metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{[amino­(iminium­yl)meth­yl]urea} tetra­kis­{2-[(di­methyl­amino)(iminium­yl)meth­yl]guanidine} di-μ6-oxido-tetra-μ3-oxido-tetra­deca-μ2-oxido-octa­oxidodeca­vanadium(V) tetra­hydrate

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 June 2022; accepted 14 June 2022; online 24 June 2022)

The title compound, (C4H12N5)4(C2H7N4O)2[V10O28]·4H2O, is a by-product obtained by reacting ammonium metavanadate(V), metformin hydro­chloride and acetic acid in the presence of sodium hypochlorite, at pH = 5. The crystal structure comprises a deca­vanadate(V) anion (V10O28)6– lying on an inversion centre in space group P[\overline{1}], while cations and solvent water mol­ecules are placed in general positions, surrounding the anion, and forming numerous N—H⋯O and O—H⋯O hydrogen bonds. Metforminium (C4H12N5)+ and guanylurea (C2H7N4O)+ cations display the expected shape. Inter­estingly, in physiology the latter cation is known to be the main metabolite of the former one. The reported structure thus supports the role of sodium hypochlorite as an oxidizing reagent being able to degrade metformin hydro­chloride to form guanylurea.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metformin hydro­chloride (Metf·HCl: 1,1-di­methyl­biguanide hydro­chloride) is one of the most commonly prescribed medications for the treatment of type 2 diabetes (Maruthur et al., 2016[Maruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., Berger, Z., Chu, Y., Iyoha, E., Segal, J. B. & Bolen, S. (2016). Ann. Intern. Med. 164, 740-751.]). On the other hand, coordination compounds of vanadium, including polyoxidovanadates resulting from the condensation of the vanadate anion, likewise exhibit an anti­diabetic effect, among other biological activities of inter­est in medicinal applications (Thompson et al., 2009[Thompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H. & Orvig, C. (2009). J. Inorg. Biochem. 103, 554-558.]; Rehder, 2020[Rehder, D. (2020). Inorg. Chim. Acta, 504, 119445.]). We are involved in studies about the chemical crystallography of compounds including both types of anti­diabetic species. In this context, we report here the crystal structure of a compound including a deca­vanadate(V) anion, metforminium cations, and a degradation product of the latter, guanylurea cation (1-carbamoylguanidinium).

The asymmetric unit of the title compound comprises one-half of the deca­vanadate(V) anion (V10O28)6–, three cations and two water mol­ecules of solvation. The chemical formula is thus (HMetf)4(HGu)2[V10O28]·4H2O, where HMetf+ is the metforminium cation (C4H12N5)+ and HGu+ is the guanylurea cation (C2H7N4O)+. All hydrogen-atom positions in the cations were obtained from difference-Fourier maps, and their positions were refined, ensuring that the right tautomers are included in the structure model (Fig. 1[link]). The deca­vanadate(V) anion is unprotonated, and displays its usual shape, with a point-group symmetry close to D2h (real Ci). The twisted shape of both metforminium cations is also similar to that observed in other compounds (e.g. Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, A., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]; Farzanfar et al., 2015[Farzanfar, J., Ghasemi, K., Rezvani, A. R., Delarami, H. S., Ebrahimi, A., Hosseinpoor, H., Eskandari, A., Rudbari, H. A. & Bruno, G. (2015). J. Inorg. Biochem. 147, 54-64.]). For the first cation, the dihedral angle between C1/N1/N2/N3 and C2/C3/C4/N4/N5 mean planes is 60.39 (9)°, while the dihedral angle between the C5/N6/N7/N8 and C6/C7/C8/N9/N10 mean planes in the other metforminium cation is 58.26 (10)°. Regarding the guanylurea cation, it is nearly planar [maximum distance of 0.009 (4) Å for N12], as in a closely related salt, namely (HMetf)2(HGu)4[V10O28]·2H2O (Chatkon et al., 2014[Chatkon, A., Barres, A., Samart, N., Boyle, S. E., Haller, K. J. & Crans, D. C. (2014). Inorg. Chim. Acta, 420, 85-91.]). In the metform­inium cations, the positive charges are not clearly localized, since all C—N bond lengths span a short range, here between 1.321 (3) and 1.355 (3) Å (N—CH3 bonds are omitted). These cations are thus stabilized by resonance, with delocalized π-bonds, a common feature of guanidinium derivatives. In the case of the present guanylurea cation, one π-bond is probably delocalized over C9 N11 and C9 N12.

[Figure 1]
Figure 1
The structures of the mol­ecular entities of the title compound, with displacement ellipsoids drawn at the 40% probability level. The centrosymmetric anion is shown, while the content for cations and water mol­ecules is limited to the asymmetric unit.

The cation conformations, as well as their orientations with respect to the highly charged anion favour the formation of numerous hydrogen bonds, the NH2 groups of HMetf+ and HGu+ being the main donors, and the O sites in the anion being the main acceptors (Table 1[link], Fig. 2[link]). Empty channels oriented parallel to [100] are available in the crystal structure to accommodate water mol­ecules (O16, O17). These mol­ecules serve both as donor and acceptor groups for hydrogen bonding, and indeed form the strongest inter­molecular contacts in the crystal structure, providing cohesion between the (001) layers in which anions and cations are located (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7 0.89 (3) 1.99 (3) 2.876 (3) 170 (3)
N2—H2B⋯O12i 0.85 (3) 1.99 (3) 2.835 (3) 176 (3)
N4—H4A⋯O16ii 0.87 (3) 2.03 (3) 2.893 (3) 176 (3)
N4—H4B⋯O17 0.79 (3) 2.13 (3) 2.908 (3) 168 (3)
N6—H6A⋯O15iii 0.91 (3) 2.08 (3) 2.984 (3) 171 (3)
N6—H6B⋯O9iv 0.80 (3) 2.15 (3) 2.947 (3) 173 (3)
N7—H7A⋯O10iv 0.75 (3) 2.64 (3) 3.362 (3) 161 (3)
N7—H7B⋯O13 0.81 (3) 2.23 (3) 3.031 (3) 169 (3)
N9—H9A⋯O17v 0.84 (3) 2.06 (3) 2.886 (3) 170 (3)
N9—H9B⋯O16 0.81 (3) 2.10 (3) 2.889 (3) 165 (3)
N11—H11A⋯O11vi 0.84 (3) 2.05 (3) 2.868 (2) 162 (3)
N11—H11B⋯O1 0.70 (3) 2.48 (3) 3.049 (2) 140 (3)
N11—H11B⋯O10 0.70 (3) 2.45 (3) 3.093 (2) 153 (3)
N13—H13⋯O6 0.82 (3) 2.11 (3) 2.926 (2) 175 (3)
N14—H14A⋯N8iii 0.88 (4) 2.22 (4) 3.091 (3) 175 (3)
N14—H14B⋯O2vii 0.74 (3) 2.44 (4) 3.055 (3) 140 (4)
N14—H14B⋯O4 0.74 (3) 2.53 (3) 3.156 (3) 143 (3)
O16—H16A⋯O8 0.80 (3) 1.97 (3) 2.770 (2) 178 (3)
O16—H16B⋯O3v 0.71 (3) 2.23 (3) 2.929 (2) 171 (4)
O17—H17A⋯O8 0.75 (3) 2.12 (3) 2.861 (2) 170 (3)
O17—H17B⋯O5ii 0.78 (3) 2.13 (3) 2.866 (2) 159 (3)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, -y+2, -z+1]; (iii) [-x, -y+1, -z]; (iv) x+1, y, z; (v) [-x+1, -y+2, -z+1]; (vi) [-x-1, -y+1, -z+1]; (vii) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
Main inter­actions between the deca­vanadate(V) anion (polyhedral representation) and the first shell including six cations and four water mol­ecules (ball-and-stick representation). Hydrogen bonds are represented by blue dashed lines, and the label associated to each hydrogen bond refers to its entry in Table 1[link].
[Figure 3]
Figure 3
Part of the crystal structure, viewed down the a axis, emphasizing the positions of water mol­ecules (space-fill representation).

Experimental conditions used for the synthesis of the title compound were very close to those used for the synthesis of (HMetf)2(NH4)4[V10O28]·6H2O, for which we previously reported the crystal structure (Polito-Lucas et al., 2021[Polito-Lucas, J. A., Núñez-Ávila, J. A., Bernès, S. & Pérez-Benítez, A. (2021). IUCrData, 6, x210634.]). The only difference is that sodium hypochlorite, NaOCl, was present in the reaction medium. At pH < 7, the hypochlorite anion OCl reacts with the metforminium cation, to form guanylurea (Armbruster et al., 2015[Armbruster, D., Happel, O., Scheurer, M., Harms, K., Schmidt, T. C. & Brauch, H.-J. (2015). Water Res. 79, 104-118.]). Aqueous NaOCl or solid NaOCl·5H2O are commonly used in such oxidation processes in organic synthesis (Kirihara et al., 2017[Kirihara, M., Okada, T., Sugiyama, Y., Akiyoshi, M., Matsunaga, T. & Kimura, Y. (2017). Org. Process Res. Dev. 21, 1925-1937.]). On the other hand, in physiology guanylurea is known to be the main metabolite of metformin, through a biodegradation pathway (Tassoulas et al., 2021[Tassoulas, L. J., Robinson, A., Martinez-Vaz, B., Aukema, K. G. & Wackett, L. P. (2021). Appl. Environ. Microbiol. 87, e03003-20.]), and both mol­ecules raise a serious problem of anthropogenic contamination, since high concentrations are found in waste water (Tisler & Zwiener, 2019[Tisler, S. & Zwiener, C. (2019). Water Res. 149, 130-135.]; Poursat et al., 2019[Poursat, B. A. J., van Spanning, R. J. M., Braster, M., Helmus, R., de Voogt, P. & Parsons, J. R. (2019). Ecotoxicol. Environ. Saf. 182, 109414.]; Tucker & Wesolowski, 2020[Tucker, G. T. & Wesolowski, C. A. (2020). Br. J. Clin. Pharmacol. 86, 1452-1453.]). The title compound highlights the fact that bleach, also present in waste water, has the ability to degrade metformin to guanylurea. However, the question as to whether the deca­vanadate(V) anion (or any other vanadium-containing species) promotes or inhibits metformin degradation remains open.

Synthesis and crystallization

Orange good-quality single crystals of the title compound were obtained during the reaction between ammonium metavanadate (NH4VO3, 1.50 g, 12.1 mmol) and metformin hydro­chloride (Metf·HCl extracted from a commercial brand; 1.70 g, 10.2 mmol) in 50 ml of distilled water, 20 ml of 5% v/v acetic acid (commercial vinegar) and 2 ml of 5% v/v sodium hypochlorite (commercial bleach). In a typical procedure, NH4VO3 was dissolved by gently heating in a water bath followed by addition of Metf·HCl and stirring until dissolution. The water bath was removed, and once the mixture cooled down to room temperature, CH3COOH and NaOCl solutions were added. A yellow–orange homogeneous solution was obtained, and pH = 5 was measured. The solution then was evaporated at ambient conditions and the two major products, (H2Metf)3[V10O28]·8H2O (Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, A., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]) and (HMetf)4(HGu)2[V10O28]·4H2O (estimated yields of ca 30 and 10%, respectively), were separated by fractional crystallization over the course of 5 to 10 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C4H12N5)4(C2H7N4O)2[V10O28]·4H2O
Mr 1756.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 263
a, b, c (Å) 8.9701 (3), 13.2202 (5), 14.0861 (5)
α, β, γ (°) 99.609 (3), 103.133 (3), 107.676 (3)
V3) 1499.00 (10)
Z 1
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.82
Crystal size (mm) 0.35 × 0.09 × 0.08
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.471, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 66181, 11970, 7120
Rint 0.064
(sin θ/λ)max−1) 0.782
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 0.83
No. of reflections 11970
No. of parameters 488
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.75
Computer programs: X-AREA (Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2019); cell refinement: X-AREA (Stoe & Cie, 2019); data reduction: X-AREA (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{[amino(iminiumyl)methyl]urea} tetrakis{2-[(dimethylamino)(iminiumyl)methyl]guanidine} di-µ6-oxido-tetra-µ3-oxido-tetradeca-µ2-oxido-octaoxidodecavanadium(V) tetrahydrate top
Crystal data top
(C4H12N5)4(C2H7N4O)2[V10O28]·4H2OZ = 1
Mr = 1756.44F(000) = 888
Triclinic, P1Dx = 1.946 Mg m3
a = 8.9701 (3) ÅAg Kα radiation, λ = 0.56083 Å
b = 13.2202 (5) ÅCell parameters from 44097 reflections
c = 14.0861 (5) Åθ = 2.2–30.9°
α = 99.609 (3)°µ = 0.82 mm1
β = 103.133 (3)°T = 263 K
γ = 107.676 (3)°Prism, orange
V = 1499.00 (10) Å30.35 × 0.09 × 0.08 mm
Data collection top
Stoe Stadivari
diffractometer
11970 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source7120 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.064
Detector resolution: 5.81 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1214
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2019)
k = 2020
Tmin = 0.471, Tmax = 1.000l = 2222
66181 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
11970 reflections(Δ/σ)max = 0.001
488 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.75 e Å3
0 constraints
Special details top

Refinement. High-resolution data were collected (dmin = 0.64 Å), and all H atoms were discernible in difference-Fourier maps. Methyl H atoms were placed in calculated positions, with Uiso(H) = 1.5Ueq(carrier C). The positions for other H atoms were freely refined, and their isotropic displacements were calculated as Uiso(H) = 1.2Ueq(carrier N) and Uiso(H) = 1.5Ueq(carrier O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.18346 (3)0.50285 (3)0.48387 (2)0.02031 (7)
V20.11454 (4)0.67569 (3)0.66199 (2)0.02333 (7)
V30.29658 (4)0.73708 (3)0.50272 (3)0.02746 (8)
V40.00747 (4)0.56616 (3)0.32784 (2)0.02291 (7)
V50.04938 (4)0.74348 (3)0.47654 (3)0.02779 (8)
O10.35393 (15)0.39698 (12)0.47679 (11)0.0256 (3)
O20.14821 (19)0.71282 (13)0.78213 (11)0.0346 (3)
O30.47419 (18)0.82185 (14)0.51151 (13)0.0389 (4)
O40.02963 (18)0.52272 (14)0.20790 (11)0.0334 (3)
O50.1391 (2)0.83039 (14)0.46158 (13)0.0401 (4)
O60.18582 (14)0.45457 (11)0.34529 (9)0.0205 (3)
O70.00402 (17)0.75691 (12)0.61355 (11)0.0275 (3)
O80.16426 (17)0.82016 (12)0.48728 (11)0.0293 (3)
O90.08722 (16)0.66811 (12)0.34085 (11)0.0266 (3)
O100.24798 (15)0.60808 (12)0.46689 (11)0.0257 (3)
O110.09736 (14)0.54661 (11)0.62762 (10)0.0209 (3)
O120.30173 (16)0.75443 (12)0.64019 (11)0.0271 (3)
O130.21944 (16)0.66484 (12)0.36802 (11)0.0270 (3)
O140.05231 (14)0.60398 (11)0.49536 (10)0.0199 (2)
C10.2523 (3)0.8595 (2)0.76688 (18)0.0349 (5)
C20.0296 (3)0.95180 (18)0.81639 (17)0.0315 (4)
C30.1549 (3)0.8988 (2)0.96161 (19)0.0466 (6)
H3A0.1919430.9520851.0252190.070*
H3B0.2228710.8549310.9624270.070*
H3C0.0435270.8523770.9501310.070*
C40.3258 (3)1.0073 (4)0.8715 (3)0.0729 (11)
H4C0.3448440.9597120.8199420.109*
H4D0.4075921.0219580.9344210.109*
H4E0.3316921.0750660.8535960.109*
N10.2665 (3)0.79810 (18)0.67858 (16)0.0376 (5)
H1A0.178 (3)0.794 (2)0.662 (2)0.045*
H1B0.351 (3)0.771 (2)0.636 (2)0.045*
N20.3897 (3)0.8602 (2)0.7888 (2)0.0537 (7)
H2A0.379 (4)0.902 (3)0.848 (3)0.064*
H2B0.484 (4)0.829 (3)0.747 (3)0.064*
N30.1127 (2)0.91530 (19)0.83847 (15)0.0404 (5)
N40.0405 (3)0.99452 (18)0.73832 (17)0.0370 (4)
H4A0.045 (3)1.001 (2)0.700 (2)0.044*
H4B0.117 (3)1.006 (2)0.717 (2)0.044*
N50.1645 (2)0.95465 (18)0.88149 (16)0.0380 (4)
C50.5314 (2)0.70581 (19)0.20996 (16)0.0304 (4)
C60.3190 (2)0.77189 (18)0.17505 (15)0.0271 (4)
C70.0868 (3)0.6332 (2)0.04521 (17)0.0366 (5)
H7C0.0833490.6482050.0194870.055*
H7D0.0225000.5961480.0465200.055*
H7E0.1507630.5875960.0570910.055*
C80.0538 (3)0.7913 (2)0.15167 (19)0.0371 (5)
H8A0.0343600.7766770.2131390.056*
H8B0.0485040.7647100.0991380.056*
H8C0.1048010.8689820.1613950.056*
N60.6537 (2)0.6869 (2)0.18114 (18)0.0435 (5)
H6A0.660 (3)0.685 (2)0.117 (2)0.052*
H6B0.720 (4)0.676 (3)0.222 (2)0.052*
N70.5283 (3)0.70352 (19)0.30382 (16)0.0378 (5)
H7A0.595 (3)0.695 (2)0.341 (2)0.045*
H7B0.449 (3)0.702 (2)0.323 (2)0.045*
N80.4152 (2)0.72119 (17)0.14230 (13)0.0314 (4)
N90.3795 (2)0.86178 (18)0.25014 (16)0.0355 (4)
H9A0.479 (3)0.886 (2)0.283 (2)0.043*
H9B0.327 (3)0.891 (2)0.277 (2)0.043*
N100.16091 (19)0.73611 (15)0.12336 (13)0.0285 (4)
C90.6276 (2)0.42463 (19)0.23836 (16)0.0289 (4)
C100.5215 (3)0.3700 (2)0.10014 (17)0.0366 (5)
N110.5989 (2)0.4617 (2)0.33434 (15)0.0375 (5)
H11A0.674 (3)0.468 (2)0.358 (2)0.045*
H11B0.522 (3)0.477 (2)0.370 (2)0.045*
N120.7731 (3)0.4028 (3)0.17683 (18)0.0548 (7)
H12A0.785 (4)0.375 (3)0.117 (3)0.066*
H12B0.846 (4)0.412 (3)0.200 (3)0.066*
N130.5049 (2)0.41034 (18)0.20225 (14)0.0327 (4)
H130.418 (3)0.424 (2)0.245 (2)0.039*
N140.3872 (3)0.3626 (3)0.08178 (18)0.0559 (7)
H14A0.396 (4)0.343 (3)0.018 (3)0.067*
H14B0.309 (4)0.376 (3)0.122 (3)0.067*
O150.6510 (2)0.3447 (2)0.03409 (13)0.0559 (6)
O160.2449 (2)0.97674 (15)0.38087 (13)0.0352 (4)
H16A0.220 (4)0.931 (3)0.411 (2)0.053*
H16B0.312 (4)1.023 (3)0.412 (2)0.053*
O170.2829 (2)1.02959 (15)0.62909 (14)0.0364 (4)
H17A0.247 (4)0.972 (3)0.597 (2)0.055*
H17B0.243 (4)1.057 (3)0.591 (2)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01787 (12)0.02549 (16)0.01941 (15)0.01000 (12)0.00608 (11)0.00545 (12)
V20.02600 (14)0.02310 (17)0.01967 (16)0.00949 (13)0.00553 (12)0.00253 (13)
V30.02363 (14)0.02576 (18)0.02969 (18)0.00416 (13)0.00690 (13)0.00857 (14)
V40.02465 (14)0.02587 (17)0.01891 (15)0.00888 (13)0.00673 (12)0.00732 (13)
V50.03017 (16)0.02440 (17)0.03055 (19)0.01368 (14)0.00625 (14)0.00780 (14)
O10.0188 (5)0.0315 (8)0.0268 (7)0.0086 (5)0.0069 (5)0.0084 (6)
O20.0442 (8)0.0349 (9)0.0224 (7)0.0163 (7)0.0071 (6)0.0013 (6)
O30.0305 (7)0.0358 (9)0.0407 (9)0.0010 (7)0.0081 (7)0.0123 (7)
O40.0363 (7)0.0405 (9)0.0220 (7)0.0115 (7)0.0086 (6)0.0084 (7)
O50.0462 (9)0.0349 (9)0.0428 (10)0.0235 (8)0.0069 (8)0.0104 (8)
O60.0198 (5)0.0232 (7)0.0181 (6)0.0078 (5)0.0047 (5)0.0049 (5)
O70.0328 (7)0.0256 (7)0.0254 (7)0.0154 (6)0.0061 (6)0.0037 (6)
O80.0324 (7)0.0210 (7)0.0319 (8)0.0073 (6)0.0069 (6)0.0084 (6)
O90.0290 (6)0.0272 (7)0.0251 (7)0.0125 (6)0.0051 (5)0.0096 (6)
O100.0227 (6)0.0292 (7)0.0275 (7)0.0138 (5)0.0059 (5)0.0065 (6)
O110.0208 (5)0.0257 (7)0.0184 (6)0.0105 (5)0.0075 (5)0.0046 (5)
O120.0257 (6)0.0245 (7)0.0246 (7)0.0041 (5)0.0042 (5)0.0030 (6)
O130.0246 (6)0.0304 (8)0.0261 (7)0.0066 (6)0.0095 (5)0.0103 (6)
O140.0194 (5)0.0210 (7)0.0200 (6)0.0084 (5)0.0055 (5)0.0055 (5)
C10.0335 (10)0.0367 (12)0.0359 (12)0.0124 (9)0.0124 (9)0.0098 (10)
C20.0325 (9)0.0275 (11)0.0333 (11)0.0109 (8)0.0118 (9)0.0012 (9)
C30.0523 (14)0.0520 (16)0.0332 (13)0.0174 (13)0.0097 (11)0.0111 (12)
C40.0323 (12)0.113 (3)0.076 (2)0.0184 (16)0.0120 (14)0.051 (2)
N10.0327 (9)0.0389 (12)0.0353 (11)0.0124 (9)0.0053 (8)0.0012 (9)
N20.0298 (9)0.0704 (18)0.0462 (14)0.0106 (11)0.0101 (9)0.0085 (12)
N30.0301 (8)0.0516 (13)0.0327 (10)0.0090 (9)0.0103 (8)0.0020 (9)
N40.0321 (9)0.0411 (12)0.0423 (12)0.0162 (9)0.0128 (9)0.0141 (9)
N50.0317 (8)0.0433 (12)0.0386 (11)0.0123 (8)0.0100 (8)0.0120 (9)
C50.0282 (9)0.0331 (11)0.0271 (10)0.0095 (8)0.0077 (8)0.0038 (9)
C60.0273 (8)0.0294 (10)0.0243 (9)0.0092 (8)0.0083 (7)0.0070 (8)
C70.0336 (10)0.0374 (13)0.0309 (12)0.0082 (9)0.0052 (9)0.0025 (10)
C80.0314 (10)0.0420 (14)0.0408 (13)0.0174 (10)0.0118 (9)0.0080 (11)
N60.0342 (9)0.0738 (17)0.0334 (11)0.0310 (11)0.0113 (8)0.0181 (11)
N70.0344 (9)0.0522 (13)0.0315 (11)0.0191 (9)0.0107 (8)0.0144 (9)
N80.0292 (8)0.0433 (11)0.0236 (8)0.0179 (8)0.0069 (7)0.0051 (8)
N90.0273 (8)0.0364 (11)0.0363 (11)0.0098 (8)0.0077 (8)0.0022 (8)
N100.0250 (7)0.0304 (9)0.0276 (9)0.0095 (7)0.0060 (6)0.0042 (7)
C90.0263 (8)0.0365 (12)0.0267 (10)0.0142 (8)0.0086 (8)0.0084 (9)
C100.0320 (10)0.0531 (15)0.0264 (11)0.0190 (10)0.0085 (8)0.0072 (10)
N110.0277 (8)0.0597 (14)0.0259 (10)0.0196 (9)0.0083 (7)0.0051 (9)
N120.0317 (9)0.103 (2)0.0298 (11)0.0350 (12)0.0054 (9)0.0002 (12)
N130.0239 (7)0.0504 (12)0.0242 (9)0.0169 (8)0.0060 (7)0.0052 (8)
N140.0376 (10)0.107 (2)0.0276 (11)0.0385 (13)0.0090 (9)0.0048 (13)
O150.0343 (8)0.1055 (18)0.0247 (8)0.0323 (10)0.0029 (7)0.0022 (10)
O160.0415 (9)0.0307 (9)0.0326 (9)0.0109 (7)0.0097 (7)0.0115 (7)
O170.0372 (8)0.0302 (9)0.0353 (9)0.0093 (7)0.0043 (7)0.0050 (7)
Geometric parameters (Å, º) top
V1—O101.6925 (14)C4—N51.454 (3)
V1—O11.7005 (13)C4—H4C0.9600
V1—O111.9126 (13)C4—H4D0.9600
V1—O61.9430 (13)C4—H4E0.9600
V1—O142.0836 (12)N1—H1A0.89 (3)
V1—O14i2.1105 (13)N1—H1B0.79 (3)
V1—V53.0691 (5)N2—H2A0.89 (4)
V1—V3i3.0755 (5)N2—H2B0.85 (3)
V2—O21.6113 (15)N4—H4A0.87 (3)
V2—O121.8102 (14)N4—H4B0.79 (3)
V2—O71.8324 (14)C5—N61.329 (3)
V2—O6i2.0062 (14)C5—N81.334 (3)
V2—O112.0238 (13)C5—N71.334 (3)
V2—O142.2495 (13)C6—N91.324 (3)
V2—V4i3.0888 (5)C6—N101.331 (2)
V2—V53.1024 (5)C6—N81.355 (3)
V3—O31.6091 (15)C7—N101.457 (3)
V3—O131.8407 (15)C7—H7C0.9600
V3—O81.8484 (15)C7—H7D0.9600
V3—O121.8998 (15)C7—H7E0.9600
V3—O1i2.0361 (15)C8—N101.455 (3)
V3—O142.3243 (12)C8—H8A0.9600
V3—V53.0697 (5)C8—H8B0.9600
V3—V43.0951 (5)C8—H8C0.9600
V4—O41.6122 (15)N6—H6A0.91 (3)
V4—O91.8042 (15)N6—H6B0.80 (3)
V4—O131.8427 (13)N7—H7A0.75 (3)
V4—O62.0012 (13)N7—H7B0.81 (3)
V4—O11i2.0196 (14)N9—H9A0.84 (3)
V4—O142.2434 (13)N9—H9B0.81 (3)
V4—V53.1169 (5)C9—N111.296 (3)
V5—O51.6054 (16)C9—N121.309 (3)
V5—O81.8331 (14)C9—N131.361 (3)
V5—O71.8457 (15)C10—O151.223 (3)
V5—O91.9040 (15)C10—N141.316 (3)
V5—O102.0660 (14)C10—N131.405 (3)
V5—O142.3191 (13)N11—H11A0.84 (3)
C1—N31.321 (3)N11—H11B0.70 (3)
C1—N11.323 (3)N12—H12A0.83 (3)
C1—N21.339 (3)N12—H12B0.82 (3)
C2—N41.327 (3)N13—H130.82 (3)
C2—N51.328 (3)N14—H14A0.88 (4)
C2—N31.347 (3)N14—H14B0.74 (3)
C3—N51.453 (3)O16—H16A0.80 (3)
C3—H3A0.9600O16—H16B0.71 (3)
C3—H3B0.9600O17—H17A0.75 (3)
C3—H3C0.9600O17—H17B0.78 (3)
O10—V1—O1105.46 (7)O10—V5—O1474.12 (5)
O10—V1—O1198.71 (6)O5—V5—V1131.07 (7)
O1—V1—O1196.92 (6)O8—V5—V1125.08 (5)
O10—V1—O695.97 (6)O7—V5—V178.36 (5)
O1—V1—O695.74 (6)O9—V5—V178.38 (4)
O11—V1—O6157.30 (5)O10—V5—V131.41 (4)
O10—V1—O1488.53 (6)O14—V5—V142.73 (3)
O1—V1—O14165.98 (6)O5—V5—V3137.49 (7)
O11—V1—O1481.62 (5)O8—V5—V333.66 (5)
O6—V1—O1481.53 (5)O7—V5—V385.71 (4)
O10—V1—O14i167.14 (6)O9—V5—V383.45 (4)
O1—V1—O14i87.35 (6)O10—V5—V3122.77 (4)
O11—V1—O14i80.52 (5)O14—V5—V348.69 (3)
O6—V1—O14i81.33 (5)V1—V5—V391.420 (13)
O14—V1—O14i78.65 (5)O5—V5—V2134.32 (7)
O10—V1—V539.51 (5)O8—V5—V282.26 (5)
O1—V1—V5144.96 (5)O7—V5—V232.36 (4)
O11—V1—V589.98 (4)O9—V5—V2123.48 (4)
O6—V1—V590.41 (4)O10—V5—V282.77 (4)
O14—V1—V549.05 (4)O14—V5—V246.29 (3)
O14i—V1—V5127.69 (3)V1—V5—V261.613 (12)
O10—V1—V3i143.79 (5)V3—V5—V261.042 (11)
O1—V1—V3i38.33 (5)O5—V5—V4133.62 (7)
O11—V1—V3i88.31 (4)O8—V5—V481.96 (5)
O6—V1—V3i90.02 (4)O7—V5—V4123.82 (5)
O14—V1—V3i127.68 (4)O9—V5—V431.82 (4)
O14i—V1—V3i49.04 (3)O10—V5—V480.43 (4)
V5—V1—V3i176.557 (14)O14—V5—V445.90 (3)
O2—V2—O12104.71 (7)V1—V5—V461.206 (11)
O2—V2—O7103.32 (7)V3—V5—V460.033 (12)
O12—V2—O795.37 (7)V2—V5—V491.958 (13)
O2—V2—O6i99.03 (7)V1—O1—V3i110.47 (6)
O12—V2—O6i89.97 (6)V1—O6—V4105.96 (6)
O7—V2—O6i154.83 (6)V1—O6—V2i106.54 (6)
O2—V2—O1198.92 (7)V4—O6—V2i100.85 (6)
O12—V2—O11154.25 (6)V2—O7—V5115.02 (8)
O7—V2—O1188.94 (6)V5—O8—V3112.99 (8)
O6i—V2—O1176.20 (5)V4—O9—V5114.37 (7)
O2—V2—O14173.33 (7)V1—O10—V5109.08 (6)
O12—V2—O1480.50 (6)V1—O11—V4i108.12 (6)
O7—V2—O1480.05 (6)V1—O11—V2106.80 (6)
O6i—V2—O1476.60 (5)V4i—O11—V299.62 (5)
O11—V2—O1475.26 (5)V2—O12—V3115.31 (7)
O2—V2—V4i88.84 (6)V3—O13—V4114.34 (7)
O12—V2—V4i129.46 (5)V1—O14—V1i101.35 (5)
O7—V2—V4i129.07 (5)V1—O14—V493.34 (5)
O6i—V2—V4i39.52 (4)V1i—O14—V493.95 (5)
O11—V2—V4i40.14 (4)V1—O14—V293.60 (5)
O14—V2—V4i84.60 (3)V1i—O14—V293.05 (5)
O2—V2—V5135.78 (6)V4—O14—V2168.99 (7)
O12—V2—V583.17 (5)V1—O14—V588.22 (4)
O7—V2—V532.62 (5)V1i—O14—V5170.40 (6)
O6i—V2—V5124.76 (4)V4—O14—V586.16 (4)
O11—V2—V587.04 (4)V2—O14—V585.53 (5)
O14—V2—V548.18 (3)V1—O14—V3170.95 (7)
V4i—V2—V5119.903 (14)V1i—O14—V387.68 (4)
O3—V3—O13102.26 (8)V4—O14—V385.29 (4)
O3—V3—O8103.30 (8)V2—O14—V386.51 (4)
O13—V3—O892.71 (7)V5—O14—V382.77 (4)
O3—V3—O12101.81 (7)N3—C1—N1125.0 (2)
O13—V3—O12154.56 (6)N3—C1—N2116.8 (2)
O8—V3—O1289.66 (7)N1—C1—N2118.1 (2)
O3—V3—O1i100.28 (7)N4—C2—N5119.8 (2)
O13—V3—O1i85.14 (6)N4—C2—N3122.1 (2)
O8—V3—O1i156.22 (6)N5—C2—N3117.8 (2)
O12—V3—O1i82.61 (6)N5—C3—H3A109.5
O3—V3—O14174.67 (7)N5—C3—H3B109.5
O13—V3—O1478.49 (5)H3A—C3—H3B109.5
O8—V3—O1481.89 (5)N5—C3—H3C109.5
O12—V3—O1476.79 (5)H3A—C3—H3C109.5
O1i—V3—O1474.47 (5)H3B—C3—H3C109.5
O3—V3—V5136.65 (7)N5—C4—H4C109.5
O13—V3—V585.37 (4)N5—C4—H4D109.5
O8—V3—V533.35 (4)H4C—C4—H4D109.5
O12—V3—V582.78 (4)N5—C4—H4E109.5
O1i—V3—V5122.98 (4)H4C—C4—H4E109.5
O14—V3—V548.54 (3)H4D—C4—H4E109.5
O3—V3—V1i131.48 (7)C1—N1—H1A120.9 (18)
O13—V3—V1i79.52 (5)C1—N1—H1B121 (2)
O8—V3—V1i125.17 (5)H1A—N1—H1B117 (3)
O12—V3—V1i78.46 (5)C1—N2—H2A117 (2)
O1i—V3—V1i31.20 (4)C1—N2—H2B123 (2)
O14—V3—V1i43.29 (3)H2A—N2—H2B119 (3)
V5—V3—V1i91.829 (13)C1—N3—C2121.3 (2)
O3—V3—V4134.99 (6)C2—N4—H4A120.2 (18)
O13—V3—V432.85 (4)C2—N4—H4B125 (2)
O8—V3—V482.37 (5)H4A—N4—H4B114 (3)
O12—V3—V4123.02 (4)C2—N5—C3120.9 (2)
O1i—V3—V483.12 (4)C2—N5—C4121.5 (2)
O14—V3—V446.25 (3)C3—N5—C4117.5 (2)
V5—V3—V460.738 (12)N6—C5—N8118.3 (2)
V1i—V3—V462.131 (11)N6—C5—N7117.9 (2)
O4—V4—O9104.49 (7)N8—C5—N7123.7 (2)
O4—V4—O13103.24 (7)N9—C6—N10119.0 (2)
O9—V4—O1395.73 (7)N9—C6—N8122.24 (18)
O4—V4—O698.59 (7)N10—C6—N8118.44 (19)
O9—V4—O690.50 (6)N10—C7—H7C109.5
O13—V4—O6154.96 (6)N10—C7—H7D109.5
O4—V4—O11i98.58 (7)H7C—C7—H7D109.5
O9—V4—O11i154.97 (6)N10—C7—H7E109.5
O13—V4—O11i88.24 (6)H7C—C7—H7E109.5
O6—V4—O11i76.41 (5)H7D—C7—H7E109.5
O4—V4—O14172.62 (7)N10—C8—H8A109.5
O9—V4—O1481.17 (6)N10—C8—H8B109.5
O13—V4—O1480.64 (5)H8A—C8—H8B109.5
O6—V4—O1476.39 (5)N10—C8—H8C109.5
O11i—V4—O1475.10 (5)H8A—C8—H8C109.5
O4—V4—V2i88.30 (6)H8B—C8—H8C109.5
O9—V4—V2i130.12 (5)C5—N6—H6A121.6 (18)
O13—V4—V2i128.48 (5)C5—N6—H6B116 (2)
O6—V4—V2i39.63 (4)H6A—N6—H6B122 (3)
O11i—V4—V2i40.24 (4)C5—N7—H7A122 (2)
O14—V4—V2i84.39 (3)C5—N7—H7B123 (2)
O4—V4—V3135.96 (6)H7A—N7—H7B115 (3)
O9—V4—V384.25 (5)C5—N8—C6118.98 (18)
O13—V4—V332.81 (5)C6—N9—H9A120 (2)
O6—V4—V3124.78 (4)C6—N9—H9B126 (2)
O11i—V4—V385.92 (4)H9A—N9—H9B112 (3)
O14—V4—V348.45 (3)C6—N10—C8120.82 (19)
V2i—V4—V3119.121 (14)C6—N10—C7120.68 (19)
O4—V4—V5138.15 (6)C8—N10—C7118.08 (17)
O9—V4—V533.81 (5)N11—C9—N12119.9 (2)
O13—V4—V583.95 (5)N11—C9—N13119.58 (19)
O6—V4—V587.98 (4)N12—C9—N13120.6 (2)
O11i—V4—V5123.03 (4)O15—C10—N14123.2 (2)
O14—V4—V547.94 (3)O15—C10—N13122.1 (2)
V2i—V4—V5119.587 (14)N14—C10—N13114.7 (2)
V3—V4—V559.228 (12)C9—N11—H11A121.0 (19)
O5—V5—O8103.84 (8)C9—N11—H11B124 (2)
O5—V5—O7102.08 (8)H11A—N11—H11B116 (3)
O8—V5—O792.75 (7)C9—N12—H12A115 (2)
O5—V5—O9101.85 (8)C9—N12—H12B119 (2)
O8—V5—O991.20 (7)H12A—N12—H12B126 (3)
O7—V5—O9154.03 (7)C9—N13—C10124.73 (18)
O5—V5—O1099.67 (7)C9—N13—H13115.2 (19)
O8—V5—O10156.41 (6)C10—N13—H13120.0 (19)
O7—V5—O1084.18 (6)C10—N14—H14A115 (2)
O9—V5—O1082.01 (6)C10—N14—H14B123 (3)
O5—V5—O14173.78 (7)H14A—N14—H14B122 (3)
O8—V5—O1482.35 (5)H16A—O16—H16B111 (3)
O7—V5—O1477.92 (5)H17A—O17—H17B99 (3)
O9—V5—O1477.19 (5)
O10—V1—O1—V3i179.43 (7)O7—V2—O12—V370.42 (9)
O11—V1—O1—V3i78.38 (8)O6i—V2—O12—V384.95 (8)
O6—V1—O1—V3i82.74 (7)O11—V2—O12—V328.32 (19)
O14—V1—O1—V3i4.8 (3)O14—V2—O12—V38.53 (7)
O14i—V1—O1—V3i1.73 (7)V4i—V2—O12—V383.39 (9)
V5—V1—O1—V3i178.31 (3)V5—V2—O12—V340.10 (7)
O2—V2—O7—V5174.91 (8)O3—V3—O12—V2176.91 (9)
O12—V2—O7—V568.39 (9)O13—V3—O12—V222.2 (2)
O6i—V2—O7—V533.07 (19)O8—V3—O12—V273.38 (9)
O11—V2—O7—V586.17 (8)O1i—V3—O12—V284.07 (8)
O14—V2—O7—V510.96 (7)O14—V3—O12—V28.37 (7)
V4i—V2—O7—V585.57 (8)V5—V3—O12—V240.66 (7)
O5—V5—O7—V2175.65 (9)V1i—V3—O12—V252.71 (7)
O8—V5—O7—V270.87 (9)V4—V3—O12—V27.28 (11)
O9—V5—O7—V227.55 (19)O3—V3—O13—V4175.67 (9)
O10—V5—O7—V285.67 (8)O8—V3—O13—V471.43 (9)
O14—V5—O7—V210.70 (7)O12—V3—O13—V423.5 (2)
V1—V5—O7—V254.41 (7)O1i—V3—O13—V484.84 (8)
V3—V5—O7—V237.93 (7)O14—V3—O13—V49.73 (7)
V4—V5—O7—V211.29 (10)V5—V3—O13—V438.87 (7)
O5—V5—O8—V3178.80 (9)V1i—V3—O13—V453.86 (7)
O7—V5—O8—V378.04 (9)O4—V4—O13—V3176.40 (9)
O9—V5—O8—V376.28 (8)O9—V4—O13—V370.03 (9)
O10—V5—O8—V33.7 (2)O6—V4—O13—V333.6 (2)
O14—V5—O8—V30.62 (7)O11i—V4—O13—V385.20 (8)
V1—V5—O8—V30.33 (11)O14—V4—O13—V310.01 (7)
V2—V5—O8—V347.35 (7)V2i—V4—O13—V385.08 (9)
V4—V5—O8—V345.74 (7)V5—V4—O13—V338.28 (7)
O3—V3—O8—V5179.37 (9)N1—C1—N3—C227.6 (4)
O13—V3—O8—V577.35 (8)N2—C1—N3—C2156.9 (3)
O12—V3—O8—V577.32 (8)N4—C2—N3—C140.9 (4)
O1i—V3—O8—V56.7 (2)N5—C2—N3—C1146.1 (2)
O14—V3—O8—V50.62 (7)N4—C2—N5—C3173.7 (2)
V1i—V3—O8—V51.73 (11)N3—C2—N5—C313.1 (4)
V4—V3—O8—V546.10 (7)N4—C2—N5—C42.3 (4)
O4—V4—O9—V5175.39 (8)N3—C2—N5—C4170.9 (3)
O13—V4—O9—V570.10 (8)N6—C5—N8—C6160.5 (2)
O6—V4—O9—V585.61 (8)N7—C5—N8—C622.6 (3)
O11i—V4—O9—V528.06 (18)N9—C6—N8—C544.9 (3)
O14—V4—O9—V59.47 (7)N10—C6—N8—C5141.8 (2)
V2i—V4—O9—V584.38 (8)N9—C6—N10—C83.0 (3)
V3—V4—O9—V539.32 (6)N8—C6—N10—C8176.5 (2)
O1—V1—O10—V5178.99 (7)N9—C6—N10—C7175.4 (2)
O11—V1—O10—V579.26 (7)N8—C6—N10—C711.1 (3)
O6—V1—O10—V583.36 (7)N11—C9—N13—C10179.5 (2)
O14—V1—O10—V52.03 (7)N12—C9—N13—C101.6 (4)
O14i—V1—O10—V56.3 (3)O15—C10—N13—C90.5 (4)
V3i—V1—O10—V5178.39 (3)N14—C10—N13—C9179.9 (3)
O2—V2—O12—V3175.73 (8)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O70.89 (3)1.99 (3)2.876 (3)170 (3)
N1—H1B···O3ii0.79 (3)2.40 (3)3.041 (3)140 (3)
N2—H2B···O12ii0.85 (3)1.99 (3)2.835 (3)176 (3)
N4—H4A···O16iii0.87 (3)2.03 (3)2.893 (3)176 (3)
N4—H4B···O170.79 (3)2.13 (3)2.908 (3)168 (3)
N6—H6A···O15iv0.91 (3)2.08 (3)2.984 (3)171 (3)
N6—H6B···O9v0.80 (3)2.15 (3)2.947 (3)173 (3)
N7—H7A···O5v0.75 (3)2.51 (3)3.059 (3)131 (3)
N7—H7A···O10v0.75 (3)2.64 (3)3.362 (3)161 (3)
N7—H7B···O130.81 (3)2.23 (3)3.031 (3)169 (3)
N9—H9A···O17vi0.84 (3)2.06 (3)2.886 (3)170 (3)
N9—H9B···O160.81 (3)2.10 (3)2.889 (3)165 (3)
N11—H11A···O1vii0.84 (3)2.59 (3)3.175 (3)128 (2)
N11—H11A···O11vii0.84 (3)2.05 (3)2.868 (2)162 (3)
N11—H11B···O10.70 (3)2.48 (3)3.049 (2)140 (3)
N11—H11B···O100.70 (3)2.45 (3)3.093 (2)153 (3)
N12—H12A···O150.83 (3)1.93 (3)2.613 (3)139 (3)
N12—H12B···O4ii0.82 (3)2.52 (4)3.231 (3)145 (3)
N12—H12B···O11vii0.82 (3)2.60 (3)3.271 (3)140 (3)
N13—H13···O60.82 (3)2.11 (3)2.926 (2)175 (3)
N14—H14A···N8iv0.88 (4)2.22 (4)3.091 (3)175 (3)
N14—H14B···O2i0.74 (3)2.44 (4)3.055 (3)140 (4)
N14—H14B···O40.74 (3)2.53 (3)3.156 (3)143 (3)
O16—H16A···O80.80 (3)1.97 (3)2.770 (2)178 (3)
O16—H16B···O3vi0.71 (3)2.23 (3)2.929 (2)171 (4)
O17—H17A···O80.75 (3)2.12 (3)2.861 (2)170 (3)
O17—H17B···O5iii0.78 (3)2.13 (3)2.866 (2)159 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x, y+2, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y+2, z+1; (vii) x1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationArmbruster, D., Happel, O., Scheurer, M., Harms, K., Schmidt, T. C. & Brauch, H.-J. (2015). Water Res. 79, 104–118.  CrossRef CAS PubMed Google Scholar
First citationChatkon, A., Barres, A., Samart, N., Boyle, S. E., Haller, K. J. & Crans, D. C. (2014). Inorg. Chim. Acta, 420, 85–91.  CrossRef CAS Google Scholar
First citationFarzanfar, J., Ghasemi, K., Rezvani, A. R., Delarami, H. S., Ebrahimi, A., Hosseinpoor, H., Eskandari, A., Rudbari, H. A. & Bruno, G. (2015). J. Inorg. Biochem. 147, 54–64.  CrossRef CAS PubMed Google Scholar
First citationKirihara, M., Okada, T., Sugiyama, Y., Akiyoshi, M., Matsunaga, T. & Kimura, Y. (2017). Org. Process Res. Dev. 21, 1925–1937.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., Berger, Z., Chu, Y., Iyoha, E., Segal, J. B. & Bolen, S. (2016). Ann. Intern. Med. 164, 740–751.  CrossRef PubMed Google Scholar
First citationPolito-Lucas, J. A., Núñez-Ávila, J. A., Bernès, S. & Pérez-Benítez, A. (2021). IUCrData, 6, x210634.  Google Scholar
First citationPoursat, B. A. J., van Spanning, R. J. M., Braster, M., Helmus, R., de Voogt, P. & Parsons, J. R. (2019). Ecotoxicol. Environ. Saf. 182, 109414.  CrossRef PubMed Google Scholar
First citationRehder, D. (2020). Inorg. Chim. Acta, 504, 119445.  CrossRef Google Scholar
First citationSánchez–Lombardo, I., Sánchez–Lara, E., Pérez–Benítez, A., Mendoza, A., Bernès, S. & González–Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581–4588.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTassoulas, L. J., Robinson, A., Martinez-Vaz, B., Aukema, K. G. & Wackett, L. P. (2021). Appl. Environ. Microbiol. 87, e03003–20.  CrossRef CAS PubMed Google Scholar
First citationThompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H. & Orvig, C. (2009). J. Inorg. Biochem. 103, 554–558.  CrossRef PubMed CAS Google Scholar
First citationTisler, S. & Zwiener, C. (2019). Water Res. 149, 130–135.  CrossRef CAS PubMed Google Scholar
First citationTucker, G. T. & Wesolowski, C. A. (2020). Br. J. Clin. Pharmacol. 86, 1452–1453.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds