metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(μ-benzene­thiol­ato-κ2S:S)bis­[chlorido­(tri­phenyl­phosphane-κP)palladium(II)] chloro­form disolvate

aDepartamento de Química Orgánica, IPN, Escuela Nacional de Ciencias Biológicas, Caprio y Plan de Ayala S/N, Colonia Santo Tomás, 11340 México, DF, Mexico, bCiencias Básicas e Ingeniería, Recursos de la Tierra, Universidad Autónoma Metropolitana, Avenida Hidalgo Poniente, La Estación Lerma, Lerma de Villada, 52006 Estado de México, CP, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, DF 04510, Mexico
*Correspondence e-mail: alcivesorrosa@gmail.com

(Received 18 June 2013; accepted 17 July 2013; online 24 July 2013)

The title compound, [Pd2Cl2(C6H5S)2(C18H15P)2]·2CHCl3, contains a centrosymmetric dinuclear palladium complex with the PdII cation in a slightly distorted square-planar coordination environment. The PdII cations are bridged by the S atoms of two benzene­thiol­ate ligands with different Pd—S distances [2.2970 (11) and 2.3676 (11) Å]. The coordination of the metal atom is completed by a chloride anion [2.3383 (11) Å] and a tri­phenyl­phosphane ligand [2.2787 (11) Å]. Weak C—H⋯Cl inter­actions are present between complex mol­ecules and the CHCl3 solvent mol­ecule. The latter is disordered over two positions in a 0.792 (8):0.208 (8) ratio. The crystal under investigation was found to be twinned by nonmerohedry, with a fraction of 73.4 (1)% for the major twin component.

Related literature

For related complexes in catalysis reactions, see: Yin & Liebscher (2007[Yin, L. & Liebscher, J. (2007). Chem. Rev. 107, 133-173.]); Frisch & Beller (2005[Frisch, A. C. & Beller, M. (2005). Angew. Chem. Int. Ed. 44, 674-688.]); Knochel & Singer (1993[Knochel, P. & Singer, R. D. (1993). Chem. Rev. 93, 2117-2188.]); Surry & Buchwald (2008[Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338-6361.]). For bond lengths in a related complex, see: Estudiante-Negrete et al. (2007[Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651-1660.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2Cl2(C6H5S)2(C18H15P)2]·2CHCl3

  • Mr = 1265.29

  • Monoclinic, P 21 /n

  • a = 10.8343 (11) Å

  • b = 14.2291 (15) Å

  • c = 17.3994 (18) Å

  • β = 102.095 (2)°

  • V = 2622.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.36 × 0.19 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.878

  • 4876 measured reflections

  • 4876 independent reflections

  • 4577 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.08

  • 4876 reflections

  • 318 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯Cl1i 0.98 2.79 3.744 (6) 164
C15—H15⋯Cl1ii 0.93 2.93 3.650 (5) 135
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Palladium is a transition metal well known for synthetic chemists. Thus, palladium complexes have been extensively studied and have had important applications as catalysts in a plethora of organic transformations, biological applications, material science etc. As catalysts, palladium complexes have shown high efficiency in different protocols of cross-coupling reactions for the construction of C—C bonds, e.g. through Heck reaction (Yin & Liebscher, 2007), Suzuki–Miyaura coupling (Frisch & Beller, 2005), Negishi reaction (Knochel & Singer, 1993), as well as for the formation of C-heteroatom highlighted via Buchwal–Hartwig reaction (Surry & Buchwald, 2008). In this context we report here the structure of the title compound, trans-[PdCl(C6H5S)(C18H15P)]2.2CHCl3, (I).

The structure of (I) contains a centrosymmetric dimeric PdII complex with the PdII atom within a slightly distorted square-planar coordination environment (Fig. 1). The two PdII atoms are bridged by two –SC6H5 ligands, and the coordination environment is completed by one Cl- and one PPh3 ligand. The asymmetric unit is composed of half of the complex and one disordered CHCl3 solvent molecule; the full molecule is completed by application of inversion symmetry.

The two bridging –SC6H5 ligands exhibit different Pd1—S1 bond lengths, 2.2970 (11) and 2.3676 (11) Å; these distances are comparable to those found in the structure of the related compound [Pd(PPh3)(SC6F5)(µ-SC6F5)]2 (Estudiante-Negrete et al., 2007). The Pd1—P1 and Pd1—Cl1 bonds lengths are 2.2787 (11) and 2.3383 (11) Å, respectively. The Cl- and the PPh3 ligands are arranged in a mutually trans conformation.

The complex molecules are packed in rows parallel to [010]. The structure is stabilized by weak C—H···Cl hydrogen-bonding interactions between complex molecules and interstitial solvent molecules (Fig. 2).

Related literature top

For related complexes in catalysis reactions, see: Yin & Liebscher (2007); Frisch & Beller (2005); Knochel & Singer (1993); Surry & Buchwald (2008). For bond lengths in a related complex, see: Estudiante-Negrete et al. (2007).

Experimental top

To a suspension of PdCl2 (0.078 g, 0.442 mmol) and Na2CO3 (0.050 g, 0.047 mmol) in 15 ml of toluene a solution of 1-ethenyl-[(phenylsulfanyl)methyl]-benzene (isomeric mix 60:40), 1-ethenyl-3-[(phenylsulfanyl)methyl]-benzene and 1-ethenyl-4-[(phenylsulfanyl)methyl]-benzene) (0.100 g, 0.442 mmol) in 5 ml of toluene was added. The resulting mixture was set to reflux for 4 h. After this time the reaction mixture was allowed to cool down to room temperature and filtered. The solid residue was further washed twice with CHCl3 (5 ml) attaining a yellow solid. This solid was further treated with PPh3 (0.232 g, 0.884 mmol) in 15 ml of CHCl3. The reaction mixture was stirred until all solid was dissolved and the resulting solution was filtered through a short plug of Celite. The filtrate was left to evaporate at room temperature yielding yellow crystals of (I) suitable for X-ray diffraction analysis.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H) and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atoms. In the refinement five reflections, (1 16 4), (-11 4 5), (-2 15 8), (8 11 5) and (-9 12 5), were considered as disagreeable and were omitted. The CHCl3 solvent is disordered over two sets of sites in a 0.792 (8):0.208 (8) ratio. Twinning by non-merohedy was detected in the cell determination and two orientation matrices were determined. The data were then processed and corrected for absorption effects with the TWINABS program (Bruker, 2007). The refinement of the BASF parameter was 26.6 (1)%, indicating a fraction of 73.4 (1)% for the major twin component.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the displacement parameters of atoms at the 30% probability level. Only the major component of the disordered solvent molecule is displayed.
[Figure 2] Fig. 2. Packing of the molecular entities in the structure of (I). C—H···Cl interactions are shown by dashed lines.
trans-Bis(µ-benzenethiolato-κ2S:S)bis[chlorido(triphenylphosphane-κP)palladium(II)] chloroform disolvate top
Crystal data top
[Pd2Cl2(C6H5S)2(C18H15P)2]·2CHCl3F(000) = 1264
Mr = 1265.29Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8343 (11) ÅCell parameters from 9960 reflections
b = 14.2291 (15) Åθ = 2.4–25.3°
c = 17.3994 (18) ŵ = 1.27 mm1
β = 102.095 (2)°T = 298 K
V = 2622.8 (5) Å3Prism, yellow
Z = 20.36 × 0.19 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4876 independent reflections
Detector resolution: 0.83 pixels mm-14577 reflections with I > 2σ(I)
ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
h = 1312
Tmin = 0.707, Tmax = 0.878k = 017
4876 measured reflectionsl = 020
Refinement top
Refinement on F296 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0394P)2 + 2.3327P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4876 reflectionsΔρmax = 0.55 e Å3
318 parametersΔρmin = 0.31 e Å3
Crystal data top
[Pd2Cl2(C6H5S)2(C18H15P)2]·2CHCl3V = 2622.8 (5) Å3
Mr = 1265.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.8343 (11) ŵ = 1.27 mm1
b = 14.2291 (15) ÅT = 298 K
c = 17.3994 (18) Å0.36 × 0.19 × 0.10 mm
β = 102.095 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4876 measured reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
4876 independent reflections
Tmin = 0.707, Tmax = 0.8784577 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.03996 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 0.55 e Å3
4876 reflectionsΔρmin = 0.31 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.42887 (3)0.39507 (2)0.46354 (2)0.03549 (10)
S10.38706 (10)0.55845 (7)0.45393 (6)0.0405 (2)
P10.46454 (10)0.23806 (7)0.48206 (6)0.0366 (2)
Cl10.24145 (11)0.36353 (8)0.37296 (7)0.0532 (3)
C10.2753 (4)0.5666 (3)0.5147 (3)0.0471 (11)
C20.1625 (5)0.6099 (4)0.4860 (4)0.0754 (17)
H20.14680.63650.43610.090*
C30.0705 (6)0.6143 (5)0.5317 (6)0.108 (3)
H30.00640.64340.51170.129*
C40.0927 (7)0.5769 (5)0.6043 (6)0.100 (3)
H40.03120.58040.63440.120*
C50.2049 (8)0.5339 (5)0.6339 (5)0.101 (2)
H50.22050.50860.68430.121*
C60.2949 (5)0.5280 (5)0.5889 (4)0.0769 (17)
H60.37060.49740.60900.092*
C70.4562 (4)0.1762 (3)0.3897 (3)0.0456 (10)
C80.5280 (5)0.2094 (4)0.3396 (3)0.0633 (14)
H80.57780.26250.35320.076*
C90.5273 (7)0.1650 (5)0.2693 (3)0.0813 (18)
H90.57610.18820.23550.098*
C100.4542 (8)0.0859 (5)0.2490 (4)0.087 (2)
H100.45400.05530.20180.104*
C110.3825 (7)0.0528 (4)0.2986 (4)0.0807 (19)
H110.33270.00030.28470.097*
C120.3829 (5)0.0970 (3)0.3692 (3)0.0595 (13)
H120.33400.07370.40280.071*
C130.6143 (4)0.2023 (3)0.5438 (3)0.0389 (9)
C140.6401 (4)0.2303 (3)0.6217 (3)0.0473 (10)
H140.58180.26710.64040.057*
C150.7505 (5)0.2047 (4)0.6720 (3)0.0587 (13)
H150.76650.22390.72430.070*
C160.8373 (5)0.1505 (4)0.6446 (4)0.0659 (15)
H160.91200.13290.67840.079*
C170.8141 (5)0.1224 (4)0.5678 (4)0.0681 (15)
H170.87270.08530.54970.082*
C180.7030 (4)0.1492 (3)0.5166 (3)0.0519 (12)
H180.68850.13130.46400.062*
C190.3518 (4)0.1852 (3)0.5339 (3)0.0406 (9)
C200.3754 (5)0.0980 (3)0.5692 (3)0.0585 (13)
H200.44670.06430.56370.070*
C210.2941 (6)0.0605 (4)0.6125 (3)0.0665 (14)
H210.31160.00230.63650.080*
C220.1881 (5)0.1084 (4)0.6203 (3)0.0677 (15)
H220.13310.08250.64900.081*
C230.1633 (5)0.1950 (4)0.5853 (4)0.0721 (16)
H230.09130.22790.59050.087*
C240.2451 (5)0.2335 (3)0.5425 (3)0.0564 (12)
H240.22800.29230.51940.068*
C251.0053 (6)0.1714 (4)0.3114 (3)0.0997 (16)
H251.07940.21120.33000.120*
Cl21.0512 (6)0.0769 (4)0.2630 (3)0.1391 (18)0.792 (8)
Cl30.8933 (4)0.2375 (3)0.24836 (19)0.1357 (15)0.792 (8)
Cl40.9460 (7)0.1371 (4)0.3917 (2)0.170 (2)0.792 (8)
Cl2A1.0404 (19)0.0854 (12)0.2466 (7)0.105 (4)0.208 (8)
Cl3A0.8462 (10)0.1982 (14)0.2823 (10)0.170 (6)0.208 (8)
Cl4A1.0302 (13)0.1208 (9)0.4047 (4)0.101 (3)0.208 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03338 (16)0.03191 (15)0.04120 (16)0.00213 (13)0.00789 (13)0.00007 (15)
S10.0391 (5)0.0340 (5)0.0468 (6)0.0021 (4)0.0055 (5)0.0027 (5)
P10.0345 (5)0.0326 (5)0.0431 (6)0.0017 (4)0.0086 (4)0.0023 (5)
Cl10.0462 (6)0.0536 (6)0.0543 (7)0.0018 (5)0.0021 (5)0.0041 (5)
C10.038 (2)0.034 (2)0.070 (3)0.0019 (18)0.014 (2)0.000 (2)
C20.048 (3)0.076 (4)0.105 (5)0.018 (3)0.023 (3)0.022 (4)
C30.054 (4)0.093 (5)0.186 (9)0.031 (4)0.049 (5)0.033 (6)
C40.079 (5)0.080 (4)0.164 (8)0.014 (4)0.077 (5)0.011 (5)
C50.098 (5)0.123 (6)0.096 (5)0.011 (5)0.053 (4)0.014 (5)
C60.056 (3)0.106 (5)0.077 (4)0.017 (3)0.032 (3)0.019 (4)
C70.048 (2)0.043 (2)0.045 (2)0.014 (2)0.006 (2)0.003 (2)
C80.076 (4)0.061 (3)0.054 (3)0.007 (3)0.017 (3)0.001 (3)
C90.097 (5)0.097 (5)0.054 (3)0.025 (4)0.025 (3)0.012 (3)
C100.118 (6)0.081 (5)0.056 (3)0.033 (4)0.004 (4)0.022 (3)
C110.090 (5)0.061 (4)0.081 (4)0.007 (3)0.005 (4)0.023 (3)
C120.065 (3)0.047 (3)0.063 (3)0.001 (2)0.004 (3)0.018 (2)
C130.034 (2)0.0313 (19)0.049 (2)0.0018 (16)0.0052 (19)0.0027 (18)
C140.045 (2)0.046 (2)0.051 (3)0.004 (2)0.009 (2)0.004 (2)
C150.061 (3)0.066 (3)0.046 (3)0.007 (3)0.004 (2)0.009 (2)
C160.047 (3)0.069 (3)0.076 (4)0.002 (3)0.002 (3)0.018 (3)
C170.045 (3)0.069 (3)0.090 (4)0.018 (3)0.016 (3)0.000 (3)
C180.044 (3)0.054 (3)0.059 (3)0.009 (2)0.012 (2)0.006 (2)
C190.038 (2)0.041 (2)0.044 (2)0.0053 (17)0.0111 (19)0.003 (2)
C200.063 (3)0.040 (2)0.077 (3)0.003 (2)0.026 (3)0.005 (3)
C210.077 (4)0.048 (3)0.077 (4)0.006 (3)0.023 (3)0.011 (3)
C220.058 (3)0.075 (4)0.076 (4)0.009 (3)0.029 (3)0.013 (3)
C230.050 (3)0.083 (4)0.090 (4)0.009 (3)0.030 (3)0.020 (3)
C240.050 (3)0.058 (3)0.066 (3)0.010 (2)0.022 (2)0.012 (3)
C250.107 (4)0.104 (4)0.081 (3)0.032 (3)0.004 (3)0.014 (3)
Cl20.134 (3)0.134 (3)0.146 (4)0.039 (3)0.022 (3)0.032 (3)
Cl30.129 (3)0.178 (3)0.108 (2)0.060 (2)0.0416 (18)0.039 (2)
Cl40.248 (6)0.182 (3)0.086 (2)0.093 (4)0.049 (3)0.009 (2)
Cl2A0.134 (9)0.126 (8)0.049 (4)0.018 (6)0.009 (5)0.012 (4)
Cl3A0.136 (7)0.199 (11)0.155 (11)0.039 (8)0.015 (7)0.009 (9)
Cl4A0.107 (7)0.130 (7)0.061 (4)0.034 (6)0.010 (4)0.018 (4)
Geometric parameters (Å, º) top
Pd1—P12.2787 (11)C12—H120.9300
Pd1—S1i2.2970 (11)C13—C181.383 (6)
Pd1—Cl12.3383 (11)C13—C141.384 (6)
Pd1—S12.3676 (11)C14—C151.375 (6)
S1—C11.770 (5)C14—H140.9300
S1—Pd1i2.2971 (11)C15—C161.376 (8)
P1—C71.819 (5)C15—H150.9300
P1—C131.821 (4)C16—C171.366 (8)
P1—C191.825 (4)C16—H160.9300
C1—C21.366 (7)C17—C181.392 (7)
C1—C61.378 (8)C17—H170.9300
C2—C31.400 (9)C18—H180.9300
C2—H20.9300C19—C241.380 (6)
C3—C41.346 (11)C19—C201.385 (6)
C3—H30.9300C20—C211.380 (7)
C4—C51.362 (10)C20—H200.9300
C4—H40.9300C21—C221.365 (8)
C5—C61.376 (9)C21—H210.9300
C5—H50.9300C22—C231.377 (8)
C6—H60.9300C22—H220.9300
C7—C81.368 (7)C23—C241.385 (7)
C7—C121.381 (6)C23—H230.9300
C8—C91.376 (8)C24—H240.9300
C8—H80.9300C25—Cl21.715 (6)
C9—C101.379 (10)C25—Cl41.726 (6)
C9—H90.9300C25—Cl31.732 (5)
C10—C111.359 (10)C25—Cl3A1.733 (7)
C10—H100.9300C25—Cl4A1.745 (7)
C11—C121.379 (8)C25—Cl2A1.759 (7)
C11—H110.9300C25—H250.9800
P1—Pd1—S1i95.42 (4)C11—C12—C7119.8 (6)
P1—Pd1—Cl190.27 (4)C11—C12—H12120.1
S1i—Pd1—Cl1173.83 (4)C7—C12—H12120.1
P1—Pd1—S1175.51 (4)C18—C13—C14118.7 (4)
S1i—Pd1—S183.67 (4)C18—C13—P1123.2 (3)
Cl1—Pd1—S190.84 (4)C14—C13—P1118.1 (3)
C1—S1—Pd1i102.77 (16)C15—C14—C13121.2 (4)
C1—S1—Pd199.59 (14)C15—C14—H14119.4
Pd1i—S1—Pd196.33 (4)C13—C14—H14119.4
C7—P1—C13105.1 (2)C14—C15—C16119.6 (5)
C7—P1—C19108.8 (2)C14—C15—H15120.2
C13—P1—C19101.47 (19)C16—C15—H15120.2
C7—P1—Pd1111.96 (15)C17—C16—C15120.3 (5)
C13—P1—Pd1117.46 (13)C17—C16—H16119.9
C19—P1—Pd1111.26 (14)C15—C16—H16119.9
C2—C1—C6118.2 (5)C16—C17—C18120.2 (5)
C2—C1—S1118.9 (4)C16—C17—H17119.9
C6—C1—S1122.9 (4)C18—C17—H17119.9
C1—C2—C3120.1 (6)C13—C18—C17120.0 (5)
C1—C2—H2119.9C13—C18—H18120.0
C3—C2—H2119.9C17—C18—H18120.0
C4—C3—C2120.5 (6)C24—C19—C20118.6 (4)
C4—C3—H3119.8C24—C19—P1120.7 (3)
C2—C3—H3119.8C20—C19—P1120.5 (4)
C3—C4—C5120.1 (7)C21—C20—C19120.6 (5)
C3—C4—H4119.9C21—C20—H20119.7
C5—C4—H4119.9C19—C20—H20119.7
C4—C5—C6119.7 (7)C22—C21—C20120.5 (5)
C4—C5—H5120.1C22—C21—H21119.7
C6—C5—H5120.1C20—C21—H21119.7
C5—C6—C1121.4 (6)C21—C22—C23119.6 (5)
C5—C6—H6119.3C21—C22—H22120.2
C1—C6—H6119.3C23—C22—H22120.2
C8—C7—C12119.3 (5)C22—C23—C24120.2 (5)
C8—C7—P1117.8 (4)C22—C23—H23119.9
C12—C7—P1122.9 (4)C24—C23—H23119.9
C7—C8—C9120.6 (6)C19—C24—C23120.5 (5)
C7—C8—H8119.7C19—C24—H24119.8
C9—C8—H8119.7C23—C24—H24119.8
C8—C9—C10119.9 (6)Cl2—C25—Cl4111.8 (4)
C8—C9—H9120.1Cl2—C25—Cl3110.6 (4)
C10—C9—H9120.1Cl4—C25—Cl3109.6 (4)
C11—C10—C9119.6 (6)Cl3A—C25—Cl4A108.2 (6)
C11—C10—H10120.2Cl3A—C25—Cl2A107.5 (6)
C9—C10—H10120.2Cl4A—C25—Cl2A107.2 (5)
C10—C11—C12120.7 (6)Cl2—C25—H25108.2
C10—C11—H11119.6Cl4—C25—H25108.2
C12—C11—H11119.6Cl3—C25—H25108.2
Pd1i—S1—C1—C2133.2 (4)C19—P1—C13—C18120.9 (4)
Pd1—S1—C1—C2128.0 (4)Pd1—P1—C13—C18117.6 (4)
Pd1i—S1—C1—C649.3 (5)C7—P1—C13—C14172.8 (3)
Pd1—S1—C1—C649.5 (5)C19—P1—C13—C1459.4 (4)
C6—C1—C2—C30.0 (9)Pd1—P1—C13—C1462.1 (4)
S1—C1—C2—C3177.7 (5)C18—C13—C14—C151.3 (7)
C1—C2—C3—C40.6 (12)P1—C13—C14—C15179.0 (4)
C2—C3—C4—C50.3 (13)C13—C14—C15—C160.2 (7)
C3—C4—C5—C60.7 (13)C14—C15—C16—C170.1 (8)
C4—C5—C6—C11.4 (12)C15—C16—C17—C180.6 (9)
C2—C1—C6—C51.0 (10)C14—C13—C18—C172.0 (7)
S1—C1—C6—C5178.6 (6)P1—C13—C18—C17178.3 (4)
C13—P1—C7—C876.2 (4)C16—C17—C18—C131.7 (8)
C19—P1—C7—C8175.8 (4)C7—P1—C19—C24110.5 (4)
Pd1—P1—C7—C852.4 (4)C13—P1—C19—C24139.1 (4)
C13—P1—C7—C12102.6 (4)Pd1—P1—C19—C2413.4 (4)
C19—P1—C7—C125.5 (4)C7—P1—C19—C2073.2 (4)
Pd1—P1—C7—C12128.9 (4)C13—P1—C19—C2037.2 (4)
C12—C7—C8—C90.3 (8)Pd1—P1—C19—C20162.9 (4)
P1—C7—C8—C9179.1 (4)C24—C19—C20—C210.4 (8)
C7—C8—C9—C100.4 (9)P1—C19—C20—C21176.0 (4)
C8—C9—C10—C110.5 (10)C19—C20—C21—C220.9 (9)
C9—C10—C11—C120.5 (10)C20—C21—C22—C230.7 (9)
C10—C11—C12—C70.4 (9)C21—C22—C23—C240.0 (9)
C8—C7—C12—C110.3 (7)C20—C19—C24—C230.3 (8)
P1—C7—C12—C11179.0 (4)P1—C19—C24—C23176.7 (4)
C7—P1—C13—C187.5 (4)C22—C23—C24—C190.5 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Cl1ii0.982.793.744 (6)164
C15—H15···Cl1iii0.932.933.650 (5)135
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Cl1i0.982.793.744 (6)164
C15—H15···Cl1ii0.932.933.650 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support of this research by CONACYT (grant No. CB2010-154732) and PAPIIT (grant No. IN201711-3) is gratefully acknowledged. RRM and DMM thank Dr Ruben A. Toscano for technical assistance.

References

First citationBruker (2007). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEstudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651–1660.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, A. C. & Beller, M. (2005). Angew. Chem. Int. Ed. 44, 674–688.  Web of Science CrossRef CAS Google Scholar
First citationKnochel, P. & Singer, R. D. (1993). Chem. Rev. 93, 2117–2188.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338–6361.  Web of Science CrossRef CAS Google Scholar
First citationYin, L. & Liebscher, J. (2007). Chem. Rev. 107, 133–173.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds