metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(2,4,6-tri­methyl­phen­yl)ethane-1,2-di­imine-κ2N,N′]tetra­carbonyl­chromium(0)

aDepartment of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
*Correspondence e-mail: phvr@up.ac.za

(Received 16 May 2012; accepted 30 May 2012; online 16 June 2012)

The octa­hedral coordination of the Cr0 atom in the title compound, [Cr(C20H24N2)(CO)4], displays some distortion. This is manifested by an exocyclic torsion angle C(mesitylene)—N—Cr—C(carbon­yl) that deviates by more than 20° from planarity. Another structural feature is the significant distortion from linearity of the Cr—C—O angles of the two carbonyl groups that inter­act with both ortho-methyl groups of the two mesitylene rings. The remaining two carbonyl groups overlap with the centres of the mesitylene rings themselves and are linear within <3°.

Related literature

For the synthesis of similar complexes, see: Baxter & Connor (1995[Baxter, P. N. W. & Connor, J. A. (1995). J. Organomet. Chem. 486, 115-121.]). The MLCT (metal-to-ligand charge-transfer) band was observed at 570 nm for an analogous complex; see: Ruminski & Wallace (1987[Ruminski, R. R. & Wallace, I. (1987). Polyhedron, 6, 1673-1676.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C20H24N2)(CO)4]

  • Mr = 456.45

  • Monoclinic, C c

  • a = 19.3119 (18) Å

  • b = 7.5303 (7) Å

  • c = 16.0769 (15) Å

  • β = 100.912 (2)°

  • V = 2295.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.46 × 0.38 × 0.36 mm

Data collection
  • Adapted Bruker (Siemens) P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 0.826

  • 5784 measured reflections

  • 2708 independent reflections

  • 2689 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.07

  • 2708 reflections

  • 286 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 652 Friedel pairs

  • Flack parameter: 0.018 (14)

Table 1
Selected geometric parameters (Å, °)

Cr1—C2 1.860 (3)
Cr1—C1 1.862 (2)
Cr1—C4 1.890 (3)
Cr1—C3 1.897 (3)
Cr1—N2 2.0740 (19)
Cr1—N1 2.0756 (18)
O1—C1—Cr1 177.1 (2)
O2—C2—Cr1 179.8 (3)
O3—C3—Cr1 172.0 (2)
O4—C4—Cr1 170.1 (3)
C1—Cr1—N2—C21 −21.80 (19)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Version 3.6. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cr(CO)4(N,N'-dimesitylethylenediimine) or [Cr(CO)4(C20H24N2)], (I), was formed as a product in the microwave-assisted reaction of chromium hexacarbonyl with N,N'-(ethane-1,2-diylidene)bis(2,4,6-trimethylaniline) in dichloromethane as solvent. The intensely-coloured blue-black target complex was formed almost quantitatively with no side products. The complex was characterized using X-ray diffraction, NMR, IR and UV spectroscopy.

The synthesis of similar complexes, using disubstituted 2,2'-bipyridine compounds as coordinating ligands to study solvatochromism of these and other group 6 metal derivatives, was reported previously (Baxter & Connor, 1995). In the UV spectrum of (I), a stronger MLCT band is observed at 595 nm. The intense colour of the complex is ascribed to this metal-to-ligand transition. For an analogous complex, viz. [Cr(CO)4(dpp)], dpp = 2,3-bis(2-pyridyl)pyrazine, the MLCT band was observed at 570 nm with CHCl3 as solvent (Ruminski & Wallace, 1987). The transition around 300 nm was assigned as a dpp π* π intraligand transition.

The solid state structure of the title compound revealed that the molecule packs with the mesitylene rings close to parallel to the (ac)-plane, with the angle between the mean planes formed by these rings at 19.81 (12)°. The 5-membered (Cr—N—C—C—N) ring is planar and approximately parallel to the (bc)-plane. This mean plane is almost perpendicular with the mean planes formed by the mesitylene rings, with the values for these angles being 85.42 (11)° and 76.87 (11)°. The distorted octahedral geometry around the Cr0 atom (Fig. 1) is manifested by the exocyclic torsion angle C21—N2—Cr1—C1 with a value of -21.81 (19)°. Another structural feature is the significant distortion from linearity, by 8.0° and 9.8°, of the Cr—C—O bond angles of the two carbonyl groups that interact with the ortho methyl groups of the two mesitylene rings. These two Cr—CO bond lengths are similar at 1.890 (3) Å (C4) and 1.897 (3) Å (C3), and the corresponding Cr—C—O bond angles are 170.2 (3)° and 172.0 (2)°. The remaining two carbonyl groups are positioned over the centre of the mesitylene rings and have little steric interaction, and are thus linear within 3°. This results in shorter Cr—C bond lengths of 1.861 (3) Å (C2) and 1.863 (3) Å (C1) with the corresponding Cr—C—O bond angles of 177.1 (2)° and 179.8 (3)°.

The crystal packing is without any other significant features, but the value of 18.5 Å3 per non-H atom is indicative of the efficient packing of the molecules in the unit cell.

Related literature top

For the synthesis of similar complexes, see: Baxter & Connor (1995). The MLCT (metal-to-ligand charge-transfer) band was observed at 570 nm for an analogous complex; see: Ruminski & Wallace (1987).

Experimental top

Cr(CO)6 (3 mmol, 0.66 g) and N,N'-(ethane-1,2-diylidene)bis(2,4,6-trimethylaniline) (3 mmol, 0.60 g) were added to a microwave container and 30 ml of dichloromethane added. The container was sealed and the vessel inserted into the microwave oven. The reaction was left at 700 Watt for 1.5 h. The resulting solution was dark blue in colour. Solvent was removed in vacuo. The product was isolated on a silica gel column using 1:1 DCM:hexane as solvent. Recrystallization from the same solvent mixture yielded blue-black crystals. 1H NMR (δ, p.p.m.), CDCl3: 2.20 (s, 12H, o-Me), 2.33 (s, 6H, p-Me), 6.99 (s, 4H, m-H), 8.16 (s, 2H, N—H); 13C NMR (δ, p.p.m.), CDCl3: 18.2, 20.8, 128.1, 129.3, 135.7, 151.4, 158.9, 213.6, 224.3. IR (νCO, cm-1) KBr pellet: 2001(s), 1902(s), 1916(s), 1866(s). UV (λ, nm): 595, 362.

Refinement top

All hydrogen atom positions were obtained from difference Fourier maps but were included in the refinement as riding on the atom to which they are bonded. Isotropic displacement parameters for the hydrogen atoms were set at 1.2 times the equivalent isotropic displacement parameter of the atom to which each hydrogen atom is bonded (1.5 times for the methyl H atoms).

Structure description top

Cr(CO)4(N,N'-dimesitylethylenediimine) or [Cr(CO)4(C20H24N2)], (I), was formed as a product in the microwave-assisted reaction of chromium hexacarbonyl with N,N'-(ethane-1,2-diylidene)bis(2,4,6-trimethylaniline) in dichloromethane as solvent. The intensely-coloured blue-black target complex was formed almost quantitatively with no side products. The complex was characterized using X-ray diffraction, NMR, IR and UV spectroscopy.

The synthesis of similar complexes, using disubstituted 2,2'-bipyridine compounds as coordinating ligands to study solvatochromism of these and other group 6 metal derivatives, was reported previously (Baxter & Connor, 1995). In the UV spectrum of (I), a stronger MLCT band is observed at 595 nm. The intense colour of the complex is ascribed to this metal-to-ligand transition. For an analogous complex, viz. [Cr(CO)4(dpp)], dpp = 2,3-bis(2-pyridyl)pyrazine, the MLCT band was observed at 570 nm with CHCl3 as solvent (Ruminski & Wallace, 1987). The transition around 300 nm was assigned as a dpp π* π intraligand transition.

The solid state structure of the title compound revealed that the molecule packs with the mesitylene rings close to parallel to the (ac)-plane, with the angle between the mean planes formed by these rings at 19.81 (12)°. The 5-membered (Cr—N—C—C—N) ring is planar and approximately parallel to the (bc)-plane. This mean plane is almost perpendicular with the mean planes formed by the mesitylene rings, with the values for these angles being 85.42 (11)° and 76.87 (11)°. The distorted octahedral geometry around the Cr0 atom (Fig. 1) is manifested by the exocyclic torsion angle C21—N2—Cr1—C1 with a value of -21.81 (19)°. Another structural feature is the significant distortion from linearity, by 8.0° and 9.8°, of the Cr—C—O bond angles of the two carbonyl groups that interact with the ortho methyl groups of the two mesitylene rings. These two Cr—CO bond lengths are similar at 1.890 (3) Å (C4) and 1.897 (3) Å (C3), and the corresponding Cr—C—O bond angles are 170.2 (3)° and 172.0 (2)°. The remaining two carbonyl groups are positioned over the centre of the mesitylene rings and have little steric interaction, and are thus linear within 3°. This results in shorter Cr—C bond lengths of 1.861 (3) Å (C2) and 1.863 (3) Å (C1) with the corresponding Cr—C—O bond angles of 177.1 (2)° and 179.8 (3)°.

The crystal packing is without any other significant features, but the value of 18.5 Å3 per non-H atom is indicative of the efficient packing of the molecules in the unit cell.

For the synthesis of similar complexes, see: Baxter & Connor (1995). The MLCT (metal-to-ligand charge-transfer) band was observed at 570 nm for an analogous complex; see: Ruminski & Wallace (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I). Displacement ellipsoids are shown at the 50% probability level.
[N,N'-Bis(2,4,6-trimethylphenyl)ethane-1,2-diimine- κ2N,N']tetracarbonylchromium(0) top
Crystal data top
[Cr(C20H24N2)(CO)4]F(000) = 952
Mr = 456.45Dx = 1.321 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5595 reflections
a = 19.3119 (18) Åθ = 2.7–26.4°
b = 7.5303 (7) ŵ = 0.53 mm1
c = 16.0769 (15) ÅT = 293 K
β = 100.912 (2)°Tetrahedron, dark-blue
V = 2295.7 (4) Å30.46 × 0.38 × 0.36 mm
Z = 4
Data collection top
Adapted Bruker (Siemens) P4
diffractometer
2708 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3 pixels mm-1θmax = 25.2°, θmin = 2.6°
φ and ω scansh = 2315
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 89
Tmin = 0.676, Tmax = 0.826l = 1815
5784 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0184P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2708 reflectionsΔρmax = 0.19 e Å3
286 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 652 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (14)
Crystal data top
[Cr(C20H24N2)(CO)4]V = 2295.7 (4) Å3
Mr = 456.45Z = 4
Monoclinic, CcMo Kα radiation
a = 19.3119 (18) ŵ = 0.53 mm1
b = 7.5303 (7) ÅT = 293 K
c = 16.0769 (15) Å0.46 × 0.38 × 0.36 mm
β = 100.912 (2)°
Data collection top
Adapted Bruker (Siemens) P4
diffractometer
2708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2689 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.826Rint = 0.021
5784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.19 e Å3
2708 reflectionsAbsolute structure: Flack (1983), 652 Friedel pairs
286 parametersAbsolute structure parameter: 0.018 (14)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.212075 (18)0.27015 (4)0.64486 (2)0.04182 (11)
C10.29172 (13)0.1426 (3)0.69481 (17)0.0519 (5)
O10.34138 (11)0.0624 (3)0.72228 (16)0.0767 (6)
C20.14826 (13)0.0836 (3)0.63989 (19)0.0584 (6)
O20.10907 (13)0.0316 (3)0.6367 (2)0.0928 (8)
C30.19622 (13)0.2895 (3)0.75742 (17)0.0515 (6)
O30.18859 (14)0.2804 (3)0.82656 (15)0.0765 (6)
C40.23428 (19)0.1662 (5)0.54614 (19)0.0731 (8)
O40.2498 (2)0.0830 (5)0.49413 (18)0.1281 (13)
N10.13881 (10)0.4434 (2)0.57702 (11)0.0453 (4)
N20.26563 (9)0.5096 (2)0.64851 (12)0.0439 (4)
C50.16182 (12)0.6007 (3)0.56391 (16)0.0529 (5)
H50.13450.68270.52890.063*
C60.23174 (13)0.6397 (3)0.60674 (16)0.0520 (5)
H60.25170.75170.60480.062*
C110.06672 (11)0.4040 (3)0.53884 (13)0.0440 (4)
C120.04958 (13)0.3506 (3)0.45416 (14)0.0496 (5)
C130.02004 (14)0.3115 (4)0.42077 (15)0.0544 (5)
H130.03190.27650.36440.065*
C140.07296 (12)0.3223 (4)0.46827 (15)0.0525 (5)
C150.05452 (12)0.3769 (4)0.55176 (15)0.0540 (5)
H150.08940.38540.58430.065*
C160.01465 (12)0.4195 (3)0.58840 (13)0.0484 (5)
C170.10406 (15)0.3377 (5)0.39831 (17)0.0701 (7)
H17A0.12750.22500.40700.105*
H17B0.13800.43140.41240.105*
H17C0.08130.34860.34000.105*
C180.14839 (18)0.2744 (5)0.4295 (2)0.0701 (8)
H18A0.17040.37270.39670.105*
H18B0.17390.24740.47370.105*
H18C0.14870.17260.39350.105*
C190.03138 (15)0.4836 (5)0.67837 (17)0.0683 (8)
H19A0.01170.50400.69850.102*
H19B0.05770.59230.68110.102*
H19C0.05890.39550.71310.102*
C210.33116 (11)0.5518 (3)0.70416 (14)0.0466 (5)
C220.39584 (13)0.4965 (3)0.68431 (18)0.0540 (5)
C230.45673 (12)0.5362 (4)0.7433 (2)0.0678 (7)
H230.50010.50200.73120.081*
C240.45589 (15)0.6228 (4)0.8178 (2)0.0687 (7)
C250.39169 (15)0.6775 (4)0.83411 (19)0.0634 (6)
H250.39050.73850.88410.076*
C260.32877 (13)0.6448 (3)0.77868 (16)0.0539 (5)
C270.39987 (16)0.4046 (5)0.6026 (2)0.0702 (8)
H27A0.44530.42520.58850.105*
H27B0.36390.45040.55830.105*
H27C0.39300.27930.60870.105*
C280.5228 (2)0.6584 (6)0.8816 (3)0.0993 (13)
H28A0.52550.57820.92860.149*
H28B0.52240.77850.90150.149*
H28C0.56290.64100.85530.149*
C290.26070 (19)0.7080 (4)0.8015 (3)0.0721 (8)
H29A0.22310.62990.77700.108*
H29B0.25060.82610.78010.108*
H29C0.26510.70840.86200.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.04006 (17)0.03597 (17)0.04822 (18)0.00392 (16)0.00531 (11)0.00317 (16)
C10.0515 (12)0.0419 (12)0.0636 (13)0.0048 (10)0.0140 (10)0.0105 (10)
O10.0578 (11)0.0699 (13)0.1017 (15)0.0235 (10)0.0131 (10)0.0264 (12)
C20.0509 (13)0.0436 (13)0.0790 (16)0.0050 (11)0.0078 (11)0.0002 (11)
O20.0716 (14)0.0568 (12)0.151 (2)0.0180 (11)0.0228 (14)0.0118 (14)
C30.0418 (11)0.0514 (14)0.0601 (16)0.0053 (10)0.0066 (10)0.0071 (10)
O30.0736 (15)0.1005 (17)0.0578 (13)0.0106 (11)0.0187 (10)0.0143 (10)
C40.094 (2)0.0626 (17)0.0631 (16)0.0289 (16)0.0159 (14)0.0080 (13)
O40.201 (3)0.114 (2)0.0746 (15)0.079 (2)0.0382 (19)0.0077 (15)
N10.0472 (9)0.0409 (9)0.0457 (9)0.0068 (7)0.0033 (7)0.0012 (7)
N20.0392 (8)0.0408 (9)0.0522 (9)0.0017 (7)0.0100 (7)0.0032 (7)
C50.0520 (12)0.0423 (12)0.0605 (13)0.0081 (9)0.0007 (9)0.0082 (9)
C60.0521 (12)0.0385 (11)0.0641 (13)0.0009 (9)0.0075 (10)0.0070 (10)
C110.0448 (11)0.0395 (11)0.0444 (10)0.0074 (8)0.0002 (8)0.0023 (8)
C120.0565 (12)0.0492 (13)0.0423 (10)0.0042 (10)0.0075 (9)0.0019 (9)
C130.0577 (13)0.0592 (12)0.0415 (11)0.0062 (12)0.0030 (9)0.0058 (10)
C140.0462 (12)0.0503 (12)0.0559 (13)0.0070 (11)0.0029 (9)0.0019 (10)
C150.0446 (11)0.0595 (13)0.0559 (13)0.0095 (10)0.0047 (9)0.0060 (10)
C160.0471 (11)0.0506 (13)0.0444 (11)0.0099 (9)0.0010 (8)0.0047 (9)
C170.0644 (16)0.099 (2)0.0479 (13)0.0018 (16)0.0138 (11)0.0036 (14)
C180.0518 (16)0.080 (2)0.0725 (18)0.0039 (12)0.0041 (13)0.0128 (14)
C190.0547 (12)0.094 (2)0.0524 (13)0.0149 (14)0.0005 (10)0.0182 (13)
C210.0392 (10)0.0421 (11)0.0580 (12)0.0022 (8)0.0078 (9)0.0070 (9)
C220.0453 (11)0.0480 (12)0.0707 (14)0.0018 (9)0.0162 (10)0.0114 (10)
C230.0383 (12)0.0670 (16)0.098 (2)0.0027 (11)0.0126 (12)0.0189 (15)
C240.0564 (14)0.0599 (15)0.0838 (19)0.0161 (12)0.0019 (12)0.0153 (14)
C250.0675 (16)0.0540 (13)0.0657 (15)0.0134 (13)0.0046 (12)0.0007 (12)
C260.0506 (12)0.0477 (13)0.0640 (14)0.0078 (10)0.0127 (10)0.0000 (10)
C270.0645 (16)0.0698 (18)0.0823 (18)0.0057 (14)0.0293 (13)0.0070 (15)
C280.0674 (19)0.093 (3)0.121 (3)0.0246 (19)0.0228 (19)0.014 (2)
C290.0657 (17)0.0710 (17)0.085 (2)0.0084 (14)0.0280 (15)0.0213 (15)
Geometric parameters (Å, º) top
Cr1—C21.860 (3)C17—H17B0.9600
Cr1—C11.862 (2)C17—H17C0.9600
Cr1—C41.890 (3)C18—H18A0.9600
Cr1—C31.897 (3)C18—H18B0.9600
Cr1—N22.0740 (19)C18—H18C0.9600
Cr1—N12.0756 (18)C19—H19A0.9600
C1—O11.148 (3)C19—H19B0.9600
C2—O21.146 (3)C19—H19C0.9600
C3—O31.151 (4)C21—C261.396 (3)
C4—O41.130 (4)C21—C221.409 (3)
N1—C51.296 (3)C22—C231.396 (4)
N1—C111.442 (3)C22—C271.500 (4)
N2—C61.294 (3)C23—C241.368 (5)
N2—C211.440 (3)C23—H230.9300
C5—C61.425 (3)C24—C251.378 (4)
C5—H50.9300C24—C281.514 (4)
C6—H60.9300C25—C261.386 (4)
C11—C121.398 (3)C25—H250.9300
C11—C161.401 (3)C26—C291.507 (4)
C12—C131.382 (4)C27—H27A0.9600
C12—C171.510 (3)C27—H27B0.9600
C13—C141.389 (4)C27—H27C0.9600
C13—H130.9300C28—H28A0.9600
C14—C151.384 (3)C28—H28B0.9600
C14—C181.516 (4)C28—H28C0.9600
C15—C161.391 (3)C29—H29A0.9600
C15—H150.9300C29—H29B0.9600
C16—C191.501 (3)C29—H29C0.9600
C17—H17A0.9600
C2—Cr1—C196.63 (12)C12—C17—H17C109.5
C2—Cr1—C484.56 (15)H17A—C17—H17C109.5
C1—Cr1—C481.28 (13)H17B—C17—H17C109.5
C2—Cr1—C382.74 (12)C14—C18—H18A109.5
C1—Cr1—C384.11 (11)C14—C18—H18B109.5
C4—Cr1—C3159.37 (13)H18A—C18—H18B109.5
C2—Cr1—N2168.64 (9)C14—C18—H18C109.5
C1—Cr1—N293.98 (9)H18A—C18—H18C109.5
C4—Cr1—N2101.09 (13)H18B—C18—H18C109.5
C3—Cr1—N294.36 (10)C16—C19—H19A109.5
C2—Cr1—N194.11 (9)C16—C19—H19B109.5
C1—Cr1—N1167.48 (9)H19A—C19—H19B109.5
C4—Cr1—N193.40 (10)C16—C19—H19C109.5
C3—Cr1—N1103.65 (9)H19A—C19—H19C109.5
N2—Cr1—N175.83 (7)H19B—C19—H19C109.5
O1—C1—Cr1177.1 (2)C26—C21—C22121.1 (2)
O2—C2—Cr1179.8 (3)C26—C21—N2118.43 (19)
O3—C3—Cr1172.0 (2)C22—C21—N2120.4 (2)
O4—C4—Cr1170.1 (3)C23—C22—C21116.9 (3)
C5—N1—C11116.85 (18)C23—C22—C27121.1 (2)
C5—N1—Cr1116.04 (15)C21—C22—C27122.0 (2)
C11—N1—Cr1126.99 (14)C24—C23—C22123.3 (2)
C6—N2—C21117.0 (2)C24—C23—H23118.4
C6—N2—Cr1116.32 (16)C22—C23—H23118.4
C21—N2—Cr1125.75 (14)C23—C24—C25118.0 (3)
N1—C5—C6115.6 (2)C23—C24—C28121.9 (3)
N1—C5—H5122.2C25—C24—C28120.1 (3)
C6—C5—H5122.2C24—C25—C26122.4 (3)
N2—C6—C5115.7 (2)C24—C25—H25118.8
N2—C6—H6122.1C26—C25—H25118.8
C5—C6—H6122.1C25—C26—C21118.3 (2)
C12—C11—C16120.98 (19)C25—C26—C29119.1 (3)
C12—C11—N1120.35 (19)C21—C26—C29122.6 (2)
C16—C11—N1118.67 (18)C22—C27—H27A109.5
C13—C12—C11118.2 (2)C22—C27—H27B109.5
C13—C12—C17119.4 (2)H27A—C27—H27B109.5
C11—C12—C17122.3 (2)C22—C27—H27C109.5
C12—C13—C14122.5 (2)H27A—C27—H27C109.5
C12—C13—H13118.8H27B—C27—H27C109.5
C14—C13—H13118.8C24—C28—H28A109.5
C15—C14—C13118.0 (2)C24—C28—H28B109.5
C15—C14—C18121.4 (2)H28A—C28—H28B109.5
C13—C14—C18120.6 (2)C24—C28—H28C109.5
C14—C15—C16121.9 (2)H28A—C28—H28C109.5
C14—C15—H15119.0H28B—C28—H28C109.5
C16—C15—H15119.0C26—C29—H29A109.5
C15—C16—C11118.35 (19)C26—C29—H29B109.5
C15—C16—C19119.8 (2)H29A—C29—H29B109.5
C11—C16—C19121.9 (2)C26—C29—H29C109.5
C12—C17—H17A109.5H29A—C29—H29C109.5
C12—C17—H17B109.5H29B—C29—H29C109.5
H17A—C17—H17B109.5
C2—Cr1—N1—C5179.67 (19)C11—C12—C13—C140.4 (4)
C1—Cr1—N1—C530.5 (6)C17—C12—C13—C14179.3 (3)
C4—Cr1—N1—C594.9 (2)C12—C13—C14—C150.9 (4)
C3—Cr1—N1—C596.82 (18)C12—C13—C14—C18178.7 (3)
N2—Cr1—N1—C55.70 (17)C13—C14—C15—C160.3 (4)
C2—Cr1—N1—C113.74 (19)C18—C14—C15—C16179.3 (3)
C1—Cr1—N1—C11145.4 (5)C14—C15—C16—C110.8 (4)
C4—Cr1—N1—C1181.0 (2)C14—C15—C16—C19178.0 (3)
C3—Cr1—N1—C1187.25 (18)C12—C11—C16—C151.3 (4)
N2—Cr1—N1—C11178.36 (18)N1—C11—C16—C15178.4 (2)
C2—Cr1—N2—C631.3 (6)C12—C11—C16—C19177.5 (2)
C1—Cr1—N2—C6169.63 (18)N1—C11—C16—C192.8 (4)
C4—Cr1—N2—C687.7 (2)C6—N2—C21—C2671.7 (3)
C3—Cr1—N2—C6105.99 (18)Cr1—N2—C21—C2696.8 (2)
N1—Cr1—N2—C63.00 (17)C6—N2—C21—C22109.7 (3)
C2—Cr1—N2—C21137.3 (5)Cr1—N2—C21—C2281.8 (2)
C1—Cr1—N2—C2121.80 (19)C26—C21—C22—C231.2 (4)
C4—Cr1—N2—C21103.68 (19)N2—C21—C22—C23177.4 (2)
C3—Cr1—N2—C2162.59 (18)C26—C21—C22—C27176.9 (2)
N1—Cr1—N2—C21165.58 (18)N2—C21—C22—C274.6 (4)
C11—N1—C5—C6176.19 (19)C21—C22—C23—C240.6 (4)
Cr1—N1—C5—C67.5 (3)C27—C22—C23—C24178.7 (3)
C21—N2—C6—C5169.4 (2)C22—C23—C24—C251.8 (4)
Cr1—N2—C6—C50.2 (3)C22—C23—C24—C28178.0 (3)
N1—C5—C6—N24.8 (3)C23—C24—C25—C261.2 (4)
C5—N1—C11—C1282.6 (3)C28—C24—C25—C26178.6 (3)
Cr1—N1—C11—C1293.3 (2)C24—C25—C26—C210.5 (4)
C5—N1—C11—C1697.7 (2)C24—C25—C26—C29179.6 (3)
Cr1—N1—C11—C1686.4 (2)C22—C21—C26—C251.7 (4)
C16—C11—C12—C130.7 (4)N2—C21—C26—C25176.8 (2)
N1—C11—C12—C13178.9 (2)C22—C21—C26—C29179.2 (3)
C16—C11—C12—C17178.2 (3)N2—C21—C26—C292.2 (4)
N1—C11—C12—C172.2 (4)

Experimental details

Crystal data
Chemical formula[Cr(C20H24N2)(CO)4]
Mr456.45
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)19.3119 (18), 7.5303 (7), 16.0769 (15)
β (°) 100.912 (2)
V3)2295.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.46 × 0.38 × 0.36
Data collection
DiffractometerAdapted Bruker (Siemens) P4
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.676, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
5784, 2708, 2689
Rint0.021
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.07
No. of reflections2708
No. of parameters286
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19
Absolute structureFlack (1983), 652 Friedel pairs
Absolute structure parameter0.018 (14)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXTL and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cr1—C21.860 (3)Cr1—C31.897 (3)
Cr1—C11.862 (2)Cr1—N22.0740 (19)
Cr1—C41.890 (3)Cr1—N12.0756 (18)
O1—C1—Cr1177.1 (2)O3—C3—Cr1172.0 (2)
O2—C2—Cr1179.8 (3)O4—C4—Cr1170.1 (3)
C1—Cr1—N2—C2121.80 (19)
 

Acknowledgements

Funding received for this work from the University of Pretoria and the Oppenheimer Memorial Fund is acknowledged.

References

First citationBaxter, P. N. W. & Connor, J. A. (1995). J. Organomet. Chem. 486, 115–121.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Version 3.6. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRuminski, R. R. & Wallace, I. (1987). Polyhedron, 6, 1673–1676.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds