)0.46056 (15)0.46862 (12)0.0229 (4)
C50.2270 (3)0.50205 (15)0.55085 (12)0.0224 (4)
N30.2294 (3)0.42938 (15)0.88678 (12)0.0386 (5)
C40.1954 (3)0.60303 (15)0.56446 (13)0.0257 (4)
H40.1994790.6494360.5200110.031*
C70.2912 (3)0.51951 (15)0.39878 (13)0.0258 (4)
H70.2755700.5900640.4018930.031*
C10.1812 (3)0.46558 (16)0.68887 (13)0.0271 (4)
H10.1743260.4175540.7319990.032*
C80.3344 (3)0.47496 (16)0.32421 (13)0.0271 (4)
C20.1508 (3)0.56532 (16)0.70690 (13)0.0287 (4)
H20.1255910.5852620.7616570.034*
C100.3363 (3)0.31691 (16)0.39416 (13)0.0277 (4)
H100.3522980.2462950.3924760.033*
C30.1576 (3)0.63621 (15)0.64396 (13)0.0279 (4)
C90.3580 (3)0.37158 (16)0.32278 (13)0.0287 (4)
H90.3887480.3388530.2730780.034*
C130.2438 (3)0.47359 (16)0.94688 (14)0.0296 (4)
C120.3516 (3)0.53683 (18)0.24735 (14)0.0350 (5)
H12A0.2327600.5393100.2166700.053*
H12B0.4433770.5066030.2124850.053*
H12C0.3899820.6049550.2627230.053*
C140.2648 (3)0.52852 (18)1.02426 (14)0.0334 (5)
H14A0.3211790.5937861.0140920.050*
H14B0.3433600.4903381.0635960.050*
H14C0.1439930.5384991.0473130.050*
C110.1310 (3)0.74589 (17)0.66062 (16)0.0360 (5)
H11A0.2481280.7810580.6560740.054*
H11B0.0868420.7547660.7165550.054*
H11C0.0405790.7733900.6201080.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02849 (17)0.01792 (16)0.02321 (17)0.00069 (9)0.00410 (11)0.00276 (9)
Cl10.0305 (3)0.0271 (3)0.0353 (3)0.00510 (18)0.0030 (2)0.00574 (19)
Cl20.0334 (3)0.0319 (3)0.0392 (3)0.0078 (2)0.0068 (2)0.0031 (2)
N10.0274 (8)0.0205 (8)0.0223 (8)0.0008 (6)0.0021 (6)0.0005 (6)
N20.0300 (8)0.0187 (8)0.0227 (8)0.0000 (6)0.0028 (6)0.0006 (6)
C60.0253 (9)0.0213 (9)0.0221 (9)0.0014 (7)0.0002 (7)0.0011 (7)
C50.0235 (9)0.0209 (9)0.0225 (9)0.0001 (7)0.0017 (7)0.0013 (8)
N30.0588 (13)0.0285 (10)0.0286 (10)0.0025 (9)0.0040 (9)0.0004 (8)
C40.0292 (10)0.0215 (10)0.0260 (10)0.0001 (8)0.0014 (8)0.0013 (8)
C70.0300 (10)0.0226 (9)0.0245 (10)0.0007 (8)0.0015 (8)0.0028 (8)
C10.0322 (10)0.0261 (10)0.0229 (10)0.0009 (8)0.0013 (8)0.0023 (8)
C80.0286 (10)0.0297 (10)0.0229 (10)0.0003 (8)0.0004 (8)0.0038 (8)
C20.0318 (10)0.0292 (11)0.0253 (10)0.0011 (8)0.0021 (8)0.0046 (8)
C100.0336 (10)0.0235 (10)0.0262 (10)0.0001 (8)0.0027 (8)0.0028 (8)
C30.0285 (10)0.0233 (10)0.0317 (11)0.0003 (8)0.0012 (8)0.0033 (8)
C90.0329 (10)0.0309 (11)0.0224 (9)0.0009 (8)0.0018 (8)0.0025 (8)
C130.0344 (11)0.0267 (10)0.0280 (11)0.0008 (8)0.0023 (8)0.0025 (9)
C120.0434 (13)0.0386 (12)0.0229 (10)0.0005 (10)0.0010 (9)0.0083 (9)
C140.0374 (12)0.0341 (12)0.0288 (11)0.0012 (9)0.0009 (9)0.0042 (9)
C110.0435 (13)0.0233 (11)0.0414 (13)0.0009 (9)0.0024 (10)0.0075 (9)
Geometric parameters (Å, º) top
Zn1—Cl12.2065 (6)C8—C91.390 (3)
Zn1—Cl22.2005 (6)C8—C121.502 (3)
Zn1—N12.0570 (17)C2—H20.9500
Zn1—N22.0562 (17)C2—C31.392 (3)
N1—C51.355 (3)C10—H100.9500
N1—C11.342 (3)C10—C91.380 (3)
N2—C61.355 (3)C3—C111.502 (3)
N2—C101.342 (3)C9—H90.9500
C6—C51.488 (3)C13—C141.452 (3)
C6—C71.389 (3)C12—H12A0.9800
C5—C41.386 (3)C12—H12B0.9800
N3—C131.138 (3)C12—H12C0.9800
C4—H40.9500C14—H14A0.9800
C4—C31.398 (3)C14—H14B0.9800
C7—H70.9500C14—H14C0.9800
C7—C81.392 (3)C11—H11A0.9800
C1—H10.9500C11—H11B0.9800
C1—C21.382 (3)C11—H11C0.9800
Cl2—Zn1—Cl1116.82 (2)C1—C2—C3119.29 (19)
N1—Zn1—Cl1117.12 (5)C3—C2—H2120.4
N1—Zn1—Cl2109.48 (5)N2—C10—H10118.8
N2—Zn1—Cl1110.49 (5)N2—C10—C9122.41 (19)
N2—Zn1—Cl2117.59 (5)C9—C10—H10118.8
N2—Zn1—N180.19 (7)C4—C3—C11120.37 (19)
C5—N1—Zn1114.53 (13)C2—C3—C4118.13 (19)
C1—N1—Zn1126.54 (14)C2—C3—C11121.5 (2)
C1—N1—C5118.89 (17)C8—C9—H9120.3
C6—N2—Zn1114.51 (13)C10—C9—C8119.47 (19)
C10—N2—Zn1126.48 (14)C10—C9—H9120.3
C10—N2—C6118.99 (17)N3—C13—C14178.8 (3)
N2—C6—C5115.42 (17)C8—C12—H12A109.5
N2—C6—C7121.21 (18)C8—C12—H12B109.5
C7—C6—C5123.36 (18)C8—C12—H12C109.5
N1—C5—C6115.31 (17)H12A—C12—H12B109.5
N1—C5—C4121.51 (18)H12A—C12—H12C109.5
C4—C5—C6123.18 (18)H12B—C12—H12C109.5
C5—C4—H4120.2C13—C14—H14A109.5
C5—C4—C3119.63 (19)C13—C14—H14B109.5
C3—C4—H4120.2C13—C14—H14C109.5
C6—C7—H7120.1H14A—C14—H14B109.5
C6—C7—C8119.85 (19)H14A—C14—H14C109.5
C8—C7—H7120.1H14B—C14—H14C109.5
N1—C1—H1118.7C3—C11—H11A109.5
N1—C1—C2122.54 (19)C3—C11—H11B109.5
C2—C1—H1118.7C3—C11—H11C109.5
C7—C8—C12120.8 (2)H11A—C11—H11B109.5
C9—C8—C7118.07 (19)H11A—C11—H11C109.5
C9—C8—C12121.12 (19)H11B—C11—H11C109.5
C1—C2—H2120.4
Zn1—N1—C5—C62.1 (2)C6—C7—C8—C12178.3 (2)
Zn1—N1—C5—C4178.15 (15)C5—N1—C1—C21.1 (3)
Zn1—N1—C1—C2178.79 (15)C5—C6—C7—C8179.38 (19)
Zn1—N2—C6—C50.7 (2)C5—C4—C3—C20.8 (3)
Zn1—N2—C6—C7178.55 (15)C5—C4—C3—C11177.39 (19)
Zn1—N2—C10—C9178.35 (16)C7—C6—C5—N1177.36 (19)
N1—C5—C4—C30.8 (3)C7—C6—C5—C42.4 (3)
N1—C1—C2—C31.0 (3)C7—C8—C9—C100.7 (3)
N2—C6—C5—N11.8 (3)C1—N1—C5—C6179.95 (18)
N2—C6—C5—C4178.40 (18)C1—N1—C5—C40.2 (3)
N2—C6—C7—C80.2 (3)C1—C2—C3—C40.1 (3)
N2—C10—C9—C80.2 (3)C1—C2—C3—C11178.2 (2)
C6—N2—C10—C90.3 (3)C10—N2—C6—C5178.96 (18)
C6—C5—C4—C3179.00 (18)C10—N2—C6—C70.2 (3)
C6—C7—C8—C90.7 (3)C12—C8—C9—C10178.3 (2)
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032).

References

First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Abedi, A., Ghabeshi, S., Khavasi, H. R., Hosseini, S. M. & Safari, N. (2014). Polyhedron, 79, 104–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHossienifard, M., Hashemi, L., Amani, V., Kalateh, K. & Morsali, A. (2011). J. Inorg. Organomet. Polym. 21, 527–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNauha, E., Naumov, P. & Lusi, M. (2016). CrystEngComm, 18, 4699–4703.  Web of Science CSD CrossRef CAS Google Scholar
First citationOgihara, H., Maezuru, T., Ogishima, Y. & Yamanaka, I. (2018). Electrocatalysis, 9, 220–225.  Web of Science CrossRef CAS Google Scholar
First citationPages, B. J., Zhang, Y., Li, F., Sakoff, J., Gilbert, J. & Aldrich–Wright, J. R. (2015). Eur. J. Inorg. Chem. pp. 4167–4175.  Web of Science CSD CrossRef Google Scholar
First citationQueiroz, E. C., Franco, C. H., Ferreira, M. S., Freire, R. O. & Machado, F. C. (2022). J. Lumin. 249, 118990.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTamer, Ö., Avcı, D., Dege, N. & Atalay, Y. (2020). J. Mol. Struct. 1202, 127288.  Web of Science CSD CrossRef Google Scholar
First citationTaylor, J. O., Leavey, R. D. & Hartl, F. (2018). ChemElectroChem, 5, 3155–3161.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146