metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m291-m292

Poly[[piperazine-1,4-dium [di­aqua­tetra­kis­(μ-sulfanediyldi­acetato)­dicerate(III)]] trihydrate]

aDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, bDepartment of Chemistry, One Shields Ave., University of California, Davis, CA, USA, and cFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: mghadermazi@yahoo.com

(Received 17 December 2010; accepted 21 January 2011; online 2 February 2011)

The title compound, (C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O, features a polymeric anion with a centrosymmetric Ce2O2 core and a Ce⋯Ce distance of 4.3625 (4) Å. The anions form ribbons {[Ce2(C4H4O4S)4(H2O)2]2−}n extending along [100]. The doubly protonated piperazinium cations reside on centers of inversion and link the polymeric ribbons via N—H⋯O hydrogen bonding. Each CeIII cation is ten-coordinated by an O2S donor set from two tridentate sulfanediyldiacetate (tda) ligands, one water mol­ecule and three other tda O donors from adjacent {Ce(tda)2(H2O)} units in a distorted bicapped cubic environment. Additional O—H⋯O hydrogen bonding involving the coordinated and solvent water mol­ecules is also present. H atoms of the crystal water molecules could not be located and were not included in the refinement.

Related literature

For the structure determination of a bis-sulfane­diyl­di­acetato­nickelate(II), see: Delaunay et al. (1976[Delaunay, J., Kappenstein, C. & Hugel, R. (1976). Acta Cryst. B32, 2341-2345.]). For a dinuclear sulfanediyldiacetato complex, see: Baggio et al. (1999[Baggio, R., Garland, M. T., Manzur, J., Peña, O., Perec, M., Spodine, E. & Vega, A. (1999). Inorg. Chim. Acta, 286, 74-79.]). For an example with a solely bidentate coordination mode of the sulfanediyldiacetato ligand, see: Marek et al. (2003[Marek, J., Trávníček, Z. & Kopel, P. (2003). Acta Cryst. C59, m429-m431.]). For bond-valence-sum calculations, see: Zhang et al. (2004[Zhang, C., Howell, R. C., Scotland, K. B., Perez, F. G., Todaro, L. & Francesconi, L. C. (2004). Inorg. Chem. 43, 7691-7701.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O

  • Mr = 1051.00

  • Triclinic, [P \overline 1]

  • a = 6.4361 (7) Å

  • b = 11.1135 (12) Å

  • c = 12.5627 (14) Å

  • α = 96.693 (4)°

  • β = 104.646 (3)°

  • γ = 101.192 (3)°

  • V = 839.76 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 90 K

  • 0.25 × 0.22 × 0.05 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.520, Tmax = 0.864

  • 11816 measured reflections

  • 4482 independent reflections

  • 4433 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.11

  • 4482 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.79 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—S1 3.2903 (6)
Ce1—S2 3.1445 (6)
Ce1—O1 2.5359 (15)
Ce1—O4 2.5069 (14)
Ce1—O5 2.4278 (14)
Ce1—O7 2.5117 (15)
Ce1—O8i 2.5024 (15)
Ce1—O3ii 2.6137 (16)
Ce1—O4ii 2.6542 (15)
Ce1—O9 2.6644 (15)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O7i 0.82 (2) 2.00 (2) 2.793 (2) 163 (3)
O9—H9D⋯O1ii 0.83 (2) 1.92 (2) 2.729 (2) 167 (3)
N1—H1A⋯O6iii 0.92 1.84 2.732 (2) 162
N1—H1B⋯O9iv 0.92 2.10 2.988 (2) 161
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y+1, z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiodiacetic acid is one class of dicarboxylic acid ligands that has been used for construction of coordination polymers. It is a versatile complexing agent with one sulfur and two oxygen donor atoms and can strongly complex metal ions. Although the structural study of sulfanediyldiacetate-transition metal compounds was initiated several decades ago (Delaunay, et al., 1976), interest in the structural aspects of sulfanediyldiacetate compounds has remarkably increased in recent years, and many structures with d- and f-block metals are known to date. The ligand is usually tridentate, but at least one Mn(II) complex has been reported in which it is solely bidentate where the thioether S atom is not involved in bonding to the metal (Marek et al., 2003). The ligand can be simply chelating or is involved in both bridging and chelating modes to give rise to dinuclear complexes (Baggio et al., 1999).

The crystal structure of {(C4H12N2)[Ce(C4H4O4S)2(H2O)]2.3H2O}n or {[(pipzH2)[Ce(tda)2(H2O)]2.3H2O}n, where tda = [S(CH2COO)2]2-, sulfanediyldiacetate, and pipzH2 is doubly protonated piperazine, is composed of a polymeric dinuclear anion [Ce(tda)2(H2O)]22-, [pipzH2]2+ cations, and three water molecules of hydration. The components of the structure are shown in Fig. 1. The sulfanediyldiacetate group involving S1 behaves as both a tridentate chelating ligand and a bridging ligand to form a centrosymmetric dimer. The Ce1···Ce1i (i = 1 - x, 1 - y, -z) distance is 4.3625 (4) Å. The sulfanediyldiacetate ligand involving S2 is also a tridentate chelating ligand while its oxygen, O8, coordinates to the Ce of an adjoining dimer and propagates the structure as a coordination polymer parallel to [100] (Fig. 2). The more distant Ce1iii (iii = 1 + x, y, z) is 6.4361 (7) Å away from Ce1. The local coordination of the CeIII cations consists of two thioethers (S1 and S2) and four O atoms (O1, O4, O5 and O7) from two chelating sulfanediyldiacetate groups, three oxygen atoms (O3, O4 and O8) of the carboxylate moieties from other sulfanediyldiacetate groups, and one oxygen atom from the coordinated water molecule (O9), resulting in an S2O8 distorted bicapped cubic environment. The Ce—O and Ce—S distances are normal and are gathered in Table 1. Bond valence sum calculations (Zhang et al., 2004) yield a value of 2.9, in agreement with the oxidation state +III for the cerium atom. The [pipzH2]2+ cations and water molecules are further engaged in hydrogen bonding between polymeric units (Table 2). Although the H atoms of the uncoordinated water molecules could not be located, O···O contacts between 2.58 and 2.86 Å suggest that these molecules also participate in O—H···O hydrogen bonding.

Related literature top

For the structure determination of a bis-sulfanediyldiacetatonickelate(II), see: Delaunay et al. (1976). For a dinuclear sulfanediyldiacetato complex, see: Baggio et al. (1999). For an example with a solely bidentate coordination mode of the sulfanediyldiacetato ligand, see: Marek et al. (2003). For bond-valence-sum calculations, see: Zhang et al. (2004).

Experimental top

The title compound was prepared by mixing two solutions containing 1.5 g (10 mmol) of 2,2'-thiodiacetic acid in 10 ml THF and 0.86 g (10 mmol) piperazine in 10 ml THF. A white precipitate was obtained after evaporating the solvent. An aqueous solution containing 0.34 g (1.5 mmol) of the obtained ion pair in 20 ml water was added dropwise to 0.21 g (0.5 mmol) Ce(NO3)3.6H2O in 15 ml water. After 60 min stirring and heating to 303 K, the solution became clear. Yellow crystals of the title compound were obtained after allowing the mixture to stand for 3 weeks at room temperature to evaporate the solvent.

Refinement top

The C-bound and N-bound hydrogen atoms were placed at calculated positions (C—H 0.99 Å, N—H 0.92 Å) and were treated as riding on their parent atoms with U(H) set to 1.2 Ueq(C). The hydrogen atoms bonded to the coordinated water were located in a difference Fourier map and were refined with distance restraints of O—H 0.83 (2) Å and H···H 1.34 (4) Å and their isotropic displacement parameters allowed to refine. There are two sites for water moleculess of hydration. One of the hydrate molecules is disordered with respect to a center of symmetry and was kept at 0.5 occupancy and refined with an isotropic displacement parameter. Hydrogen atoms bonded to the water molecules of crystallisation could not be reliably located and were eventually omitted from the refinement. The highest peak in the final difference map is 0.83 Å from Ce1 and the largest hole is 0.87 Å from the same atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are removed for clarity except those bonded to the piperazine N atoms and the coordinated water molecule. Hydrogen atoms are drawn as spheres of arbitrary radius. Atoms that indicate the propagation of the coordination polymer are shown. Symmetry codes: i = 1 - x, 1 - y, -z; ii = x - 1, y z; iii = 1 + x, y, z; iv = -x, 1 - y, -z; v = -x, 2 - y, -z.
[Figure 2] Fig. 2. A view down [100] of the polymeric structure.
Poly[[piperazine-1,4-dium [diaquatetrakis(µ-sulfanediyldiacetato)dicerate(III)]] trihydrate] top
Crystal data top
(C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2OZ = 1
Mr = 1051.00F(000) = 520
Triclinic, P1Dx = 2.078 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4361 (7) ÅCell parameters from 9880 reflections
b = 11.1135 (12) Åθ = 2.7–31.5°
c = 12.5627 (14) ŵ = 3.01 mm1
α = 96.693 (4)°T = 90 K
β = 104.646 (3)°Plate, colourless
γ = 101.192 (3)°0.25 × 0.22 × 0.05 mm
V = 839.76 (16) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4482 independent reflections
Radiation source: fine-focus sealed tube4433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3 pixels mm-1θmax = 29.1°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.520, Tmax = 0.864l = 1717
11816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.9355P]
where P = (Fo2 + 2Fc2)/3
4482 reflections(Δ/σ)max = 0.002
229 parametersΔρmax = 1.79 e Å3
3 restraintsΔρmin = 1.81 e Å3
Crystal data top
(C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2Oγ = 101.192 (3)°
Mr = 1051.00V = 839.76 (16) Å3
Triclinic, P1Z = 1
a = 6.4361 (7) ÅMo Kα radiation
b = 11.1135 (12) ŵ = 3.01 mm1
c = 12.5627 (14) ÅT = 90 K
α = 96.693 (4)°0.25 × 0.22 × 0.05 mm
β = 104.646 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
4482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4433 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.864Rint = 0.021
11816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.79 e Å3
4482 reflectionsΔρmin = 1.81 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.572270 (15)0.396056 (9)0.136487 (8)0.00772 (4)
S10.50618 (8)0.61593 (5)0.31570 (4)0.01299 (10)
S20.81761 (8)0.37549 (4)0.38182 (4)0.01047 (9)
O10.8397 (2)0.60785 (14)0.18806 (12)0.0126 (3)
O20.9817 (3)0.81191 (14)0.24661 (13)0.0155 (3)
O30.4131 (3)0.75180 (14)0.03785 (13)0.0150 (3)
O40.3790 (2)0.55553 (13)0.05890 (12)0.0116 (3)
O50.5613 (2)0.18686 (13)0.17676 (12)0.0121 (3)
O60.5126 (3)0.02205 (15)0.25991 (14)0.0204 (3)
O70.9607 (2)0.36963 (14)0.16697 (12)0.0128 (3)
O81.2946 (2)0.33740 (14)0.24070 (12)0.0118 (3)
O90.1631 (2)0.30107 (14)0.00472 (12)0.0118 (3)
H9C0.092 (5)0.329 (3)0.043 (2)0.024 (8)*
H9D0.146 (6)0.332 (3)0.052 (2)0.034 (9)*
N10.1458 (3)0.94944 (16)0.08009 (15)0.0121 (3)
H1A0.27610.95850.13490.015*
H1B0.06610.86870.07010.015*
C10.7895 (4)0.7018 (2)0.35817 (17)0.0144 (4)
H1C0.80040.78680.39650.017*
H1D0.87950.66010.41160.017*
C20.8790 (3)0.70996 (19)0.25730 (16)0.0117 (3)
C30.3913 (4)0.7073 (2)0.21616 (18)0.0174 (4)
H3A0.23540.70200.21510.021*
H3B0.47160.79550.24290.021*
C40.3986 (3)0.67031 (19)0.09779 (16)0.0114 (3)
C50.6813 (4)0.2163 (2)0.37811 (18)0.0164 (4)
H5A0.78990.17610.42230.020*
H5B0.56350.21720.41560.020*
C60.5786 (3)0.13566 (19)0.26210 (17)0.0126 (4)
C71.0804 (3)0.3580 (2)0.36422 (17)0.0159 (4)
H7A1.19620.42740.41510.019*
H7B1.10770.27990.38950.019*
C81.1111 (3)0.35473 (17)0.24746 (16)0.0100 (3)
C90.0173 (3)1.03697 (19)0.11667 (17)0.0134 (4)
H9A0.10711.12350.13280.016*
H9B0.01691.01730.18610.016*
C100.1952 (3)1.02600 (19)0.02648 (17)0.0133 (4)
H10A0.29030.94130.01460.016*
H10B0.27571.08670.05020.016*
O100.0974 (4)0.0278 (2)0.41702 (19)0.0388 (5)
O110.4926 (7)0.0607 (4)0.5455 (3)0.0312 (8)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00901 (6)0.00557 (6)0.00889 (6)0.00190 (4)0.00262 (4)0.00197 (4)
S10.0153 (2)0.0122 (2)0.0120 (2)0.00179 (17)0.00535 (18)0.00315 (17)
S20.0117 (2)0.0087 (2)0.0111 (2)0.00170 (16)0.00410 (16)0.00140 (16)
O10.0135 (7)0.0103 (6)0.0125 (6)0.0009 (5)0.0036 (5)0.0009 (5)
O20.0177 (7)0.0109 (7)0.0174 (7)0.0011 (5)0.0058 (6)0.0022 (5)
O30.0214 (7)0.0108 (7)0.0148 (7)0.0063 (6)0.0060 (6)0.0038 (5)
O40.0133 (6)0.0093 (6)0.0130 (6)0.0045 (5)0.0034 (5)0.0028 (5)
O50.0146 (7)0.0089 (6)0.0132 (6)0.0033 (5)0.0038 (5)0.0032 (5)
O60.0244 (8)0.0098 (7)0.0199 (8)0.0015 (6)0.0035 (6)0.0060 (6)
O70.0130 (6)0.0150 (7)0.0124 (6)0.0052 (5)0.0045 (5)0.0045 (5)
O80.0112 (6)0.0116 (6)0.0135 (6)0.0029 (5)0.0045 (5)0.0030 (5)
O90.0143 (7)0.0103 (6)0.0115 (6)0.0027 (5)0.0048 (5)0.0023 (5)
N10.0129 (8)0.0080 (7)0.0144 (8)0.0024 (6)0.0016 (6)0.0027 (6)
C10.0165 (9)0.0130 (9)0.0118 (9)0.0006 (7)0.0033 (7)0.0007 (7)
C20.0108 (8)0.0120 (9)0.0112 (8)0.0022 (7)0.0018 (7)0.0015 (7)
C30.0234 (10)0.0202 (10)0.0123 (9)0.0137 (8)0.0049 (8)0.0025 (7)
C40.0103 (8)0.0123 (9)0.0118 (8)0.0047 (7)0.0020 (7)0.0021 (7)
C50.0209 (10)0.0105 (9)0.0132 (9)0.0015 (7)0.0010 (8)0.0056 (7)
C60.0114 (8)0.0096 (8)0.0160 (9)0.0026 (7)0.0015 (7)0.0036 (7)
C70.0112 (9)0.0255 (11)0.0114 (9)0.0052 (8)0.0033 (7)0.0031 (8)
C80.0123 (8)0.0048 (8)0.0128 (8)0.0011 (6)0.0041 (7)0.0010 (6)
C90.0172 (9)0.0098 (8)0.0132 (9)0.0041 (7)0.0037 (7)0.0014 (7)
C100.0144 (9)0.0114 (9)0.0154 (9)0.0039 (7)0.0055 (7)0.0027 (7)
O100.0566 (14)0.0248 (10)0.0376 (11)0.0073 (9)0.0213 (10)0.0010 (8)
Geometric parameters (Å, º) top
Ce1—S13.2903 (6)O9—H9D0.825 (18)
Ce1—S23.1445 (6)N1—C10iii1.495 (3)
Ce1—O12.5359 (15)N1—C91.497 (3)
Ce1—O42.5069 (14)N1—H1A0.9200
Ce1—O52.4278 (14)N1—H1B0.9200
Ce1—O72.5117 (15)C1—C21.524 (3)
Ce1—O8i2.5024 (15)C1—H1C0.9900
Ce1—O3ii2.6137 (16)C1—H1D0.9900
Ce1—O4ii2.6542 (15)C3—C41.511 (3)
Ce1—O92.6644 (15)C3—H3A0.9900
S1—C11.798 (2)C3—H3B0.9900
S1—C31.806 (2)C5—C61.531 (3)
S2—C71.804 (2)C5—H5A0.9900
S2—C51.805 (2)C5—H5B0.9900
O1—C21.287 (2)C7—C81.526 (3)
O2—C21.236 (3)C7—H7A0.9900
O3—C41.248 (2)C7—H7B0.9900
O4—C41.282 (2)C9—C101.513 (3)
O5—C61.262 (2)C9—H9A0.9900
O6—C61.246 (3)C9—H9B0.9900
O7—C81.262 (2)C10—H10A0.9900
O8—C81.255 (2)C10—H10B0.9900
O9—H9C0.817 (17)
O5—Ce1—O8i69.44 (5)C8—O7—Ce1136.54 (13)
O5—Ce1—O4150.35 (5)C8—O8—Ce1iv140.41 (13)
O8i—Ce1—O491.13 (5)Ce1—O9—H9C101 (2)
O5—Ce1—O774.48 (5)Ce1—O9—H9D109 (3)
O8i—Ce1—O7131.20 (5)H9C—O9—H9D108 (3)
O4—Ce1—O7133.20 (5)C10iii—N1—C9111.17 (15)
O5—Ce1—O1138.75 (5)C10iii—N1—H1A109.4
O8i—Ce1—O1121.49 (5)C9—N1—H1A109.4
O4—Ce1—O170.37 (5)C10iii—N1—H1B109.4
O7—Ce1—O170.20 (5)C9—N1—H1B109.4
O5—Ce1—O3ii69.93 (5)H1A—N1—H1B108.0
O8i—Ce1—O3ii121.93 (5)C2—C1—S1110.59 (14)
O4—Ce1—O3ii105.26 (5)C2—C1—H1C109.5
O7—Ce1—O3ii71.75 (5)S1—C1—H1C109.5
O1—Ce1—O3ii116.48 (5)C2—C1—H1D109.5
O5—Ce1—O4ii119.23 (5)S1—C1—H1D109.5
O8i—Ce1—O4ii144.10 (5)H1C—C1—H1D108.1
O4—Ce1—O4ii64.63 (6)O2—C2—O1124.50 (19)
O7—Ce1—O4ii82.62 (5)O2—C2—C1119.06 (18)
O1—Ce1—O4ii76.75 (5)O1—C2—C1116.43 (18)
O3ii—Ce1—O4ii49.44 (5)C4—C3—S1115.90 (15)
O5—Ce1—O985.38 (5)C4—C3—H3A108.3
O8i—Ce1—O966.23 (5)S1—C3—H3A108.3
O4—Ce1—O965.95 (5)C4—C3—H3B108.3
O7—Ce1—O9141.72 (5)S1—C3—H3B108.3
O1—Ce1—O9135.87 (5)H3A—C3—H3B107.4
O3ii—Ce1—O970.84 (5)O3—C4—O4121.12 (19)
O4ii—Ce1—O979.35 (5)O3—C4—C3119.05 (19)
O5—Ce1—S263.64 (4)O4—C4—C3119.73 (18)
O8i—Ce1—S270.54 (4)C6—C5—S2116.14 (15)
O4—Ce1—S2132.01 (3)C6—C5—H5A108.3
O7—Ce1—S264.42 (3)S2—C5—H5A108.3
O1—Ce1—S282.04 (4)C6—C5—H5B108.3
O3ii—Ce1—S2122.24 (4)S2—C5—H5B108.3
O4ii—Ce1—S2145.36 (3)H5A—C5—H5B107.4
O9—Ce1—S2133.47 (3)O6—C6—O5124.6 (2)
C4ii—Ce1—S2139.09 (4)O6—C6—C5116.06 (18)
O5—Ce1—S1120.96 (4)O5—C6—C5119.27 (18)
O8i—Ce1—S162.01 (4)C8—C7—S2117.92 (15)
O4—Ce1—S162.43 (4)C8—C7—H7A107.8
O7—Ce1—S1115.38 (4)S2—C7—H7A107.8
O1—Ce1—S160.23 (4)C8—C7—H7B107.8
O3ii—Ce1—S1167.65 (3)S2—C7—H7B107.8
O4ii—Ce1—S1119.75 (3)H7A—C7—H7B107.2
O9—Ce1—S1102.88 (3)O8—C8—O7124.80 (19)
C4ii—Ce1—S1144.33 (4)O8—C8—C7114.35 (17)
S2—Ce1—S169.898 (14)O7—C8—C7120.85 (18)
C1—S1—C399.14 (11)N1—C9—C10110.34 (16)
C1—S1—Ce195.72 (7)N1—C9—H9A109.6
C3—S1—Ce197.65 (7)C10—C9—H9A109.6
C7—S2—C5101.63 (11)N1—C9—H9B109.6
C7—S2—Ce1100.18 (7)C10—C9—H9B109.6
C5—S2—Ce197.24 (7)H9A—C9—H9B108.1
C2—O1—Ce1138.15 (13)N1iii—C10—C9110.03 (17)
C4—O3—Ce1ii95.97 (12)N1iii—C10—H10A109.7
C4—O4—Ce1131.30 (13)C9—C10—H10A109.7
C4—O4—Ce1ii93.20 (12)N1iii—C10—H10B109.7
Ce1—O4—Ce1ii115.37 (5)C9—C10—H10B109.7
C6—O5—Ce1136.68 (13)H10A—C10—H10B108.2
O5—Ce1—S1—C1108.05 (8)O1—Ce1—O4—Ce1ii84.25 (6)
O8i—Ce1—S1—C1146.53 (8)O3ii—Ce1—O4—Ce1ii28.92 (7)
O4—Ce1—S1—C1105.85 (8)O4ii—Ce1—O4—Ce1ii0.0
O7—Ce1—S1—C121.53 (8)O9—Ce1—O4—Ce1ii89.30 (6)
O1—Ce1—S1—C123.78 (8)S2—Ce1—O4—Ce1ii142.97 (3)
O3ii—Ce1—S1—C1101.58 (18)S1—Ce1—O4—Ce1ii150.14 (7)
O4ii—Ce1—S1—C174.64 (8)O8i—Ce1—O5—C653.69 (19)
O9—Ce1—S1—C1159.61 (8)O4—Ce1—O5—C6105.6 (2)
S2—Ce1—S1—C168.49 (7)O7—Ce1—O5—C692.87 (19)
O5—Ce1—S1—C3151.90 (9)O1—Ce1—O5—C661.1 (2)
O8i—Ce1—S1—C3113.42 (9)O3ii—Ce1—O5—C6168.7 (2)
O4—Ce1—S1—C35.79 (9)O4ii—Ce1—O5—C6164.92 (18)
O7—Ce1—S1—C3121.59 (9)O9—Ce1—O5—C6120.01 (19)
O1—Ce1—S1—C376.28 (9)S2—Ce1—O5—C624.12 (18)
O3ii—Ce1—S1—C31.53 (19)S1—Ce1—O5—C617.8 (2)
O4ii—Ce1—S1—C325.42 (9)O5—Ce1—O7—C865.42 (18)
O9—Ce1—S1—C359.56 (9)O8i—Ce1—O7—C822.1 (2)
S2—Ce1—S1—C3168.54 (8)O4—Ce1—O7—C8127.01 (18)
O5—Ce1—S2—C784.51 (9)O1—Ce1—O7—C892.90 (19)
O8i—Ce1—S2—C7160.59 (9)O3ii—Ce1—O7—C8138.95 (19)
O4—Ce1—S2—C7126.28 (9)O4ii—Ce1—O7—C8171.42 (19)
O7—Ce1—S2—C70.10 (9)O9—Ce1—O7—C8126.28 (18)
O1—Ce1—S2—C771.91 (9)S2—Ce1—O7—C82.38 (17)
O3ii—Ce1—S2—C744.46 (9)S1—Ce1—O7—C851.92 (19)
O4ii—Ce1—S2—C719.46 (10)C3—S1—C1—C256.27 (16)
O9—Ce1—S2—C7138.09 (9)Ce1—S1—C1—C242.45 (15)
S1—Ce1—S2—C7133.04 (8)Ce1—O1—C2—O2159.61 (15)
O5—Ce1—S2—C518.75 (9)Ce1—O1—C2—C120.0 (3)
O8i—Ce1—S2—C557.33 (9)S1—C1—C2—O2132.49 (17)
O4—Ce1—S2—C5130.46 (9)S1—C1—C2—O147.1 (2)
O7—Ce1—S2—C5103.36 (9)C1—S1—C3—C487.74 (18)
O1—Ce1—S2—C5175.16 (9)Ce1—S1—C3—C49.35 (18)
O3ii—Ce1—S2—C558.80 (9)Ce1ii—O3—C4—O45.3 (2)
O4ii—Ce1—S2—C5122.72 (10)Ce1ii—O3—C4—C3178.13 (16)
O9—Ce1—S2—C534.83 (9)Ce1—O4—C4—O3133.58 (17)
S1—Ce1—S2—C5123.70 (8)Ce1ii—O4—C4—O35.2 (2)
O5—Ce1—O1—C297.7 (2)Ce1—O4—C4—C349.9 (3)
O8i—Ce1—O1—C23.5 (2)Ce1ii—O4—C4—C3178.26 (17)
O4—Ce1—O1—C275.31 (19)Ce1—O4—C4—Ce1ii128.35 (15)
O7—Ce1—O1—C2130.4 (2)S1—C3—C4—O3150.05 (17)
O3ii—Ce1—O1—C2173.03 (18)S1—C3—C4—O433.4 (3)
O4ii—Ce1—O1—C2142.8 (2)C7—S2—C5—C679.97 (18)
O9—Ce1—O1—C283.8 (2)Ce1—S2—C5—C622.04 (17)
S2—Ce1—O1—C264.81 (19)Ce1—O5—C6—O6160.71 (16)
S1—Ce1—O1—C26.54 (18)Ce1—O5—C6—C517.5 (3)
O5—Ce1—O4—C4135.03 (17)S2—C5—C6—O6170.16 (17)
O8i—Ce1—O4—C487.52 (17)S2—C5—C6—O511.5 (3)
O7—Ce1—O4—C469.76 (19)C5—S2—C7—C898.32 (18)
O1—Ce1—O4—C435.69 (17)Ce1—S2—C7—C81.33 (17)
O3ii—Ce1—O4—C4148.85 (17)Ce1iv—O8—C8—O732.5 (3)
O4ii—Ce1—O4—C4119.94 (19)Ce1iv—O8—C8—C7146.95 (16)
O9—Ce1—O4—C4150.77 (18)Ce1—O7—C8—O8176.41 (13)
S2—Ce1—O4—C423.04 (19)Ce1—O7—C8—C74.1 (3)
S1—Ce1—O4—C430.20 (16)S2—C7—C8—O8177.31 (15)
O5—Ce1—O4—Ce1ii105.03 (10)S2—C7—C8—O73.2 (3)
O8i—Ce1—O4—Ce1ii152.54 (6)C10iii—N1—C9—C1057.6 (2)
O7—Ce1—O4—Ce1ii50.18 (9)N1—C9—C10—N1iii57.0 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9C···O7i0.82 (2)2.00 (2)2.793 (2)163 (3)
O9—H9D···O1ii0.83 (2)1.92 (2)2.729 (2)167 (3)
N1—H1A···O6v0.921.842.732 (2)162
N1—H1B···O9vi0.922.102.988 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (v) x, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O
Mr1051.00
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)6.4361 (7), 11.1135 (12), 12.5627 (14)
α, β, γ (°)96.693 (4), 104.646 (3), 101.192 (3)
V3)839.76 (16)
Z1
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.25 × 0.22 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.520, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
11816, 4482, 4433
Rint0.021
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.11
No. of reflections4482
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.79, 1.81

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ce1—S13.2903 (6)Ce1—O72.5117 (15)
Ce1—S23.1445 (6)Ce1—O8i2.5024 (15)
Ce1—O12.5359 (15)Ce1—O3ii2.6137 (16)
Ce1—O42.5069 (14)Ce1—O4ii2.6542 (15)
Ce1—O52.4278 (14)Ce1—O92.6644 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9C···O7i0.817 (17)2.001 (18)2.793 (2)163 (3)
O9—H9D···O1ii0.825 (18)1.918 (18)2.729 (2)167 (3)
N1—H1A···O6iii0.921.842.732 (2)162
N1—H1B···O9iv0.922.102.988 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

MMO thanks the University of California, Davis, for the purchase of the X-ray diffractometer. Financial support from University of Kurdistan, Sanandaj, is gratefully acknowledged.

References

First citationBaggio, R., Garland, M. T., Manzur, J., Peña, O., Perec, M., Spodine, E. & Vega, A. (1999). Inorg. Chim. Acta, 286, 74–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelaunay, J., Kappenstein, C. & Hugel, R. (1976). Acta Cryst. B32, 2341–2345.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMarek, J., Trávníček, Z. & Kopel, P. (2003). Acta Cryst. C59, m429–m431.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Howell, R. C., Scotland, K. B., Perez, F. G., Todaro, L. & Francesconi, L. C. (2004). Inorg. Chem. 43, 7691–7701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m291-m292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds