metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m139-m140

Di­aqua­bis­­{1-[(1H-benzimidazol-2-yl)meth­yl]-1H-1,2,4-triazole-κN4}bis­­(2,4,5-tricarb­­oxy­benzoato-κO1)cadmium dihydrate

aSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China, bSchool of Environmental and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, People's Republic of China, and cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: mxr@zzu.edu.cn

(Received 22 December 2011; accepted 4 January 2012; online 11 January 2012)

In the title complex, [Cd(C10H5O8)2(C10H9N5)2(H2O)2]·2H2O, the CdII ion lies on an inversion center and is coordinated by two N atoms from two symmetry-related 1-[(1H-benzimidazol-2-yl)meth­yl]-1H-1,2,4-triazole ligands and two O atoms from two monodeprotonated 2,4,5-tricarb­oxy­benzoate anions in equatorial positions and by two water O atoms in axial positions, leading to a distorted octa­hedral environment. In the crystal, complex mol­ecules and solvent water mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network. Intra­molecular O—H⋯O hydrogen bonds are also present.

Related literature

For background information on complexes constructed from N-heterocyclic ligands and aromatic polycarboxyl­ate anions, see: Braverman et al. (2007[Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2007). J. Solid State Chem. 180, 1852-1862.]); Liu et al. (2010[Liu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct. 975, 154-159.]); Prajapati et al. (2009[Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600-608.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H5O8)2(C10H9N5)2(H2O)2]·2H2O

  • Mr = 1089.19

  • Triclinic, [P \overline 1]

  • a = 7.7005 (15) Å

  • b = 8.6131 (17) Å

  • c = 17.460 (3) Å

  • α = 75.98 (3)°

  • β = 82.55 (3)°

  • γ = 70.60 (3)°

  • V = 1058.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.892, Tmax = 0.913

  • 12522 measured reflections

  • 4987 independent reflections

  • 4758 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.05

  • 4987 reflections

  • 322 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.2933 (15)
Cd1—O9 2.3155 (17)
Cd1—N1 2.358 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.85 2.19 3.001 (3) 160
O5—H5⋯O6i 0.85 1.77 2.611 (3) 168
O7—H7⋯O4ii 0.85 1.66 2.465 (2) 156
O9—H9A⋯O8iii 0.85 2.01 2.844 (2) 167
O9—H9B⋯O2 0.85 1.94 2.688 (2) 147
O10—H10A⋯O8iv 0.85 2.05 2.887 (3) 169
O10—H10B⋯N4 0.85 2.21 2.704 (3) 117
N5—H5A⋯O8v 0.86 2.13 2.922 (3) 153
Symmetry codes: (i) -x, -y+3, -z+1; (ii) x-1, y+1, z; (iii) -x, -y+3, -z; (iv) x, y-1, z; (v) x+1, y-2, z.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A large number of CdII complexes constructed from N-heterocyclic and aromatic polycarboxylate ligands have been synthesized since CdII is able to coordinate simultaneously to both oxygen-containing and nitrogen-containing ligands. Some of the final products exhibit useful functional properties (Braverman et al., 2007; Liu et al., 2010; Prajapati et al., 2009). In order to further explore such compounds with new structures, we selected 1-((1H-benzimidazol-1-yl)methyl)-1H-1,2,4-triazole and 1,2,4,5-benzenetetracarboxylic acid as educts to self-assemble with Cd(NO3)2 and obtained the title complex, {[Cd(C10H5O8)2(C10H9N5)2(H2O)2] (H2O)2}, the crystal structure of which is reported herein.

The CdII ion lies on an inversion center and displays a slightly distorted octahedral geometry defined by atoms O1, O1A, N1, N1A from two 1-((1H-benzimidazol-1-yl)methyl)-1H-1,2,4-triazole ligands and two monodeprotonated 1,2,4,5-benzenetetracarboxylic acid anions in equatorial positions, and by atoms O9, O9A from water molecules in axial positions (Fig. 1). Intramolecular O—H···O hydrogen bonds between the carboxyl/carboxylate groups and between coordinating water molecules and carboxylate O atoms stabilize the molecular configuration, whereas O—H···O, O—H···N and N—H···O hydrogen bonds between carboxyl/carboxylate groups, between coordinating water molecules and carboxylate O atoms, between solvent water molecules and carboxylate O atoms, between imidazole groups and carboxylate O atoms and between solvent water molecules and imidazole N atoms of adjacent molecules consolidate the crystal packing (Fig. 2).

Related literature top

For background information on complexes constructed from N-heterocyclic ligands and aromatic polycarboxylate anions, see: Braverman et al. (2007); Liu et al. (2010); Prajapati et al. (2009).

Experimental top

A mixture of Cd(NO3)2 (0.05 mmol), 1-((1H-benzimidazol-1-yl)methyl)-1H-1,2,4-triazole (0.05 mmol) 1,2,4,5-benzenetetracarboxylic acid (0.05 mmol), methanol (2 ml) and water (8 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 393 K for 72 h, then cooled to room temperature. Colourless crystals were obtained from the evaporated filtrate and dried in air.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) Å and 0.97 (CH2) Å. H atoms bound to N and O atoms were found from difference maps and refined with ditance restraints of N—H = 0.86 Å and O—H = 0.85 Å. All H atoms were refined with Uiso(H) = 1.2 Ueq(C,N,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular struicture of the title complex showing the atom labelling with displacement ellipsoids drawn at the 30% probability level. [Symmetry code A) -x, -y + 2, -z.]
[Figure 2] Fig. 2. View of the crystal packing of the title complex, showing the three-dimensional structure stabilized by numerous hydrogen bonds.
Diaquabis{1-[(1H-benzimidazol-2-yl)methyl]-1H-1,2,4-triazole- κN4}bis(2,4,5-tricarboxybenzoato-κO1)cadmium dihydrate top
Crystal data top
[Cd(C10H5O8)2(C10H9N5)2(H2O)2]·2H2OZ = 1
Mr = 1089.19F(000) = 554
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7005 (15) ÅCell parameters from 3785 reflections
b = 8.6131 (17) Åθ = 2.4–27.9°
c = 17.460 (3) ŵ = 0.62 mm1
α = 75.98 (3)°T = 293 K
β = 82.55 (3)°Prism, colourless
γ = 70.60 (3)°0.19 × 0.18 × 0.15 mm
V = 1058.2 (3) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
4987 independent reflections
Radiation source: fine-focus sealed tube4758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1111
Tmin = 0.892, Tmax = 0.913l = 2221
12522 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.6556P]
where P = (Fo2 + 2Fc2)/3
4987 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Cd(C10H5O8)2(C10H9N5)2(H2O)2]·2H2Oγ = 70.60 (3)°
Mr = 1089.19V = 1058.2 (3) Å3
Triclinic, P1Z = 1
a = 7.7005 (15) ÅMo Kα radiation
b = 8.6131 (17) ŵ = 0.62 mm1
c = 17.460 (3) ÅT = 293 K
α = 75.98 (3)°0.19 × 0.18 × 0.15 mm
β = 82.55 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
4987 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
4758 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.913Rint = 0.023
12522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.66 e Å3
4987 reflectionsΔρmin = 0.65 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00001.00000.00000.01995 (7)
N10.2410 (2)0.7537 (2)0.04738 (11)0.0250 (4)
N20.5217 (3)0.6030 (2)0.09222 (12)0.0295 (4)
N30.4177 (2)0.5005 (2)0.09340 (11)0.0238 (4)
N40.4526 (3)0.3824 (2)0.25900 (11)0.0269 (4)
N50.6329 (3)0.1335 (2)0.24746 (12)0.0321 (4)
H5A0.69300.04850.22680.038*
O10.0272 (2)1.1045 (2)0.11147 (9)0.0285 (3)
O20.1184 (3)1.2920 (2)0.05454 (10)0.0385 (4)
O30.3379 (3)0.9741 (2)0.18617 (10)0.0397 (4)
H30.24960.99800.15630.048*
O40.3395 (3)0.9197 (2)0.31666 (10)0.0389 (4)
O50.0260 (4)1.3218 (2)0.46604 (11)0.0573 (6)
H50.03241.36380.50460.069*
O60.0760 (3)1.5906 (2)0.40745 (11)0.0558 (6)
O70.3986 (2)1.6650 (2)0.30619 (11)0.0410 (4)
H70.47071.76570.30020.049*
O80.2047 (2)1.78648 (19)0.22713 (10)0.0308 (3)
O90.2285 (2)1.1153 (2)0.06019 (9)0.0309 (4)
H9A0.23251.15430.10980.037*
H9B0.21151.19750.03830.037*
O100.1906 (3)0.6873 (2)0.23452 (12)0.0431 (4)
H10A0.07370.72780.23530.052*
H10B0.19480.59030.22950.052*
C10.0434 (3)1.2165 (3)0.11195 (12)0.0216 (4)
C20.2772 (3)1.0108 (3)0.24903 (13)0.0231 (4)
C30.0278 (3)1.4403 (3)0.40573 (13)0.0293 (5)
C40.2513 (3)1.6628 (3)0.26677 (12)0.0233 (4)
C50.0265 (3)1.2716 (2)0.18958 (11)0.0189 (4)
C60.1271 (3)1.1709 (2)0.25503 (12)0.0200 (4)
C70.0996 (3)1.2271 (3)0.32503 (12)0.0230 (4)
H7A0.16361.15780.36880.028*
C80.0216 (3)1.3844 (3)0.33102 (12)0.0219 (4)
C90.1177 (3)1.4889 (2)0.26518 (12)0.0201 (4)
C100.0942 (3)1.4299 (3)0.19571 (12)0.0205 (4)
H100.16091.49800.15240.025*
C110.4094 (3)0.7527 (3)0.06434 (13)0.0274 (4)
H110.44180.85040.05670.033*
C120.2522 (3)0.5920 (3)0.06641 (13)0.0248 (4)
H120.15900.54910.06160.030*
C130.4912 (3)0.3198 (3)0.12359 (13)0.0265 (4)
H13A0.60600.27530.09440.032*
H13B0.40480.26590.11530.032*
C140.5248 (3)0.2790 (3)0.20956 (13)0.0243 (4)
C150.5184 (4)0.2989 (3)0.33352 (14)0.0320 (5)
C160.4865 (5)0.3505 (4)0.40519 (16)0.0488 (7)
H160.40820.45640.41040.059*
C170.5784 (7)0.2342 (5)0.46774 (18)0.0706 (11)
H170.56170.26240.51690.085*
C180.6953 (7)0.0761 (5)0.4597 (2)0.0862 (15)
H180.75480.00260.50380.103*
C190.7268 (6)0.0237 (4)0.3894 (2)0.0657 (10)
H190.80500.08240.38450.079*
C200.6336 (4)0.1404 (3)0.32615 (15)0.0368 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02136 (11)0.02025 (12)0.01892 (11)0.00516 (8)0.00346 (7)0.00608 (8)
N10.0255 (9)0.0240 (9)0.0242 (9)0.0046 (7)0.0072 (7)0.0039 (7)
N20.0256 (9)0.0314 (10)0.0325 (10)0.0098 (8)0.0068 (8)0.0045 (8)
N30.0241 (9)0.0229 (9)0.0233 (9)0.0048 (7)0.0042 (7)0.0049 (7)
N40.0312 (10)0.0244 (9)0.0232 (9)0.0056 (8)0.0024 (7)0.0054 (7)
N50.0381 (11)0.0205 (9)0.0326 (10)0.0016 (8)0.0093 (9)0.0078 (8)
O10.0361 (8)0.0321 (8)0.0249 (8)0.0147 (7)0.0028 (6)0.0138 (7)
O20.0639 (12)0.0396 (10)0.0224 (8)0.0281 (9)0.0055 (8)0.0134 (7)
O30.0416 (10)0.0385 (10)0.0295 (9)0.0115 (8)0.0087 (7)0.0199 (8)
O40.0429 (10)0.0274 (9)0.0284 (9)0.0143 (7)0.0057 (7)0.0062 (7)
O50.1076 (18)0.0305 (10)0.0227 (9)0.0044 (11)0.0244 (10)0.0108 (8)
O60.1015 (18)0.0260 (9)0.0304 (9)0.0067 (10)0.0248 (11)0.0153 (8)
O70.0338 (9)0.0192 (8)0.0515 (11)0.0072 (7)0.0105 (8)0.0020 (8)
O80.0371 (9)0.0181 (7)0.0327 (8)0.0030 (7)0.0017 (7)0.0049 (6)
O90.0377 (9)0.0342 (9)0.0268 (8)0.0191 (7)0.0033 (7)0.0087 (7)
O100.0361 (10)0.0288 (9)0.0634 (13)0.0049 (8)0.0022 (9)0.0154 (9)
C10.0242 (10)0.0206 (10)0.0198 (9)0.0014 (8)0.0067 (8)0.0086 (8)
C20.0209 (9)0.0193 (10)0.0287 (11)0.0001 (8)0.0045 (8)0.0116 (8)
C30.0406 (13)0.0221 (10)0.0194 (10)0.0029 (9)0.0063 (9)0.0089 (8)
C40.0281 (10)0.0173 (10)0.0191 (9)0.0024 (8)0.0060 (8)0.0051 (8)
C50.0202 (9)0.0196 (9)0.0186 (9)0.0050 (8)0.0025 (7)0.0081 (8)
C60.0209 (9)0.0171 (9)0.0214 (9)0.0013 (8)0.0038 (7)0.0078 (8)
C70.0269 (10)0.0188 (10)0.0190 (9)0.0018 (8)0.0075 (8)0.0056 (8)
C80.0271 (10)0.0173 (9)0.0181 (9)0.0006 (8)0.0046 (8)0.0067 (8)
C90.0205 (9)0.0166 (9)0.0209 (9)0.0003 (7)0.0026 (7)0.0065 (8)
C100.0217 (9)0.0186 (9)0.0190 (9)0.0009 (8)0.0075 (7)0.0040 (8)
C110.0275 (11)0.0282 (11)0.0282 (11)0.0101 (9)0.0066 (9)0.0045 (9)
C120.0246 (10)0.0254 (10)0.0246 (10)0.0064 (8)0.0057 (8)0.0055 (8)
C130.0280 (11)0.0212 (10)0.0263 (11)0.0009 (8)0.0046 (8)0.0060 (8)
C140.0248 (10)0.0207 (10)0.0258 (10)0.0041 (8)0.0039 (8)0.0050 (8)
C150.0439 (14)0.0280 (12)0.0247 (11)0.0144 (10)0.0037 (10)0.0015 (9)
C160.080 (2)0.0409 (15)0.0287 (13)0.0232 (15)0.0006 (13)0.0085 (12)
C170.132 (4)0.061 (2)0.0241 (14)0.038 (2)0.0179 (18)0.0009 (14)
C180.154 (4)0.055 (2)0.0416 (19)0.024 (3)0.048 (2)0.0148 (16)
C190.102 (3)0.0344 (16)0.0494 (18)0.0056 (17)0.0356 (19)0.0053 (14)
C200.0507 (15)0.0271 (12)0.0311 (12)0.0107 (11)0.0137 (11)0.0008 (10)
Geometric parameters (Å, º) top
Cd1—O1i2.2933 (15)O10—H10A0.8500
Cd1—O12.2933 (15)O10—H10B0.8500
Cd1—O9i2.3154 (17)C1—C51.518 (3)
Cd1—O92.3155 (17)C2—C61.493 (3)
Cd1—N1i2.358 (2)C3—C81.486 (3)
Cd1—N12.358 (2)C4—C91.514 (3)
N1—C121.327 (3)C5—C101.392 (3)
N1—C111.364 (3)C5—C61.400 (3)
N2—C111.308 (3)C6—C71.387 (3)
N2—N31.371 (3)C7—C81.386 (3)
N3—C121.332 (3)C7—H7A0.9300
N3—C131.454 (3)C8—C91.399 (3)
N4—C141.329 (3)C9—C101.394 (3)
N4—C151.394 (3)C10—H100.9300
N5—C141.323 (3)C11—H110.9300
N5—C201.390 (3)C12—H120.9300
N5—H5A0.8600C13—C141.493 (3)
O1—C11.257 (3)C13—H13A0.9700
O2—C11.243 (3)C13—H13B0.9700
O3—C21.208 (3)C15—C201.385 (4)
O3—H30.8501C15—C161.393 (4)
O4—C21.299 (3)C16—C171.377 (4)
O5—C31.278 (3)C16—H160.9300
O5—H50.8504C17—C181.389 (6)
O6—C31.229 (3)C17—H170.9300
O7—C41.245 (3)C18—C191.374 (5)
O7—H70.8500C18—H180.9300
O8—C41.255 (3)C19—C201.390 (4)
O9—H9A0.8501C19—H190.9300
O9—H9B0.8499
O1i—Cd1—O1180.0C7—C6—C5119.85 (18)
O1i—Cd1—O9i93.80 (6)C7—C6—C2118.63 (18)
O1—Cd1—O9i86.20 (6)C5—C6—C2121.27 (18)
O1i—Cd1—O986.20 (6)C8—C7—C6121.30 (19)
O1—Cd1—O993.80 (6)C8—C7—H7A119.3
O9i—Cd1—O9180.000 (1)C6—C7—H7A119.4
O1i—Cd1—N1i93.81 (7)C7—C8—C9119.42 (18)
O1—Cd1—N1i86.19 (7)C7—C8—C3117.30 (18)
O9i—Cd1—N1i86.47 (7)C9—C8—C3122.97 (18)
O9—Cd1—N1i93.53 (7)C10—C9—C8119.14 (18)
O1i—Cd1—N186.19 (7)C10—C9—C4118.22 (18)
O1—Cd1—N193.81 (7)C8—C9—C4122.62 (18)
O9i—Cd1—N193.53 (7)C5—C10—C9121.59 (18)
O9—Cd1—N186.47 (7)C5—C10—H10119.2
N1i—Cd1—N1180.00 (9)C9—C10—H10119.2
C12—N1—C11103.37 (18)N2—C11—N1114.5 (2)
C12—N1—Cd1132.41 (15)N2—C11—H11122.7
C11—N1—Cd1124.19 (15)N1—C11—H11122.7
C11—N2—N3102.43 (17)N1—C12—N3109.49 (19)
C12—N3—N2110.17 (18)N1—C12—H12125.3
C12—N3—C13129.49 (19)N3—C12—H12125.3
N2—N3—C13120.31 (17)N3—C13—C14111.69 (18)
C14—N4—C15108.15 (19)N3—C13—H13A109.3
C14—N5—C20108.8 (2)C14—C13—H13A109.3
C14—N5—H5A125.6N3—C13—H13B109.3
C20—N5—H5A125.6C14—C13—H13B109.3
C1—O1—Cd1120.44 (14)H13A—C13—H13B107.9
C2—O3—H3109.5N5—C14—N4110.1 (2)
C3—O5—H5109.4N5—C14—C13124.4 (2)
C4—O7—H7109.5N4—C14—C13125.46 (19)
Cd1—O9—H9A120.9C20—C15—C16122.0 (2)
Cd1—O9—H9B103.5C20—C15—N4106.7 (2)
H9A—O9—H9B106.5C16—C15—N4131.3 (2)
H10A—O10—H10B95.5C17—C16—C15115.6 (3)
O2—C1—O1126.63 (19)C17—C16—H16122.2
O2—C1—C5116.63 (18)C15—C16—H16122.2
O1—C1—C5116.65 (18)C16—C17—C18122.1 (3)
O3—C2—O4123.89 (19)C16—C17—H17118.9
O3—C2—C6122.1 (2)C18—C17—H17118.9
O4—C2—C6113.95 (18)C19—C18—C17122.8 (3)
O6—C3—O5123.4 (2)C19—C18—H18118.6
O6—C3—C8121.3 (2)C17—C18—H18118.6
O5—C3—C8115.20 (19)C18—C19—C20115.4 (3)
O7—C4—O8127.6 (2)C18—C19—H19122.3
O7—C4—C9115.04 (19)C20—C19—H19122.3
O8—C4—C9117.30 (19)C15—C20—N5106.2 (2)
C10—C5—C6118.63 (18)C15—C20—C19122.2 (3)
C10—C5—C1118.31 (17)N5—C20—C19131.6 (3)
C6—C5—C1123.07 (17)
O1i—Cd1—N1—C1265.3 (2)C7—C8—C9—C4179.5 (2)
O1—Cd1—N1—C12114.7 (2)C3—C8—C9—C46.1 (3)
O9i—Cd1—N1—C1228.3 (2)O7—C4—C9—C10107.0 (2)
O9—Cd1—N1—C12151.7 (2)O8—C4—C9—C1071.0 (3)
N1i—Cd1—N1—C12147 (100)O7—C4—C9—C871.2 (3)
O1i—Cd1—N1—C11117.24 (18)O8—C4—C9—C8110.8 (2)
O1—Cd1—N1—C1162.76 (18)C6—C5—C10—C90.5 (3)
O9i—Cd1—N1—C11149.18 (17)C1—C5—C10—C9179.71 (19)
O9—Cd1—N1—C1130.82 (17)C8—C9—C10—C51.9 (3)
N1i—Cd1—N1—C1130 (100)C4—C9—C10—C5179.80 (19)
C11—N2—N3—C120.3 (2)N3—N2—C11—N10.1 (3)
C11—N2—N3—C13177.99 (19)C12—N1—C11—N20.1 (3)
O1i—Cd1—O1—C144 (100)Cd1—N1—C11—N2178.02 (15)
O9i—Cd1—O1—C1166.06 (16)C11—N1—C12—N30.2 (2)
O9—Cd1—O1—C113.94 (16)Cd1—N1—C12—N3177.62 (14)
N1i—Cd1—O1—C179.36 (16)N2—N3—C12—N10.3 (3)
N1—Cd1—O1—C1100.64 (16)C13—N3—C12—N1177.7 (2)
Cd1—O1—C1—O26.3 (3)C12—N3—C13—C14113.5 (2)
Cd1—O1—C1—C5177.03 (12)N2—N3—C13—C1464.4 (3)
O2—C1—C5—C1069.1 (3)C20—N5—C14—N40.3 (3)
O1—C1—C5—C10107.8 (2)C20—N5—C14—C13179.3 (2)
O2—C1—C5—C6110.6 (2)C15—N4—C14—N50.2 (3)
O1—C1—C5—C672.4 (3)C15—N4—C14—C13179.4 (2)
C10—C5—C6—C72.6 (3)N3—C13—C14—N5161.6 (2)
C1—C5—C6—C7177.66 (19)N3—C13—C14—N418.0 (3)
C10—C5—C6—C2171.46 (18)C14—N4—C15—C200.0 (3)
C1—C5—C6—C28.3 (3)C14—N4—C15—C16179.6 (3)
O3—C2—C6—C7162.3 (2)C20—C15—C16—C170.6 (4)
O4—C2—C6—C715.3 (3)N4—C15—C16—C17178.9 (3)
O3—C2—C6—C511.8 (3)C15—C16—C17—C180.1 (6)
O4—C2—C6—C5170.64 (19)C16—C17—C18—C190.5 (7)
C5—C6—C7—C82.3 (3)C17—C18—C19—C200.2 (7)
C2—C6—C7—C8171.9 (2)C16—C15—C20—N5179.8 (2)
C6—C7—C8—C90.2 (3)N4—C15—C20—N50.2 (3)
C6—C7—C8—C3174.0 (2)C16—C15—C20—C191.0 (5)
O6—C3—C8—C7154.1 (3)N4—C15—C20—C19178.6 (3)
O5—C3—C8—C723.7 (3)C14—N5—C20—C150.3 (3)
O6—C3—C8—C919.5 (4)C14—N5—C20—C19178.4 (3)
O5—C3—C8—C9162.7 (2)C18—C19—C20—C150.5 (5)
C7—C8—C9—C102.2 (3)C18—C19—C20—N5179.1 (4)
C3—C8—C9—C10175.7 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.852.193.001 (3)160
O5—H5···O6ii0.851.772.611 (3)168
O7—H7···O4iii0.851.662.465 (2)156
O9—H9A···O8iv0.852.012.844 (2)167
O9—H9B···O20.851.942.688 (2)147
O10—H10A···O8v0.852.052.887 (3)169
O10—H10B···N40.852.212.704 (3)117
N5—H5A···O8vi0.862.132.922 (3)153
Symmetry codes: (ii) x, y+3, z+1; (iii) x1, y+1, z; (iv) x, y+3, z; (v) x, y1, z; (vi) x+1, y2, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H5O8)2(C10H9N5)2(H2O)2]·2H2O
Mr1089.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7005 (15), 8.6131 (17), 17.460 (3)
α, β, γ (°)75.98 (3), 82.55 (3), 70.60 (3)
V3)1058.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.892, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
12522, 4987, 4758
Rint0.023
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.05
No. of reflections4987
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.65

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—O12.2933 (15)Cd1—N12.358 (2)
Cd1—O92.3155 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.852.193.001 (3)160.3
O5—H5···O6i0.851.772.611 (3)168.3
O7—H7···O4ii0.851.662.465 (2)156.0
O9—H9A···O8iii0.852.012.844 (2)166.6
O9—H9B···O20.851.942.688 (2)146.7
O10—H10A···O8iv0.852.052.887 (3)168.5
O10—H10B···N40.852.212.704 (3)117.3
N5—H5A···O8v0.862.132.922 (3)153.4
Symmetry codes: (i) x, y+3, z+1; (ii) x1, y+1, z; (iii) x, y+3, z; (iv) x, y1, z; (v) x+1, y2, z.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. J0830412).

References

First citationBraverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2007). J. Solid State Chem. 180, 1852–1862.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct. 975, 154–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m139-m140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds