metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(N,N-di­methyl­formamide-κO)zinc]-μ2-oxalato-κ4O1,O2:O1′,O2′]

aDepartment of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: leehi@knu.ac.kr

(Received 6 July 2011; accepted 28 July 2011; online 2 August 2011)

In the crystal structure of the title compound, [Zn(C2O4)(C3H7NO)2]n, the ZnII ion is situated on a twofold rotation axis and has a distorted octa­hedral coordination geometry defined by the O atoms of two dimethyl­formamide mol­ecules and four O atoms of two bidentate oxalate ligands. The oxalate anion is located on an inversion centre and bridges two metal ions, resulting in a polymeric structure with infinite zigzag chains extending parallel to [010].

Related literature

For related structures, see: Yao et al. (2007[Yao, H.-G., Ji, M., Zou, L.-J. & An, Y.-L. (2007). Acta Cryst. E63, m2535.]); van Albada et al. (2004[Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Acta Cryst. E60, m1160-m1162.]); Ghosh et al. (2004[Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495-5497.]); Evans & Lin (2001[Evans, O. R. & Lin, W. (2001). Cryst. Growth Des. 1, 9-11.]). For a general review on compounds with metal-organic framework structures, see: Czaja et al. (2009[Czaja, A. U., Trukhanb, N. & Műller, U. (2009). Chem. Soc. Rev. 38, 1284-1293.]). For the synthesis of the ligand, see: Yoneda et al. (1978[Yoneda, S., Kawase, T., Inabe, M. & Yoshida, Z.-I. (1978). J. Org. Chem. 43, 595-597.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2O4)(C3H7NO)2]

  • Mr = 299.58

  • Orthorhombic, P b n a

  • a = 7.795 (1) Å

  • b = 9.809 (1) Å

  • c = 15.421 (1) Å

  • V = 1179.1 (2) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.90000 Å

  • μ = 2.10 mm−1

  • T = 298 K

  • 0.14 × 0.10 × 0.09 mm

Data collection
  • ADSC Quantum210 diffractometer

  • Absorption correction: multi-scan (HKL-2000 SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.757, Tmax = 0.833

  • 839 measured reflections

  • 839 independent reflections

  • 778 reflections with I > 2σ(I)

  • θmax = 30.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.169

  • S = 1.09

  • 839 reflections

  • 81 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 2.101 (2)
Zn1—O1 2.104 (2)
Zn1—O3 2.134 (2)

Data collection: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal-organic frameworks (MOFs) have been widely investigated for their potential and/or practical applications in catalysis, gas storage, and many others fields (Czaja et al., 2009). We aimed at constructing a new functional MOF material using a conducting organic molecule, viz tetrathiafulvalene (TTF) functionalized with carboxylate groups, by the hydro(solvo)thermal method. During synthesis, we unexpectedly discovered a ZnII-oxalate coordination polymer, (I), forming an infinite one-dimensional zigzag chain. We are currently studying the detailed formation mechanism of the compound.

In the structure of compound (I), the ZnII ion lies on a 2-fold axis and is coordinated by four oxygen atoms of the two bridging oxalate groups and two oxygen atoms of DMF solvent molecules, resulting in a distorted octahedral geometry (Fig. 1). The Zn—Oox bond lengths are in the range of 2.101 (2) - 2.104 (2) Å and the Zn—ODMF bond length is 2.134 (2) Å. The bond angles about the ZnII ion range between 78.62 (8) and 98.81 (9)° for cis and between 163.08 (9) and 176.23 (11)° for the trans ligands (Table 1). The bond angle of Oox—Zn—Oox (78.62 (8)°) is smaller than that of ODMF—Zn—ODMF (86.53 (13)°) due to the five-membered chelate ring strain. The Zn—O bond lengths and the bond angles about ZnII are comparable to those of other reported Zn-oxalate coordination polymers (Yao et al., 2007; van Albada et al., 2004; Ghosh et al., 2004; Evans & Lin, 2001). The Zn-oxalate backbone has a zigzag shape with a Zn—Zn—Zn angle of 126.47 (2)° and a Zn—Zn distance of 5.493 (1) Å. The resulting one-dimensional zigzag chains run parallel to [010] and pack effectively through the inter-wedges of the coordinated DMF ligands (Fig. 2).

Related literature top

For related structures, see: Yao et al. (2007); van Albada et al. (2004); Ghosh et al. (2004); Evans & Lin (2001). For a general review on compounds with metal-organic framework structures, see: Czaja et al. (2009). For the synthesis of the ligand, see: Yoneda et al. (1978).

Experimental top

This experiment was originally intended for synthesis of compounds with metal-organic frameworks, consisting of ZnII ions and tetrathiafulvalene (TTF) functionalized with carboxylate groups [= bis(4-carboxy-1,3-dithiolidene) = 2COOH-TTF]. Bis(4-carboxy-1,3-dithiolidene) was prepared according to literature (Yoneda et al. 1978). 2COOH-TTF (0.050 g, 0.17 mmol) and 4,4-bipyridine (0.013 g, 0.098 mmol) were added to 12 ml DMF:H2O (5:1, v/v) solution of [Zn(NO3)2].6H2O (0.051 g, 0.17 mmol) to be stirred for 10 min. The mixture was sealed in a Pyrex test tube and stored at 358 K for 3 days. After cooled down to room temperature, the mixture was filtered and washed with ethanol. Colorless crystals suitable for X-ray analysis were obtained and were dried in air.

Refinement top

All C-bound H atoms were placed in geometrically idealized positions and refined using a riding model with Uiso = 1.5Ueq and C–H = 0.96 Å for CH3, and Uiso = 1.2Ueq and C–H = 0.93 Å for CH.

Computing details top

Data collection: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker Software, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Partial structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. All H atoms are omitted for clarity. Symmetry codes: (i) x, -y + 3/2, -z. (ii) -x, -y + 1, -z.
[Figure 2] Fig. 2. two-dimensional packing structure of the one-dimensional zigzag chains of the title compound viewing along the crystal z-direction (gray, Zn; black, C; red, O; blue, N) Dotted box represents the xy-plane of the unit cell and x-, y- directions are denoted by arrows at upper right corner.
catena-Poly[[bis(N,N-dimethylformamide-κO)zinc]- µ2-oxalato-κ4O1,O2:O1',O2'] top
Crystal data top
[Zn(C2O4)(C3H7NO)2]F(000) = 616
Mr = 299.58Dx = 1.688 Mg m3
Orthorhombic, PbnaSynchrotron radiation, λ = 0.90000 Å
Hall symbol: -P 2ac 2bCell parameters from 839 reflections
a = 7.795 (1) Åθ = 5.4–30.4°
b = 9.809 (1) ŵ = 2.10 mm1
c = 15.421 (1) ÅT = 298 K
V = 1179.1 (2) Å3Block, colourless
Z = 40.14 × 0.10 × 0.09 mm
Data collection top
ADSC Quantum210
diffractometer
839 independent reflections
Radiation source: 6BIMX-I synchroton beamlin PLS, KOREA778 reflections with I > 2σ(I)
Si111 double crystal monochromatorRint = 0.000
ϕ scansθmax = 30.4°, θmin = 5.4°
Absorption correction: multi-scan
(HKL-2000 SCALEPACK; Otwinowski & Minor, 1997)
h = 08
Tmin = 0.757, Tmax = 0.833k = 010
839 measured reflectionsl = 016
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1443P)2 + 0.1456P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
839 reflectionsΔρmax = 0.80 e Å3
81 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (9)
Crystal data top
[Zn(C2O4)(C3H7NO)2]V = 1179.1 (2) Å3
Mr = 299.58Z = 4
Orthorhombic, PbnaSynchrotron radiation, λ = 0.90000 Å
a = 7.795 (1) ŵ = 2.10 mm1
b = 9.809 (1) ÅT = 298 K
c = 15.421 (1) Å0.14 × 0.10 × 0.09 mm
Data collection top
ADSC Quantum210
diffractometer
839 independent reflections
Absorption correction: multi-scan
(HKL-2000 SCALEPACK; Otwinowski & Minor, 1997)
778 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.833Rint = 0.000
839 measured reflectionsθmax = 30.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.09Δρmax = 0.80 e Å3
839 reflectionsΔρmin = 0.82 e Å3
81 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.15869 (6)0.75000.00000.0503 (6)
O10.1498 (3)0.5678 (2)0.07184 (15)0.0600 (8)
O20.0220 (3)0.6367 (2)0.07091 (14)0.0592 (8)
O30.3580 (3)0.6927 (3)0.08757 (15)0.0599 (8)
N10.5920 (4)0.7617 (2)0.1613 (2)0.0541 (9)
C10.0497 (4)0.5204 (3)0.0417 (2)0.0498 (9)
C20.4708 (5)0.7774 (4)0.1043 (3)0.0559 (10)
H20.46860.85900.07370.067*
C30.6058 (5)0.6357 (4)0.2119 (2)0.0687 (11)
H3A0.68960.57690.18580.103*
H3B0.64030.65710.27010.103*
H3C0.49660.59050.21300.103*
C40.7261 (5)0.8631 (4)0.1751 (3)0.0741 (11)
H4A0.70630.94000.13790.111*
H4B0.72440.89240.23450.111*
H4C0.83580.82370.16200.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0436 (8)0.0500 (8)0.0573 (8)0.0000.0000.00088 (15)
O10.0572 (14)0.0566 (14)0.0661 (16)0.0077 (9)0.0120 (9)0.0045 (10)
O20.0611 (15)0.0539 (14)0.0626 (15)0.0058 (9)0.0082 (9)0.0082 (9)
O30.0538 (16)0.0587 (17)0.0672 (16)0.0041 (10)0.0109 (9)0.0060 (12)
N10.0432 (19)0.0546 (18)0.065 (2)0.0040 (10)0.0055 (18)0.0000 (10)
C10.0438 (14)0.0507 (17)0.055 (2)0.0013 (12)0.0012 (15)0.0008 (13)
C20.051 (2)0.0531 (17)0.063 (2)0.0038 (16)0.0031 (17)0.0021 (16)
C30.060 (2)0.074 (2)0.072 (2)0.0038 (16)0.0104 (18)0.0101 (17)
C40.057 (2)0.065 (2)0.101 (3)0.0029 (15)0.014 (2)0.0077 (18)
Geometric parameters (Å, º) top
Zn1—O22.101 (2)N1—C31.466 (4)
Zn1—O2i2.101 (2)C1—O1ii1.254 (4)
Zn1—O12.104 (2)C1—C1ii1.554 (6)
Zn1—O1i2.104 (2)C2—H20.9300
Zn1—O3i2.134 (2)C3—H3A0.9600
Zn1—O32.134 (2)C3—H3B0.9600
O1—C1ii1.254 (4)C3—H3C0.9600
O2—C11.246 (3)C4—H4A0.9600
O3—C21.237 (5)C4—H4B0.9600
N1—C21.299 (5)C4—H4C0.9600
N1—C41.458 (5)
O2—Zn1—O2i95.82 (14)C4—N1—C3116.4 (3)
O2—Zn1—O178.62 (8)O2—C1—O1ii127.3 (3)
O2i—Zn1—O198.81 (9)O2—C1—C1ii116.7 (3)
O2—Zn1—O1i98.81 (9)O1ii—C1—C1ii116.1 (3)
O2i—Zn1—O1i78.62 (8)O3—C2—N1125.3 (4)
O1—Zn1—O1i176.23 (11)O3—C2—H2117.3
O2—Zn1—O3i163.08 (9)N1—C2—H2117.3
O2i—Zn1—O3i91.12 (9)N1—C3—H3A109.5
O1—Zn1—O3i85.09 (9)N1—C3—H3B109.5
O1i—Zn1—O3i97.67 (9)H3A—C3—H3B109.5
O2—Zn1—O391.12 (9)N1—C3—H3C109.5
O2i—Zn1—O3163.08 (9)H3A—C3—H3C109.5
O1—Zn1—O397.67 (9)H3B—C3—H3C109.5
O1i—Zn1—O385.09 (9)N1—C4—H4A109.5
O3i—Zn1—O386.53 (13)N1—C4—H4B109.5
C1ii—O1—Zn1114.3 (2)H4A—C4—H4B109.5
C1—O2—Zn1114.36 (19)N1—C4—H4C109.5
C2—O3—Zn1118.2 (2)H4A—C4—H4C109.5
C2—N1—C4122.6 (3)H4B—C4—H4C109.5
C2—N1—C3120.9 (3)
O2—Zn1—O1—C1ii0.7 (2)O2i—Zn1—O3—C229.7 (5)
O2i—Zn1—O1—C1ii94.9 (2)O1—Zn1—O3—C2137.2 (3)
O3i—Zn1—O1—C1ii174.7 (2)O1i—Zn1—O3—C245.3 (3)
O3—Zn1—O1—C1ii88.9 (2)O3i—Zn1—O3—C252.7 (2)
O2i—Zn1—O2—C198.8 (2)Zn1—O2—C1—O1ii179.4 (3)
O1—Zn1—O2—C10.9 (2)Zn1—O2—C1—C1ii0.9 (4)
O1i—Zn1—O2—C1178.1 (2)Zn1—O3—C2—N1174.2 (3)
O3i—Zn1—O2—C115.0 (4)C4—N1—C2—O3177.0 (4)
O3—Zn1—O2—C196.7 (2)C3—N1—C2—O30.6 (6)
O2—Zn1—O3—C2144.1 (3)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2O4)(C3H7NO)2]
Mr299.58
Crystal system, space groupOrthorhombic, Pbna
Temperature (K)298
a, b, c (Å)7.795 (1), 9.809 (1), 15.421 (1)
V3)1179.1 (2)
Z4
Radiation typeSynchrotron, λ = 0.90000 Å
µ (mm1)2.10
Crystal size (mm)0.14 × 0.10 × 0.09
Data collection
DiffractometerADSC Quantum210
diffractometer
Absorption correctionMulti-scan
(HKL-2000 SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.757, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
839, 839, 778
Rint0.000
θmax (°)30.4
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.169, 1.09
No. of reflections839
No. of parameters81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.82

Computer programs: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker Software, 2007), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—O22.101 (2)Zn1—O32.134 (2)
Zn1—O12.104 (2)
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0024929). The authors acknowledge Professor Nam Ho Heo and Mr Jong Jin Kim for the data collection and the PAL for beamline use.

References

First citationAlbada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Acta Cryst. E60, m1160–m1162.  Web of Science CSD Google Scholar
First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationCrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationCzaja, A. U., Trukhanb, N. & Műller, U. (2009). Chem. Soc. Rev. 38, 1284–1293.  Web of Science CrossRef CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2001). Cryst. Growth Des. 1, 9–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H.-G., Ji, M., Zou, L.-J. & An, Y.-L. (2007). Acta Cryst. E63, m2535.  CSD CrossRef IUCr Journals Google Scholar
First citationYoneda, S., Kawase, T., Inabe, M. & Yoshida, Z.-I. (1978). J. Org. Chem. 43, 595–597.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds