inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Scheelite-type NaDy(WO4)2

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 1 December 2009; accepted 4 December 2009; online 12 December 2009)

The title compound sodium dysprosium(III) bis­[tungs­tate(VI)], NaDy(WO4)2, has been synthesized under high temperature solution growth (HTSG) conditions in air. The compound crystallizes with the scheelite structure and is composed of isolated WO4 tetra­hedra ([\overline{4}] symmetry) with one set of bond lengths and distorted [(Na/Dy)O8] dodeca­hedra ([\overline{4}] symmetry; occupancy ratio Na:Dy = 1:1) with two sets of bond lengths.

Related literature

For the structures, properties and applications of alkali rare-earth bis-tungstates with general formula ARE(WO4)2 (A = alkali metal, RE = rare-earth metal), see: Perets et al. (2007[Perets, S., Tseitlin, M., Shneck, R. Z., Mogilyanski, D., Kimmel, G. & Burshtein, Z. J. (2007). J. Cryst. Growth, 305, 257-264.]); Han et al. (2002[Han, X. M., Lin, Z. B., Hu, Z. S. & Wang, G. F. (2002). Mater. Res. Innov. 6, 118-121.]); Huang et al. (2006[Huang, X. Y., Lin, Z. B., Zhang, L. Z., Chen, J. T. & Wang, G. F. (2006). Cryst. Growth Des. 6, 2271-2274.]); Li et al. (1990[Li, H., Hong, G. & Yue, S. (1990). Zhongguo Xitu Xuebao, 8, 37-41.]). For the scheelite (CaWO4) structure, see: Sillen & Nylander (1943[Sillen, L. G. & Nylander, A. L. (1943). Arkiv Kemi Mineral. Geol. 17, 1-27.]).

Experimental

Crystal data
  • NaDy(WO4)2

  • Mr = 681.19

  • Tetragonal, I 41 /a

  • a = 5.2545 (5) Å

  • c = 11.4029 (15) Å

  • V = 314.83 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 48.27 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS, University of Göttingen, Germany.]) Tmin = 0.263, Tmax = 1.000

  • 1128 measured reflections

  • 181 independent reflections

  • 143 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 0.87

  • 181 reflections

  • 15 parameters

  • Δρmax = 1.55 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Selected bond lengths (Å)

(Na/Dy)1—O1i 2.457 (7)
(Na/Dy)1—O1 2.471 (7)
W1—O1 1.785 (7)
Symmetry code: (i) [y+{\script{1\over 4}}, -x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku. (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past years an increasing interest in the synthesis and characterization of rare-earth double tungstate(VI) crystals with general formula ARE(WO4)2 (A = alkali metal, RE = rare-earth metal) has been observed due to their interesting magnetic, electric and optical properties (Perets et al., 2007; Huang et al., 2006; Li et al., 1990; Han et al., 2002). These compounds are attractive solid-state laser host materials because of their large rare-earth ion admittance. Most of these crystals have tetragonal symmetry and crystallize with the scheelite structure (CaWO4) in space group I41/a (Sillen & Nylander, 1943). In the title structure, the Ca2+ position of the original CaWO4 structure is statistically occupied by Na+ and Dy3+ ions in an 1:1 ratio. The crystal structure of NaDy(WO4)2 is composed of a two-direction packing of isolated WO4 tetrahedra interconnected by distorted [(Na/Dy)O8] dodecahedra, as shown in Fig. 2.

Related literature top

For the structures, properties and applications of alkali rare-earth bis-tungstates with general formula ARE(WO4)2 (A = alkali metal, RE = rare-earth metal), see: Perets et al. (2007); Han et al. (2002); Huang et al. (2006); Li et al. (1990). For the scheelite (CaWO4) structure, see: Sillen & Nylander (1943).

Experimental top

Single crystal of NaDy(WO4)2 were prepared by a high temperature solution reaction, using analytical reagents of Dy2O3, Na2CO3 and WO3 in the molar ratio of Na: Dy: W = 8:1:10. The starting mixture was finely ground in an agate mortar to ensure the best homogeneity and reactivity, and then transferred to a platinum crucible to be heated at a temperature of 773 K for 8 h. The sintered product was reground and continuously heated at 1273 K for 20 h, cooled to 673 K at a rate of 4 K/h, and then quenched to room temperature. A few light yellow and prismatically shaped crystals of the title compound were obtained.

Refinement top

The Na1 and Dy1 atoms are in a substitutional-type disorder in the structure. Therefore the atomic position and anisotropic displacement parameters of Na1 and Dy1 atoms were constrained to be identical. In the initial least-squares refinement, the occupancy factors of Na1 and Dy1 atoms were set to be free. The results show that the occupancy factors were close to 1:1, viz Na1: Dy1 = 0.50273: 0.49727, and were eventually fixed in a 1:1 ratio. The highest peak in the final difference electron density map is 1.55 e/Å3 from the W1 site, and the deepest hole is -1.40 e/Å3 from the Na1/Dy1 site.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of NaDy(WO4)2 showing the labelling of the atoms (displacement ellipsoids are drawn at the 50% probability level).
[Figure 2] Fig. 2. View of the crystal structure of NaDy(WO4)2 (WO4 tetrahedra are shaded in sea-green; Na/Dy atoms are drawn as yellow balls).
Sodium dysprosium(III) bis[tungstate(VI)] top
Crystal data top
NaDy(WO4)2Dx = 7.186 Mg m3
Mr = 681.19Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 405 reflections
Hall symbol: -I 4adθ = 3.6–27.5°
a = 5.2545 (5) ŵ = 48.27 mm1
c = 11.4029 (15) ÅT = 298 K
V = 314.83 (6) Å3Prism, light yellow
Z = 20.10 × 0.10 × 0.08 mm
F(000) = 578
Data collection top
Rigaku Mercury70
diffractometer
181 independent reflections
Radiation source: fine-focus sealed tube143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 4.3°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 66
Tmin = 0.263, Tmax = 1.000l = 1413
1128 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0045P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 0.87Δρmax = 1.55 e Å3
181 reflectionsΔρmin = 1.40 e Å3
15 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0295 (17)
Crystal data top
NaDy(WO4)2Z = 2
Mr = 681.19Mo Kα radiation
Tetragonal, I41/aµ = 48.27 mm1
a = 5.2545 (5) ÅT = 298 K
c = 11.4029 (15) Å0.10 × 0.10 × 0.08 mm
V = 314.83 (6) Å3
Data collection top
Rigaku Mercury70
diffractometer
181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
143 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 1.000Rint = 0.053
1128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02415 parameters
wR(F2) = 0.0560 restraints
S = 0.87Δρmax = 1.55 e Å3
181 reflectionsΔρmin = 1.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.50000.25000.12500.0068 (4)0.50
Dy10.50000.25000.12500.0068 (4)0.50
W10.00000.25000.12500.0091 (4)
O10.2419 (14)0.0977 (13)0.0404 (6)0.0187 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0090 (6)0.0090 (6)0.0024 (8)0.0000.0000.000
Dy10.0090 (6)0.0090 (6)0.0024 (8)0.0000.0000.000
W10.0098 (4)0.0098 (4)0.0076 (6)0.0000.0000.000
O10.024 (5)0.017 (4)0.015 (3)0.001 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
(Na/Dy)1—O1i2.457 (7)(Na/Dy)1—O1vii2.471 (7)
(Na/Dy)1—O1ii2.457 (7)(Na/Dy)1—O12.471 (7)
(Na/Dy)1—O1iii2.457 (7)W1—O1viii1.785 (7)
(Na/Dy)1—O1iv2.457 (7)W1—O1ix1.785 (7)
(Na/Dy)1—O1v2.471 (7)W1—O11.785 (7)
(Na/Dy)1—O1vi2.471 (7)W1—O1x1.785 (7)
O1i—(Na/Dy)1—O1ii79.7 (3)O1vi—(Na/Dy)1—O1vii98.76 (12)
O1i—(Na/Dy)1—O1iii126.1 (2)O1i—(Na/Dy)1—O168.80 (16)
O1ii—(Na/Dy)1—O1iii126.1 (2)O1ii—(Na/Dy)1—O176.3 (3)
O1i—(Na/Dy)1—O1iv126.1 (2)O1iii—(Na/Dy)1—O173.31 (14)
O1ii—(Na/Dy)1—O1iv126.1 (2)O1iv—(Na/Dy)1—O1152.4 (3)
O1iii—(Na/Dy)1—O1iv79.7 (3)O1v—(Na/Dy)1—O198.76 (12)
O1i—(Na/Dy)1—O1v152.4 (3)O1vi—(Na/Dy)1—O198.76 (12)
O1ii—(Na/Dy)1—O1v73.31 (14)O1vii—(Na/Dy)1—O1134.1 (3)
O1iii—(Na/Dy)1—O1v68.80 (16)O1viii—W1—O1ix107.0 (2)
O1iv—(Na/Dy)1—O1v76.3 (3)O1viii—W1—O1114.6 (4)
O1i—(Na/Dy)1—O1vi73.31 (14)O1ix—W1—O1107.0 (2)
O1ii—(Na/Dy)1—O1vi152.4 (3)O1viii—W1—O1x107.0 (2)
O1iii—(Na/Dy)1—O1vi76.3 (3)O1ix—W1—O1x114.6 (4)
O1iv—(Na/Dy)1—O1vi68.80 (16)O1—W1—O1x107.0 (2)
O1v—(Na/Dy)1—O1vi134.1 (3)W1—O1—Dy1ii131.4 (3)
O1i—(Na/Dy)1—O1vii76.3 (3)W1—O1—(Na/Dy)1ii131.4 (3)
O1ii—(Na/Dy)1—O1vii68.80 (16)W1—O1—(Na/Dy)1120.8 (3)
O1iii—(Na/Dy)1—O1vii152.4 (3)Dy1ii—O1—(Na/Dy)1103.7 (3)
O1iv—(Na/Dy)1—O1vii73.31 (14)(Na/Dy)1ii—O1—(Na/Dy)1103.7 (3)
O1v—(Na/Dy)1—O1vii98.76 (12)
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y, z; (iii) y+1/4, x+1/4, z+1/4; (iv) y+3/4, x3/4, z+1/4; (v) y+3/4, x+1/4, z+1/4; (vi) y+1/4, x3/4, z+1/4; (vii) x+1, y1/2, z; (viii) x, y+1/2, z; (ix) y+1/4, x+1/4, z+1/4; (x) y1/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaNaDy(WO4)2
Mr681.19
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)5.2545 (5), 11.4029 (15)
V3)314.83 (6)
Z2
Radiation typeMo Kα
µ (mm1)48.27
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.263, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1128, 181, 143
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 0.87
No. of reflections181
No. of parameters15
Δρmax, Δρmin (e Å3)1.55, 1.40

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
(Na/Dy)1—O1i2.457 (7)W1—O11.785 (7)
(Na/Dy)1—O12.471 (7)
Symmetry code: (i) y+1/4, x+1/4, z+1/4.
 

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHan, X. M., Lin, Z. B., Hu, Z. S. & Wang, G. F. (2002). Mater. Res. Innov. 6, 118–121.  Web of Science CrossRef CAS Google Scholar
First citationHuang, X. Y., Lin, Z. B., Zhang, L. Z., Chen, J. T. & Wang, G. F. (2006). Cryst. Growth Des. 6, 2271–2274.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Hong, G. & Yue, S. (1990). Zhongguo Xitu Xuebao, 8, 37–41.  CAS Google Scholar
First citationPerets, S., Tseitlin, M., Shneck, R. Z., Mogilyanski, D., Kimmel, G. & Burshtein, Z. J. (2007). J. Cryst. Growth, 305, 257–264.  Web of Science CrossRef CAS Google Scholar
First citationRigaku. (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSillen, L. G. & Nylander, A. L. (1943). Arkiv Kemi Mineral. Geol. 17, 1–27.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds