organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-(Do­decane-1,12-di­yl)bis­­(1-methyl­imidazolium) 5,5′-azo­tetra­zolate hepta­hydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80–82, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 August 2017; accepted 31 August 2017; online 12 September 2017)

The title compound, C20H36N4·C2N10·7H2O, was obtained by reaction of 1-methyl­imidazole with 1,12-di­bromo­dodecane, followed by repeated ion metathesis (bromide → sulfate → azo­tetra­zolate). An intricate network of hydrogen bonds is formed between anions and water mol­ecules, leading to a layered arrangement parallel to (101).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Two heterocyclic cations joined by hydro­carbon linkage chains and paired with different anions constitute a new class of ionic liquids. Dicationic imidazolium-based ionic liquids exhibit superior thermal stabilities compared to those of traditional ionic liquids (Anderson et al., 2005[Anderson, J. L., Ding, R., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593-604.]). Coincidentally, heterocyclic dianions are of inter­est as components for nitro­gen-rich salts (Laus et al., 2016[Laus, G., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 13-20.]) or potential explosives (Singh et al., 2006[Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584-3601.]). A combination of these dications and dianions was presumed to furnish products with inter­esting structural attributes. Repeated ion metathesis (bromide → sulfate → azo­tetra­zolate) was successfully employed for the synthesis of the desired salts, the crystal structure of one of which is reported here.

In the crystal structure of the title hydrated salt, an intricate network of O—H⋯O and O—H⋯N hydrogen-bonded anions and water mol­ecules is observed (Table 1[link]) which can be adequately described by graph-set symbols (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). One azo­tetra­zolate dianion is surrounded by various water mol­ecules enclosing pairs of R44(10), R33(11) and R77(16) ring motifs each, as well as one R44(9) and one R77(15) ring motif (Fig. 1[link]). The planar dianion [the maximum deviation from the least-squares plane is 0.027 (2) Å for N9] and seven water mol­ecules are located near the (101) plane, whereas the bar-shaped dications are found above and beneath this layer (Fig. 2[link]). The dihedral angle between the two 1-methyl­imidazolium moieties in the dication is 8.57 (15)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11O⋯N2i 0.87 (3) 2.02 (3) 2.884 (3) 174 (3)
O1—H12O⋯O2 0.89 (5) 2.00 (4) 2.850 (3) 159 (4)
O2—H22O⋯O3 0.84 (4) 2.00 (4) 2.819 (3) 162 (4)
O2—H21O⋯N1 0.82 (3) 2.06 (3) 2.875 (3) 174 (3)
O3—H32O⋯N3ii 0.85 (4) 2.00 (4) 2.853 (3) 172 (4)
O3—H31O⋯N7 0.84 (4) 2.14 (3) 2.959 (3) 165 (4)
O4—H42O⋯N4ii 0.86 (3) 2.06 (3) 2.914 (3) 175 (3)
O4—H41O⋯N8 0.87 (3) 1.99 (3) 2.853 (3) 171 (3)
O5—H52O⋯N10ii 0.82 (3) 2.06 (3) 2.879 (3) 179 (3)
O5—H51O⋯O4 0.87 (3) 1.94 (3) 2.790 (3) 166 (4)
O6—H61O⋯O5 0.90 (3) 1.89 (3) 2.755 (3) 161 (3)
O6—H62O⋯O7 0.84 (4) 1.93 (3) 2.753 (3) 169 (3)
O7—H71O⋯O6iii 0.86 (3) 1.96 (3) 2.807 (4) 169 (4)
O7—H72O⋯N9iv 0.84 (3) 2.10 (3) 2.931 (3) 170 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The arrangement of mol­ecular entities in the crystal structure of the title compound, showing selected atom labels and displacement ellipsoids at the 50% probability level for non-H atoms. Hydrogen bonds are shown as dashed lines. Graph-set symbols indicate the hydrogen-bond patterns.
[Figure 2]
Figure 2
Arrangement of cations above and beneath the plane of anions and water mol­ecules in the unit cell of the title compound.

Related structures of geminal dications with traditional anions (Anderson et al., 2005[Anderson, J. L., Ding, R., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593-604.]) as well as related azo­tetra­zolate salts with traditional cations (Laus et al., 2012[Laus, G., Kahlenberg, V., Wurst, K., Schottenberger, H., Fischer, N., Stierstorfer, J. & Klapötke, T. M. (2012). Crystals, 2, 127-136.]) have been reported.

Synthesis and crystallization

Silver sulfate (156 mg, 0.50 mmol) was added to a solution of 3,3′-(dodecane-1,12-di­yl)bis­(1-methyl­imidazolium) bromide (246 mg, 0.50 mmol; Tadesse et al., 2012[Tadesse, H., Blake, A. J., Champness, N. R., Warren, J. E., Rizkallah, P. J. & Licence, P. (2012). CrystEngComm, 14, 4886-4893.]) in water (5 ml). The mixture was stirred at 323 K for 10 min and ultrasonicated for 5 min. Subsequently, the precipitate was removed by centrifugation. Barium 5,5′-azo­tetra­zolate penta­hydrate (196 mg, 0.50 mmol; Hammerl et al., 2002[Hammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.]) was added to the supernatant, and the mixture was again stirred at 323 K for 10 min and ultrasonicated for 5 min. After centrifugation, the supernatant solution was filtered (0.45 µm) and taken to dryness in a rotary evaporator under reduced pressure, the temperature not exceeding 323 K. The yellow residue was recrystallized from hot water, collected by filtration and vacuum-dried to yield 280 mg (90%) of the title compound. 1H NMR (DMSO-d6, 300 MHz): δ 9.29 (s, 2H), 7.81 (s, 2H), 7.73 (s, 2H), 4.18 (t, J = 7.2 Hz, 4H), 3.88 (s, 6H), 1.74 (m, 4H), 1.17 (m, 16H). 13C NMR (DMSO-d6, 75 MHz): δ 173.5, 136.7, 123.6, 122.3, 48.8, 35.8, 29.4, 28.8, 28.7, 28.3, 25.4. IR (neat): ν 3351 s, 2919 m, 2855 m, 1651 w, 1588 m, 1473 m, 1394 m, 1163 s, 732 m cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bound to water mol­ecules were found from difference maps and were included in the refinement with distance restraints of d(O—H) = 0.82 Å. Three reflections, (101), (202) and (505), were omitted because of poor agreement between calculated and observed intensities.

Table 2
Experimental details

Crystal data
Chemical formula C20H36N4·C2N10·7H2O
Mr 622.76
Crystal system, space group Monoclinic, P21
Temperature (K) 183
a, b, c (Å) 7.2847 (3), 8.9932 (4), 25.3962 (11)
β (°) 91.062 (1)
V3) 1663.49 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.17 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.848, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 29637, 6171, 5428
Rint 0.032
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.04
No. of reflections 6171
No. of parameters 447
No. of restraints 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.15
Absolute structure Flack x determined using 2270 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.2 (4)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

3,3'-(Dodecane-1,12-diyl)bis(1-methylimidazolium) 5,5'-azotetrazolate heptahydrate top
Crystal data top
C20H36N4·C2N10·7H2OF(000) = 672
Mr = 622.76Dx = 1.243 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.2847 (3) ÅCell parameters from 9972 reflections
b = 8.9932 (4) Åθ = 2.4–25.6°
c = 25.3962 (11) ŵ = 0.10 mm1
β = 91.062 (1)°T = 183 K
V = 1663.49 (12) Å3Prism, colourless
Z = 20.17 × 0.12 × 0.08 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
6171 independent reflections
Radiation source: Incoatec Microfocus5428 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.032
Detector resolution: 10.4 pixels mm-1θmax = 25.5°, θmin = 2.4°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.848, Tmax = 0.888l = 3028
29637 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1318P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.081Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.15 e Å3
6171 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
447 parametersExtinction coefficient: 0.026 (2)
15 restraintsAbsolute structure: Flack x determined using 2270 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Hydrogen site location: mixedAbsolute structure parameter: 0.2 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogens at water molecules O1–O7 were found and refined with bond restraints (d=83 (2)pm).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8692 (3)0.4847 (2)0.12571 (8)0.0307 (5)
N20.8791 (3)0.6275 (2)0.11135 (8)0.0373 (5)
N30.8434 (3)0.7122 (2)0.15240 (8)0.0400 (5)
N40.8089 (3)0.6279 (2)0.19435 (8)0.0340 (5)
N50.8068 (3)0.3557 (2)0.20434 (8)0.0261 (4)
N60.7696 (3)0.3769 (2)0.25202 (7)0.0263 (4)
N70.7674 (3)0.1051 (2)0.26322 (8)0.0329 (5)
N80.7297 (3)0.0225 (2)0.30551 (8)0.0378 (5)
N90.6900 (3)0.1093 (2)0.34584 (8)0.0336 (5)
N100.7021 (3)0.2510 (2)0.33069 (7)0.0292 (5)
N110.5418 (3)1.5010 (2)0.02519 (7)0.0305 (5)
N120.5847 (3)1.4521 (2)0.10701 (8)0.0348 (5)
N130.1024 (3)1.2390 (2)0.58176 (7)0.0290 (5)
N140.1585 (3)1.3001 (2)0.66194 (7)0.0307 (5)
C10.8260 (3)0.4893 (3)0.17634 (8)0.0251 (5)
C20.7486 (3)0.2445 (3)0.28024 (8)0.0241 (5)
C30.4658 (3)1.5052 (3)0.07287 (9)0.0349 (6)
H30.34581.54050.08130.042*
C40.7151 (3)1.4425 (3)0.02907 (10)0.0353 (6)
H40.80041.42630.00090.042*
C50.7411 (3)1.4128 (3)0.07982 (10)0.0380 (6)
H50.84901.37170.09450.046*
C60.5567 (4)1.4409 (4)0.16425 (10)0.0505 (8)
H6A0.44531.49540.17470.076*
H6B0.54331.33620.17420.076*
H6C0.66261.48370.18200.076*
C70.4564 (4)1.5521 (3)0.02358 (10)0.0381 (6)
H7A0.33201.59060.01520.046*
H7B0.52991.63470.03870.046*
C80.4423 (3)1.4289 (3)0.06399 (9)0.0320 (6)
H8A0.56441.38250.06940.038*
H8B0.35691.35150.05060.038*
C90.3744 (3)1.4871 (3)0.11621 (9)0.0338 (6)
H9A0.46311.56130.13010.041*
H9B0.25561.53840.11020.041*
C100.3493 (4)1.3665 (3)0.15710 (9)0.0319 (6)
H10A0.46371.30740.16000.038*
H10B0.24981.29900.14500.038*
C110.3028 (3)1.4261 (3)0.21137 (9)0.0311 (6)
H11A0.19351.49100.20790.037*
H11B0.40631.48830.22430.037*
C120.2647 (3)1.3067 (3)0.25226 (9)0.0309 (5)
H12A0.16181.24370.23940.037*
H12B0.37441.24240.25630.037*
C130.2169 (3)1.3705 (3)0.30569 (9)0.0313 (6)
H13A0.31601.43930.31710.038*
H13B0.10261.42940.30180.038*
C140.1903 (3)1.2553 (3)0.34859 (9)0.0300 (5)
H14A0.30721.20130.35460.036*
H14B0.09711.18220.33650.036*
C150.1296 (3)1.3233 (3)0.40039 (9)0.0303 (6)
H15A0.22431.39500.41260.036*
H15B0.01451.37950.39390.036*
C160.0977 (4)1.2114 (3)0.44382 (9)0.0314 (6)
H16A0.21311.15640.45110.038*
H16B0.00391.13870.43180.038*
C170.0341 (3)1.2848 (3)0.49451 (9)0.0311 (6)
H17A0.13321.34930.50870.037*
H17B0.07401.34830.48660.037*
C180.0161 (4)1.1707 (3)0.53555 (9)0.0332 (6)
H18A0.10181.09740.51960.040*
H18B0.09611.11690.54720.040*
C190.0403 (3)1.2306 (3)0.63118 (9)0.0319 (6)
H190.06991.18290.64260.038*
C200.2646 (3)1.3162 (3)0.58112 (9)0.0349 (6)
H200.33851.33860.55090.042*
C210.2997 (3)1.3544 (3)0.63103 (9)0.0336 (6)
H210.40301.40880.64280.040*
C220.1416 (4)1.3157 (4)0.71928 (9)0.0455 (7)
H22A0.03811.25570.73230.068*
H22B0.25491.28150.73560.068*
H22C0.12041.42040.72830.068*
O11.1165 (3)0.2885 (3)0.01317 (9)0.0604 (6)
H11O1.119 (5)0.234 (4)0.0413 (12)0.081 (13)*
H12O1.057 (6)0.238 (6)0.0114 (16)0.13 (2)*
O20.9157 (3)0.1993 (3)0.07677 (9)0.0511 (6)
H21O0.900 (4)0.283 (3)0.0887 (12)0.053 (10)*
H22O0.950 (6)0.140 (5)0.1007 (15)0.114 (19)*
O30.9542 (3)0.0143 (2)0.16588 (9)0.0564 (6)
H31O0.904 (5)0.056 (5)0.1916 (12)0.090 (14)*
H32O0.911 (6)0.073 (4)0.1609 (18)0.112 (17)*
O40.6059 (3)0.2736 (2)0.28580 (8)0.0447 (5)
H41O0.656 (4)0.187 (3)0.2911 (13)0.060 (10)*
H42O0.664 (4)0.308 (4)0.2595 (10)0.060 (10)*
O50.6601 (3)0.4551 (2)0.37380 (8)0.0422 (5)
H51O0.624 (6)0.400 (4)0.3475 (13)0.095 (15)*
H52O0.672 (4)0.539 (3)0.3618 (13)0.054 (10)*
O60.5478 (3)0.5538 (3)0.47071 (8)0.0532 (6)
H61O0.564 (5)0.507 (4)0.4400 (11)0.075 (11)*
H62O0.492 (5)0.493 (4)0.4895 (13)0.069 (11)*
O70.4008 (3)0.3607 (3)0.54270 (8)0.0468 (5)
H71O0.431 (6)0.270 (3)0.5374 (16)0.091 (15)*
H72O0.383 (5)0.379 (4)0.5748 (10)0.071 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0356 (11)0.0304 (11)0.0264 (10)0.0008 (9)0.0036 (8)0.0002 (9)
N20.0483 (14)0.0328 (13)0.0310 (12)0.0018 (10)0.0074 (10)0.0034 (10)
N30.0570 (14)0.0296 (12)0.0337 (12)0.0005 (10)0.0102 (10)0.0017 (10)
N40.0458 (13)0.0280 (12)0.0285 (11)0.0005 (10)0.0061 (9)0.0009 (9)
N50.0272 (11)0.0263 (11)0.0249 (11)0.0000 (8)0.0023 (8)0.0034 (8)
N60.0249 (10)0.0282 (10)0.0258 (11)0.0016 (8)0.0012 (8)0.0014 (9)
N70.0431 (13)0.0273 (11)0.0284 (11)0.0015 (9)0.0082 (9)0.0021 (9)
N80.0508 (13)0.0284 (12)0.0346 (12)0.0033 (10)0.0087 (10)0.0013 (10)
N90.0404 (13)0.0298 (12)0.0308 (11)0.0021 (10)0.0087 (9)0.0015 (9)
N100.0330 (11)0.0275 (11)0.0274 (10)0.0006 (9)0.0048 (8)0.0024 (9)
N110.0325 (11)0.0330 (12)0.0261 (10)0.0009 (9)0.0051 (8)0.0020 (9)
N120.0386 (12)0.0405 (13)0.0257 (10)0.0052 (10)0.0059 (9)0.0022 (10)
N130.0368 (11)0.0258 (10)0.0245 (10)0.0034 (9)0.0052 (8)0.0009 (9)
N140.0346 (11)0.0345 (11)0.0231 (10)0.0019 (10)0.0049 (8)0.0005 (9)
C10.0243 (12)0.0254 (12)0.0257 (12)0.0012 (10)0.0016 (9)0.0028 (10)
C20.0241 (12)0.0244 (12)0.0240 (11)0.0008 (10)0.0022 (9)0.0028 (10)
C30.0347 (14)0.0412 (15)0.0290 (13)0.0039 (12)0.0013 (11)0.0046 (12)
C40.0285 (13)0.0418 (15)0.0357 (13)0.0005 (11)0.0028 (10)0.0046 (12)
C50.0319 (14)0.0433 (15)0.0393 (14)0.0016 (12)0.0118 (11)0.0033 (12)
C60.065 (2)0.062 (2)0.0253 (13)0.0115 (16)0.0055 (13)0.0008 (13)
C70.0430 (15)0.0424 (15)0.0290 (14)0.0076 (13)0.0060 (11)0.0012 (12)
C80.0321 (14)0.0374 (14)0.0268 (12)0.0042 (11)0.0024 (10)0.0016 (11)
C90.0314 (13)0.0431 (15)0.0269 (12)0.0022 (12)0.0026 (10)0.0026 (12)
C100.0294 (13)0.0412 (15)0.0251 (12)0.0046 (11)0.0012 (10)0.0030 (11)
C110.0275 (12)0.0411 (14)0.0246 (12)0.0004 (11)0.0022 (10)0.0036 (11)
C120.0272 (13)0.0393 (14)0.0265 (12)0.0009 (11)0.0025 (9)0.0022 (11)
C130.0308 (13)0.0380 (14)0.0253 (12)0.0026 (11)0.0041 (10)0.0032 (11)
C140.0263 (12)0.0378 (14)0.0260 (12)0.0021 (10)0.0030 (9)0.0001 (11)
C150.0310 (13)0.0354 (14)0.0245 (12)0.0024 (11)0.0037 (10)0.0003 (10)
C160.0340 (14)0.0326 (14)0.0277 (13)0.0054 (11)0.0061 (10)0.0002 (11)
C170.0375 (14)0.0283 (12)0.0279 (12)0.0033 (11)0.0050 (10)0.0029 (11)
C180.0447 (15)0.0281 (13)0.0270 (13)0.0069 (11)0.0078 (11)0.0012 (11)
C190.0357 (14)0.0333 (13)0.0270 (13)0.0020 (11)0.0036 (10)0.0047 (11)
C200.0359 (14)0.0392 (14)0.0296 (13)0.0070 (12)0.0008 (10)0.0052 (11)
C210.0343 (14)0.0346 (13)0.0322 (13)0.0050 (11)0.0074 (10)0.0010 (11)
C220.0520 (17)0.0611 (19)0.0234 (13)0.0051 (15)0.0041 (11)0.0045 (13)
O10.0662 (15)0.0664 (15)0.0485 (13)0.0007 (13)0.0049 (11)0.0205 (13)
O20.0565 (13)0.0432 (13)0.0536 (14)0.0068 (11)0.0016 (11)0.0204 (12)
O30.0778 (15)0.0367 (12)0.0560 (13)0.0055 (11)0.0364 (12)0.0107 (11)
O40.0577 (13)0.0309 (11)0.0463 (12)0.0036 (10)0.0217 (10)0.0080 (9)
O50.0539 (12)0.0330 (11)0.0397 (11)0.0008 (10)0.0039 (9)0.0105 (10)
O60.0789 (16)0.0460 (13)0.0349 (11)0.0130 (11)0.0050 (10)0.0038 (10)
O70.0619 (13)0.0476 (13)0.0312 (11)0.0055 (10)0.0102 (9)0.0005 (10)
Geometric parameters (Å, º) top
N1—C11.330 (3)C11—C121.523 (3)
N1—N21.337 (3)C11—H11A0.9900
N2—N31.321 (3)C11—H11B0.9900
N3—N41.335 (3)C12—C131.520 (3)
N4—C11.334 (3)C12—H12A0.9900
N5—N61.260 (3)C12—H12B0.9900
N5—C11.405 (3)C13—C141.518 (3)
N6—C21.399 (3)C13—H13A0.9900
N7—C21.335 (3)C13—H13B0.9900
N7—N81.338 (3)C14—C151.524 (3)
N8—N91.324 (3)C14—H14A0.9900
N9—N101.335 (3)C14—H14B0.9900
N10—C21.333 (3)C15—C161.514 (3)
N11—C31.323 (3)C15—H15A0.9900
N11—C41.373 (3)C15—H15B0.9900
N11—C71.470 (3)C16—C171.526 (3)
N12—C31.326 (3)C16—H16A0.9900
N12—C51.368 (3)C16—H16B0.9900
N12—C61.468 (3)C17—C181.512 (3)
N13—C191.329 (3)C17—H17A0.9900
N13—C201.370 (3)C17—H17B0.9900
N13—C181.475 (3)C18—H18A0.9900
N14—C191.330 (3)C18—H18B0.9900
N14—C211.372 (3)C19—H190.9500
N14—C221.466 (3)C20—C211.342 (3)
C3—H30.9500C20—H200.9500
C4—C51.333 (3)C21—H210.9500
C4—H40.9500C22—H22A0.9800
C5—H50.9500C22—H22B0.9800
C6—H6A0.9800C22—H22C0.9800
C6—H6B0.9800O1—H11O0.87 (2)
C6—H6C0.9800O1—H12O0.89 (3)
C7—C81.515 (4)O2—H21O0.82 (2)
C7—H7A0.9900O2—H22O0.84 (3)
C7—H7B0.9900O3—H31O0.84 (2)
C8—C91.517 (3)O3—H32O0.85 (3)
C8—H8A0.9900O4—H41O0.87 (2)
C8—H8B0.9900O4—H42O0.85 (2)
C9—C101.515 (4)O5—H51O0.87 (2)
C9—H9A0.9900O5—H52O0.82 (2)
C9—H9B0.9900O6—H61O0.90 (2)
C10—C111.522 (3)O6—H62O0.84 (2)
C10—H10A0.9900O7—H71O0.86 (3)
C10—H10B0.9900O7—H72O0.84 (2)
C1—N1—N2104.39 (19)C12—C11—H11A108.6
N3—N2—N1109.03 (19)C10—C11—H11B108.6
N2—N3—N4110.2 (2)C12—C11—H11B108.6
C1—N4—N3103.69 (19)H11A—C11—H11B107.6
N6—N5—C1112.44 (18)C13—C12—C11113.0 (2)
N5—N6—C2112.98 (18)C13—C12—H12A109.0
C2—N7—N8103.75 (19)C11—C12—H12A109.0
N9—N8—N7110.2 (2)C13—C12—H12B109.0
N8—N9—N10108.86 (19)C11—C12—H12B109.0
C2—N10—N9104.76 (18)H12A—C12—H12B107.8
C3—N11—C4108.4 (2)C14—C13—C12114.7 (2)
C3—N11—C7125.9 (2)C14—C13—H13A108.6
C4—N11—C7125.75 (19)C12—C13—H13A108.6
C3—N12—C5108.1 (2)C14—C13—H13B108.6
C3—N12—C6126.3 (2)C12—C13—H13B108.6
C5—N12—C6125.6 (2)H13A—C13—H13B107.6
C19—N13—C20108.58 (19)C13—C14—C15112.9 (2)
C19—N13—C18125.8 (2)C13—C14—H14A109.0
C20—N13—C18125.6 (2)C15—C14—H14A109.0
C19—N14—C21108.55 (19)C13—C14—H14B109.0
C19—N14—C22125.8 (2)C15—C14—H14B109.0
C21—N14—C22125.6 (2)H14A—C14—H14B107.8
N1—C1—N4112.7 (2)C16—C15—C14114.4 (2)
N1—C1—N5119.4 (2)C16—C15—H15A108.7
N4—C1—N5127.95 (19)C14—C15—H15A108.7
N10—C2—N7112.4 (2)C16—C15—H15B108.7
N10—C2—N6119.17 (19)C14—C15—H15B108.7
N7—C2—N6128.38 (19)H15A—C15—H15B107.6
N11—C3—N12108.7 (2)C15—C16—C17112.3 (2)
N11—C3—H3125.6C15—C16—H16A109.1
N12—C3—H3125.6C17—C16—H16A109.1
C5—C4—N11107.1 (2)C15—C16—H16B109.1
C5—C4—H4126.5C17—C16—H16B109.1
N11—C4—H4126.5H16A—C16—H16B107.9
C4—C5—N12107.7 (2)C18—C17—C16111.7 (2)
C4—C5—H5126.2C18—C17—H17A109.3
N12—C5—H5126.2C16—C17—H17A109.3
N12—C6—H6A109.5C18—C17—H17B109.3
N12—C6—H6B109.5C16—C17—H17B109.3
H6A—C6—H6B109.5H17A—C17—H17B107.9
N12—C6—H6C109.5N13—C18—C17112.2 (2)
H6A—C6—H6C109.5N13—C18—H18A109.2
H6B—C6—H6C109.5C17—C18—H18A109.2
N11—C7—C8112.2 (2)N13—C18—H18B109.2
N11—C7—H7A109.2C17—C18—H18B109.2
C8—C7—H7A109.2H18A—C18—H18B107.9
N11—C7—H7B109.2N13—C19—N14108.4 (2)
C8—C7—H7B109.2N13—C19—H19125.8
H7A—C7—H7B107.9N14—C19—H19125.8
C7—C8—C9111.5 (2)C21—C20—N13107.3 (2)
C7—C8—H8A109.3C21—C20—H20126.3
C9—C8—H8A109.3N13—C20—H20126.3
C7—C8—H8B109.3C20—C21—N14107.2 (2)
C9—C8—H8B109.3C20—C21—H21126.4
H8A—C8—H8B108.0N14—C21—H21126.4
C10—C9—C8113.4 (2)N14—C22—H22A109.5
C10—C9—H9A108.9N14—C22—H22B109.5
C8—C9—H9A108.9H22A—C22—H22B109.5
C10—C9—H9B108.9N14—C22—H22C109.5
C8—C9—H9B108.9H22A—C22—H22C109.5
H9A—C9—H9B107.7H22B—C22—H22C109.5
C9—C10—C11113.6 (2)H11O—O1—H12O108 (4)
C9—C10—H10A108.8H21O—O2—H22O111 (4)
C11—C10—H10A108.8H31O—O3—H32O111 (4)
C9—C10—H10B108.8H41O—O4—H42O103 (3)
C11—C10—H10B108.8H51O—O5—H52O106 (4)
H10A—C10—H10B107.7H61O—O6—H62O105 (3)
C10—C11—C12114.6 (2)H71O—O7—H72O113 (4)
C10—C11—H11A108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11O···N2i0.87 (3)2.02 (3)2.884 (3)174 (3)
O1—H12O···O20.89 (5)2.00 (4)2.850 (3)159 (4)
O2—H22O···O30.84 (4)2.00 (4)2.819 (3)162 (4)
O2—H21O···N10.82 (3)2.06 (3)2.875 (3)174 (3)
O3—H32O···N3ii0.85 (4)2.00 (4)2.853 (3)172 (4)
O3—H31O···N70.84 (4)2.14 (3)2.959 (3)165 (4)
O4—H42O···N4ii0.86 (3)2.06 (3)2.914 (3)175 (3)
O4—H41O···N80.87 (3)1.99 (3)2.853 (3)171 (3)
O5—H52O···N10ii0.82 (3)2.06 (3)2.879 (3)179 (3)
O5—H51O···O40.87 (3)1.94 (3)2.790 (3)166 (4)
O6—H61O···O50.90 (3)1.89 (3)2.755 (3)161 (3)
O6—H62O···O70.84 (4)1.93 (3)2.753 (3)169 (3)
O7—H71O···O6iii0.86 (3)1.96 (3)2.807 (4)169 (4)
O7—H72O···N9iv0.84 (3)2.10 (3)2.931 (3)170 (3)
Symmetry codes: (i) x+2, y1/2, z; (ii) x, y1, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1.
 

References

First citationAnderson, J. L., Ding, R., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593–604.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845.  CSD CrossRef Google Scholar
First citationLaus, G., Kahlenberg, V., Wurst, K., Schottenberger, H., Fischer, N., Stierstorfer, J. & Klapötke, T. M. (2012). Crystals, 2, 127–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaus, G., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 13–20.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.  Web of Science CrossRef CAS Google Scholar
First citationTadesse, H., Blake, A. J., Champness, N. R., Warren, J. E., Rizkallah, P. J. & Licence, P. (2012). CrystEngComm, 14, 4886–4893.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]