inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­potassium europium(III) dilithium deca­fluoride, K5EuLi2F10

aW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna str. 2, PO Box 1410, 50-950 Wrocław, Poland
*Correspondence e-mail: a.gagor@int.pan.wroc.pl

(Received 13 October 2009; accepted 23 October 2009; online 28 October 2009)

The title compound, K5EuLi2F10, belongs to so-called self-activated materials containing lanthanoid ions within the matrix. A common feature of these systems is a large separation between the closest lanthanoid ions, which is one of the crucial factors governing the self-quenching of luminescence. The crystal structure of K5EuLi2F10 is isotypic with other K5RELi2F10 compounds (RE = Nd, Pr). As expected from the lanthanoid contraction, the unit-cell volume for crystal with Eu3+ ions is the smallest of the three structures. Accordingly, the corresponding inter­atomic RERE distances are shorter. In the structure, distorted EuF8 dodeca­hedra and two different LiF4 tetra­hedra, all with m symmetry, are present, forming sheets parallel to (100). The isolated EuF8 dodeca­hedra exhibit a mean Eu—F distance of 2.356 Å. The K+ cations are located within and between the sheets, leading to highly irregular KFx polyhedra (x = 8–9) around the alkali metal cations.

Related literature

The structure of the isotypic Nd analogue was reported by Hong & McCollum (1979[Hong, H. Y.-P. & McCollum, B. C. (1979). Mat. Res. Bull. 14, 137-142.]); for the structure of the Pr analogue, see: Gagor (2009[Gagor, A. (2009). Acta Cryst. E65, i81.]). For background to bond-valence calculations, see: Brown (1992[Brown, I. D. (1992). Acta Cryst. B48, 553-572.], 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. IUCr monographs on Crystallography 12. Oxford University Press.]); Mattausch et al. (1991[Mattausch, H. J., Eger, R. & Simon, A. (1991). Z. Anorg. Allg. Chem. 597, 145-150.]). Synthetic details were described by Ryba-Romanowski et al. (2007[Ryba-Romanowski, W., Solarz, P., Gusowski, M. & Dominiak-Dzik, G. (2007). Rad. Meas. 42, 798-802.]).

Experimental

Crystal data
  • K5EuLi2F10

  • Mr = 551.35

  • Orthorhombic, P n m a

  • a = 20.5539 (6) Å

  • b = 7.7356 (2) Å

  • c = 6.8721 (2) Å

  • V = 1092.64 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.75 mm−1

  • T = 295 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Kuma KM-4 with CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.146, Tmax = 0.310

  • 23852 measured reflections

  • 4895 independent reflections

  • 3564 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.039

  • S = 0.83

  • 4895 reflections

  • 98 parameters

  • Δρmax = 2.35 e Å−3

  • Δρmin = −3.02 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—F5 2.2923 (11)
Eu1—F2 2.3236 (11)
Eu1—F3i 2.3262 (7)
Eu1—F1 2.3918 (10)
Eu1—F4 2.3954 (7)
Eu1—F8ii 2.3996 (10)
Li1—F6iii 1.804 (3)
Li1—F1iv 1.862 (3)
Li1—F3v 1.8669 (16)
Li2—F7 1.801 (4)
Li2—F4iii 1.817 (2)
Li2—F8 1.844 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) x+1, y, z+1; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Two different LiF4 tetrahedra together with EuF8 dodecahedra form sheets expanding perpendicular to [100]. Fig. 1 illustrates the crystal packing of K5EuLi2F10 as seen down [001]. K1 atoms occupy cavities within the sheets and are surrounded by 9 F- ions in a mean distance of 2.792 Å. Remaining potassium atoms are located between the sheets, leading to KF9 and KF8 polyhedra. The valence sums of K atoms are close to the formal charge of +1, with a slight tendency to over-bonding. The K2 ion in the K5EuLi2F10 structure is slightly under-bonded (S = 0.977 v.u.), whereas the Li position is over-bonded, with a 15.6% higher bond-valence sum than those expected from the formal charge of +1.

Each EuF8 dodecahedron is surrounded by twelve others with a shortest and longest Eu—Eu distance of 6.6968 (2) and 7.8353 (2) Å, respectively. The mean distance of Eu—Eu is 7.309 Å, with individual distances of 2× 6.6968 (2), 2× 6.8805 (2), 2× 6.8721 (2), 2× 7.7356 (2) and 4× 7.8353 (2) Å. The bond valence sums of all metal atoms have been calculated from the received structure model on the basis of the bond-valence method (Brown, 1992, 2002; Mattausch et al., 1991)]: Eu 2.81, K1 1.06, K2 1.00, K3 1.09 and Li 1.16 v.u. The Eu ion is slightly under-bonded. The lower value of Eu valence may be associated with the distorted surrounding of this cation. When such distortions occur, the equal-valence rule is not strictly obeyed (Brown, 1992).

Related literature top

The structure of the isotypic Nd analogue was reported by Hong & McCollum (1979); for the structure of the Pr analogue, see: Gagor (2009). For background to bond-valence calculations, see: Brown (1992, 2002); Mattausch et al. (1991). Synthetic details were described by Ryba-Romanowski et al. (2007).

Experimental top

Preparation details were taken from Ryba-Romanowski et al. (2007). The K5EuLi2F10 crystal was grown from commercially available KF, EuF3 and LiF (Aldrich 99.99%, anhydrous) using the Bridgman method. The reagents were heated at 923 K (melting point 813 K) in a graphite crucible under argon atmosphere. The pulling rate was 1mm/h, the temperature gradient 100 %/cm.

Refinement top

In the final Fourier map, the highest peak is 0.60 Å from atom Eu1 and the deepest hole is 0.63 Å from the same atom.

Structure description top

Two different LiF4 tetrahedra together with EuF8 dodecahedra form sheets expanding perpendicular to [100]. Fig. 1 illustrates the crystal packing of K5EuLi2F10 as seen down [001]. K1 atoms occupy cavities within the sheets and are surrounded by 9 F- ions in a mean distance of 2.792 Å. Remaining potassium atoms are located between the sheets, leading to KF9 and KF8 polyhedra. The valence sums of K atoms are close to the formal charge of +1, with a slight tendency to over-bonding. The K2 ion in the K5EuLi2F10 structure is slightly under-bonded (S = 0.977 v.u.), whereas the Li position is over-bonded, with a 15.6% higher bond-valence sum than those expected from the formal charge of +1.

Each EuF8 dodecahedron is surrounded by twelve others with a shortest and longest Eu—Eu distance of 6.6968 (2) and 7.8353 (2) Å, respectively. The mean distance of Eu—Eu is 7.309 Å, with individual distances of 2× 6.6968 (2), 2× 6.8805 (2), 2× 6.8721 (2), 2× 7.7356 (2) and 4× 7.8353 (2) Å. The bond valence sums of all metal atoms have been calculated from the received structure model on the basis of the bond-valence method (Brown, 1992, 2002; Mattausch et al., 1991)]: Eu 2.81, K1 1.06, K2 1.00, K3 1.09 and Li 1.16 v.u. The Eu ion is slightly under-bonded. The lower value of Eu valence may be associated with the distorted surrounding of this cation. When such distortions occur, the equal-valence rule is not strictly obeyed (Brown, 1992).

The structure of the isotypic Nd analogue was reported by Hong & McCollum (1979); for the structure of the Pr analogue, see: Gagor (2009). For background to bond-valence calculations, see: Brown (1992, 2002); Mattausch et al. (1991). Synthetic details were described by Ryba-Romanowski et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal packing in K5EuLi2F10 as seen down the c axis. The thermal ellipsoids have been drawn at the 50% probability level.
Pentapotassium europium(III) dilithium decafluoride top
Crystal data top
K5EuLi2F10F(000) = 1016
Mr = 551.35Dx = 3.352 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 12717 reflections
a = 20.5539 (6) Åθ = 2.8–47.0°
b = 7.7356 (2) ŵ = 7.75 mm1
c = 6.8721 (2) ÅT = 295 K
V = 1092.64 (5) Å3Rectangular prism, colorless
Z = 40.35 × 0.20 × 0.15 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
4895 independent reflections
Radiation source: fine-focus sealed tube3564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 47.2°, θmin = 3.1°
ω scansh = 4227
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1115
Tmin = 0.146, Tmax = 0.310l = 149
23852 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max = 0.001
S = 0.83Δρmax = 2.35 e Å3
4895 reflectionsΔρmin = 3.02 e Å3
98 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0234 (3)
Crystal data top
K5EuLi2F10V = 1092.64 (5) Å3
Mr = 551.35Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 20.5539 (6) ŵ = 7.75 mm1
b = 7.7356 (2) ÅT = 295 K
c = 6.8721 (2) Å0.35 × 0.20 × 0.15 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
4895 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3564 reflections with I > 2σ(I)
Tmin = 0.146, Tmax = 0.310Rint = 0.034
23852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02198 parameters
wR(F2) = 0.0390 restraints
S = 0.83Δρmax = 2.35 e Å3
4895 reflectionsΔρmin = 3.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

To eliminate the weak reflections measured at high theta angles a 2theta limit was applied during structure refinement. The refinement on the whole data set (2theta = 47°) only slightly improved the standard deviations. Concluding, it was decided to refine the structure using a maximum measured 2theta limit. For completeness calculations the 2theta threshold was set to 28.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.457104 (13)0.97833 (4)0.25084 (4)0.01525 (4)
K20.282845 (14)0.02578 (4)0.42686 (4)0.01675 (5)
K30.36036 (2)0.25000.93720 (6)0.01762 (7)
Eu10.106855 (4)0.25000.236787 (10)0.00739 (2)
Li10.92238 (15)0.25000.9701 (4)0.0131 (5)
Li20.67290 (16)0.25000.8419 (5)0.0143 (6)
F10.00915 (5)0.25000.04773 (15)0.01369 (18)
F20.01991 (5)0.25000.45288 (15)0.0174 (2)
F30.09032 (4)0.96151 (9)0.15506 (12)0.01698 (15)
F40.14639 (4)0.07571 (10)0.49951 (11)0.01549 (14)
F50.21739 (5)0.25000.19250 (16)0.0167 (2)
F60.37353 (6)0.25000.31189 (16)0.01580 (19)
F70.75888 (5)0.25000.79160 (15)0.0160 (2)
F80.63085 (5)0.25000.60493 (14)0.01447 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01483 (10)0.01435 (10)0.01657 (10)0.00139 (8)0.00065 (9)0.00117 (9)
K20.01782 (11)0.01449 (11)0.01795 (10)0.00145 (9)0.00036 (9)0.00152 (9)
K30.0292 (2)0.01074 (15)0.01291 (14)0.0000.00250 (14)0.000
Eu10.00789 (3)0.00732 (3)0.00696 (3)0.0000.00052 (3)0.000
Li10.0131 (13)0.0150 (14)0.0112 (12)0.0000.0005 (11)0.000
Li20.0160 (15)0.0147 (14)0.0121 (12)0.0000.0002 (11)0.000
F10.0096 (4)0.0171 (5)0.0144 (4)0.0000.0018 (4)0.000
F20.0163 (5)0.0221 (5)0.0138 (4)0.0000.0025 (4)0.000
F30.0219 (4)0.0108 (3)0.0183 (3)0.0001 (3)0.0047 (3)0.0029 (3)
F40.0222 (4)0.0104 (3)0.0139 (3)0.0007 (3)0.0029 (3)0.0009 (3)
F50.0106 (4)0.0228 (5)0.0168 (4)0.0000.0014 (4)0.000
F60.0150 (5)0.0197 (5)0.0127 (4)0.0000.0028 (4)0.000
F70.0129 (5)0.0203 (5)0.0147 (4)0.0000.0011 (4)0.000
F80.0134 (4)0.0205 (5)0.0095 (4)0.0000.0012 (4)0.000
Geometric parameters (Å, º) top
K1—F8i2.7148 (9)Eu1—F52.2923 (11)
K1—F1ii2.7344 (7)Eu1—F22.3236 (11)
K1—F2iii2.7451 (9)Eu1—F3xviii2.3262 (7)
K1—F6iv2.7465 (8)Eu1—F3xix2.3262 (7)
K1—F4iii2.7718 (8)Eu1—F12.3918 (10)
K1—F1v2.7863 (8)Eu1—F4xx2.3954 (7)
K1—F3vi2.8163 (9)Eu1—F42.3954 (7)
K1—F2ii2.8359 (8)Eu1—F8xxi2.3996 (10)
K1—Li1vii2.933 (2)Eu1—Li2x3.198 (3)
K1—F3viii2.9804 (8)Li1—F6xvii1.804 (3)
K1—Li2i3.266 (3)Li1—F1xxii1.862 (3)
K1—Li1ix3.395 (3)Li1—F3i1.8669 (16)
K2—F7x2.6446 (8)Li1—F3xxiii1.8669 (16)
K2—F62.6658 (10)Li1—K1xxiv2.933 (2)
K2—F52.7225 (9)Li1—K1xxv2.933 (2)
K2—F7xi2.7460 (7)Li1—K3xvii3.076 (3)
K2—F8xi2.7831 (7)Li1—K1xxvi3.395 (3)
K2—F5xii2.8078 (8)Li1—K1xxvii3.395 (3)
K2—F42.8748 (8)Li1—K2xvii3.426 (3)
K2—Li2xi2.965 (2)Li1—K2xxviii3.426 (3)
K2—F3v3.0440 (9)Li2—F71.801 (4)
K2—Li2x3.262 (3)Li2—F4xvii1.817 (2)
K2—F4xiii3.3700 (8)Li2—F4xxviii1.817 (2)
K2—Li1x3.426 (3)Li2—F81.844 (3)
K3—F4xii2.5594 (8)Li2—K2xi2.965 (2)
K3—F4xiv2.5594 (8)Li2—K2xxix2.965 (2)
K3—F6xv2.5891 (11)Li2—Eu1xvii3.198 (3)
K3—F7x2.6119 (11)Li2—K2xxviii3.262 (3)
K3—F3v2.7320 (8)Li2—K2xvii3.262 (3)
K3—F3xvi2.7320 (8)Li2—K1i3.266 (3)
K3—Li1x3.076 (3)Li2—K1xxiii3.266 (3)
K3—F2xvii3.3652 (12)
F8i—K1—F1ii125.15 (3)F3i—Li1—F3xxiii122.43 (17)
F8i—K1—F2iii88.19 (3)F7—Li2—F4xvii114.17 (13)
F1ii—K1—F2iii143.59 (3)F7—Li2—F4xxviii114.17 (13)
F8i—K1—F6iv91.46 (3)F4xvii—Li2—F4xxviii95.80 (16)
F1ii—K1—F6iv65.12 (3)F7—Li2—F8106.88 (17)
F2iii—K1—F6iv135.55 (3)F4xvii—Li2—F8112.90 (13)
F8i—K1—F4iii67.56 (3)F4xxviii—Li2—F8112.90 (13)
F1ii—K1—F4iii137.02 (3)F7—Li2—K2xi65.12 (8)
F2iii—K1—F4iii64.55 (3)F4xvii—Li2—K2xi86.08 (4)
F6iv—K1—F4iii74.37 (3)F4xxviii—Li2—K2xi178.10 (12)
F8i—K1—F1v59.07 (3)F8—Li2—K2xi66.01 (8)
F1ii—K1—F1v91.096 (10)F7—Li2—K2xxix65.12 (8)
F2iii—K1—F1v95.48 (2)F4xvii—Li2—K2xxix178.10 (12)
F6iv—K1—F1v121.93 (3)F4xxviii—Li2—K2xxix86.08 (4)
F4iii—K1—F1v123.48 (2)F8—Li2—K2xxix66.01 (8)
F8i—K1—F3vi122.24 (3)K2xi—Li2—K2xxix92.03 (9)
F1ii—K1—F3vi62.54 (2)Li1xxx—F1—Eu1163.75 (11)
F2iii—K1—F3vi88.52 (3)Li1xxx—F1—K1xxxi76.71 (6)
F6iv—K1—F3vi127.47 (3)Eu1—F1—K1xxxi93.07 (3)
F4iii—K1—F3vi151.91 (2)Li1xxx—F1—K1xxxii76.71 (6)
F1v—K1—F3vi63.93 (3)Eu1—F1—K1xxxii93.07 (3)
F8i—K1—F2ii164.89 (3)K1xxxi—F1—K1xxxii100.45 (3)
F1ii—K1—F2ii60.15 (3)Li1xxx—F1—K1iii91.64 (8)
F2iii—K1—F2ii91.732 (11)Eu1—F1—K1iii100.88 (3)
F6iv—K1—F2ii78.06 (3)K1xxxi—F1—K1iii88.904 (10)
F4iii—K1—F2ii98.83 (3)K1xxxii—F1—K1iii162.80 (4)
F1v—K1—F2ii135.88 (3)Li1xxx—F1—K1xxxiii91.64 (8)
F3vi—K1—F2ii72.85 (3)Eu1—F1—K1xxxiii100.88 (3)
F8i—K1—F3viii62.84 (2)K1xxxi—F1—K1xxxiii162.80 (4)
F1ii—K1—F3viii62.36 (3)K1xxxii—F1—K1xxxiii88.904 (10)
F2iii—K1—F3viii148.43 (2)K1iii—F1—K1xxxiii78.68 (3)
F6iv—K1—F3viii62.20 (3)Eu1—F2—K1xvi110.14 (3)
F4iii—K1—F3viii110.69 (2)Eu1—F2—K1v110.14 (3)
F1v—K1—F3viii59.86 (2)K1xvi—F2—K1v80.09 (3)
F3vi—K1—F3viii96.38 (2)Eu1—F2—K1xxxi91.98 (3)
F2ii—K1—F3viii119.55 (2)K1xvi—F2—K1xxxi157.42 (4)
Li1vii—K1—F3viii36.79 (4)K1v—F2—K1xxxi88.268 (11)
F8i—K1—Li2i34.37 (6)Eu1—F2—K1xxxii91.98 (3)
F7x—K2—F685.43 (3)K1xvi—F2—K1xxxii88.268 (11)
F7x—K2—F585.58 (3)K1v—F2—K1xxxii157.42 (4)
F6—K2—F575.86 (3)K1xxxi—F2—K1xxxii95.64 (3)
F7x—K2—F7xi148.354 (19)Eu1—F2—K3x153.25 (4)
F6—K2—F7xi124.18 (3)K1xvi—F2—K3x90.02 (3)
F5—K2—F7xi90.98 (2)K1v—F2—K3x90.02 (3)
F7x—K2—F8xi132.75 (3)K1xxxi—F2—K3x70.57 (2)
F6—K2—F8xi91.71 (2)K1xxxii—F2—K3x70.57 (2)
F5—K2—F8xi139.19 (3)Li1i—F3—Eu1iv166.53 (9)
F7xi—K2—F8xi63.94 (3)Li1i—F3—K3iii81.61 (9)
F7x—K2—F5xii91.28 (2)Eu1iv—F3—K3iii110.42 (3)
F6—K2—F5xii133.49 (3)Li1i—F3—K1xxi90.59 (10)
F5—K2—F5xii150.205 (12)Eu1iv—F3—K1xxi92.43 (3)
F7xi—K2—F5xii76.39 (3)K3iii—F3—K1xxi103.03 (3)
F8xi—K2—F5xii57.98 (3)Li1i—F3—K1xxxiv70.22 (9)
F7x—K2—F466.62 (3)Eu1iv—F3—K1xxxiv97.07 (3)
F6—K2—F4130.25 (2)K3iii—F3—K1xxxiv151.20 (3)
F5—K2—F462.29 (3)K1xxi—F3—K1xxxiv83.62 (2)
F7xi—K2—F483.95 (3)Li1i—F3—K2iii84.87 (10)
F8xi—K2—F4137.60 (2)Eu1iv—F3—K2iii88.18 (3)
F5xii—K2—F489.28 (3)K3iii—F3—K2iii93.85 (3)
F7x—K2—F3v76.20 (3)K1xxi—F3—K2iii161.70 (3)
F6—K2—F3v62.15 (3)K1xxxiv—F3—K2iii78.16 (2)
F5—K2—F3v135.02 (2)Li2x—F4—Eu197.82 (8)
F7xi—K2—F3v125.05 (3)Li2x—F4—K3xiii147.88 (8)
F8xi—K2—F3v61.27 (2)Eu1—F4—K3xiii114.18 (3)
F5xii—K2—F3v72.01 (3)Li2x—F4—K1v88.18 (11)
F4—K2—F3v137.88 (2)Eu1—F4—K1v107.11 (3)
Li2xi—K2—F3v94.67 (7)K3xiii—F4—K1v85.08 (2)
F7x—K2—F4xiii150.54 (2)Li2x—F4—K284.91 (11)
F6—K2—F4xiii65.89 (2)Eu1—F4—K2106.00 (3)
F5—K2—F4xiii81.15 (3)K3xiii—F4—K283.77 (2)
F7xi—K2—F4xiii58.49 (3)K1v—F4—K2146.79 (3)
F8xi—K2—F4xiii58.53 (2)Li2x—F4—K2xii61.37 (8)
F5xii—K2—F4xiii112.98 (2)Eu1—F4—K2xii159.13 (3)
F4—K2—F4xiii127.14 (2)K3xiii—F4—K2xii86.55 (2)
Li2xi—K2—F4xiii32.54 (5)K1v—F4—K2xii75.704 (19)
F3v—K2—F4xiii94.98 (2)K2—F4—K2xii72.480 (17)
Li2x—K2—F4xiii147.93 (5)Eu1—F5—K2xx114.28 (3)
F4xii—K3—F4xiv159.74 (4)Eu1—F5—K2114.28 (3)
F4xii—K3—F6xv80.751 (19)K2xx—F5—K279.15 (3)
F4xiv—K3—F6xv80.751 (19)Eu1—F5—K2xiii94.85 (3)
F4xii—K3—F7x93.29 (2)K2xx—F5—K2xiii150.40 (4)
F4xiv—K3—F7x93.29 (2)K2—F5—K2xiii84.342 (11)
F6xv—K3—F7x133.01 (4)Eu1—F5—K2xxxv94.85 (3)
F4xii—K3—F3v63.21 (2)K2xx—F5—K2xxxv84.342 (11)
F4xiv—K3—F3v136.75 (3)K2—F5—K2xxxv150.40 (4)
F6xv—K3—F3v131.84 (3)K2xiii—F5—K2xxxv98.89 (4)
F7x—K3—F3v82.48 (3)Li1x—F6—K3xxxvi152.17 (12)
F4xii—K3—F3xvi136.75 (3)Li1x—F6—K2xx98.23 (8)
F4xiv—K3—F3xvi63.21 (2)K3xxxvi—F6—K2xx102.81 (3)
F6xv—K3—F3xvi131.84 (3)Li1x—F6—K298.23 (8)
F7x—K3—F3xvi82.48 (3)K3xxxvi—F6—K2102.81 (3)
F3v—K3—F3xvi73.58 (3)K2xx—F6—K281.18 (4)
F4xii—K3—F2xvii90.874 (19)Li1x—F6—K1xviii77.21 (7)
F4xiv—K3—F2xvii90.874 (19)K3xxxvi—F6—K1xviii85.04 (3)
F6xv—K3—F2xvii71.03 (3)K2xx—F6—K1xviii168.64 (4)
F7x—K3—F2xvii155.96 (3)K2—F6—K1xviii89.126 (9)
F3v—K3—F2xvii78.33 (3)Li1x—F6—K1xix77.21 (7)
F3xvi—K3—F2xvii78.33 (3)K3xxxvi—F6—K1xix85.04 (3)
Li1x—K3—F2xvii78.49 (6)K2xx—F6—K1xix89.126 (9)
F5—Eu1—F2147.91 (4)K2—F6—K1xix168.64 (4)
F5—Eu1—F3xviii96.48 (2)K1xviii—F6—K1xix99.84 (4)
F2—Eu1—F3xviii92.40 (2)Li2—F7—K3xvii154.06 (11)
F5—Eu1—F3xix96.48 (2)Li2—F7—K2xxviii92.42 (8)
F2—Eu1—F3xix92.40 (2)K3xvii—F7—K2xxviii106.96 (3)
F3xviii—Eu1—F3xix147.22 (4)Li2—F7—K2xvii92.42 (8)
F5—Eu1—F1139.47 (4)K3xvii—F7—K2xvii106.96 (3)
F2—Eu1—F172.63 (4)K2xxviii—F7—K2xvii81.97 (3)
F3xviii—Eu1—F175.29 (2)Li2—F7—K2xi78.37 (7)
F3xix—Eu1—F175.30 (2)K3xvii—F7—K2xi85.43 (3)
F5—Eu1—F4xx76.34 (3)K2xxviii—F7—K2xi165.38 (4)
F2—Eu1—F4xx77.25 (3)K2xvii—F7—K2xi87.055 (6)
F3xviii—Eu1—F4xx140.49 (3)Li2—F7—K2xxix78.37 (7)
F3xix—Eu1—F4xx72.04 (3)K3xvii—F7—K2xxix85.43 (3)
F1—Eu1—F4xx133.97 (2)K2xxviii—F7—K2xxix87.055 (6)
F5—Eu1—F476.34 (3)K2xvii—F7—K2xxix165.38 (4)
F2—Eu1—F477.25 (3)K2xi—F7—K2xxix101.95 (4)
F3xviii—Eu1—F472.04 (3)Li2—F8—Eu1vi163.91 (12)
F3xix—Eu1—F4140.49 (3)Li2—F8—K1i89.41 (9)
F1—Eu1—F4133.97 (2)Eu1vi—F8—K1i102.73 (3)
F4xx—Eu1—F468.51 (4)Li2—F8—K1xxiii89.41 (9)
F5—Eu1—F8xxi70.51 (4)Eu1vi—F8—K1xxiii102.73 (3)
F2—Eu1—F8xxi141.59 (4)K1i—F8—K1xxiii81.17 (3)
F3xviii—Eu1—F8xxi78.10 (2)Li2—F8—K2xxix76.74 (7)
F3xix—Eu1—F8xxi78.10 (2)Eu1vi—F8—K2xxix93.11 (3)
F1—Eu1—F8xxi68.96 (4)K1i—F8—K2xxix162.14 (4)
F4xx—Eu1—F8xxi131.91 (2)K1xxiii—F8—K2xxix87.386 (10)
F4—Eu1—F8xxi131.91 (2)Li2—F8—K2xi76.74 (7)
F6xvii—Li1—F1xxii107.19 (16)Eu1vi—F8—K2xi93.11 (3)
F6xvii—Li1—F3i107.75 (11)K1i—F8—K2xi87.386 (10)
F1xxii—Li1—F3i105.42 (11)K1xxiii—F8—K2xi162.14 (4)
F6xvii—Li1—F3xxiii107.75 (11)K2xxix—F8—K2xi100.09 (4)
F1xxii—Li1—F3xxiii105.42 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x, y+1, z; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x1/2, y+1, z+3/2; (viii) x+1/2, y+2, z+1/2; (ix) x+3/2, y+1, z1/2; (x) x1/2, y, z+3/2; (xi) x+1, y, z+1; (xii) x+1/2, y, z+1/2; (xiii) x+1/2, y, z1/2; (xiv) x+1/2, y+1/2, z+1/2; (xv) x, y, z+1; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1/2, y, z+3/2; (xviii) x, y1, z; (xix) x, y+3/2, z; (xx) x, y+1/2, z; (xxi) x1/2, y, z+1/2; (xxii) x+1, y, z+1; (xxiii) x+1, y1/2, z+1; (xxiv) x+1/2, y+3/2, z+3/2; (xxv) x+1/2, y1, z+3/2; (xxvi) x+3/2, y+1, z+1/2; (xxvii) x+3/2, y1/2, z+1/2; (xxviii) x+1/2, y+1/2, z+3/2; (xxix) x+1, y+1/2, z+1; (xxx) x1, y, z1; (xxxi) x1/2, y1, z+1/2; (xxxii) x1/2, y+3/2, z+1/2; (xxxiii) x+1/2, y1/2, z1/2; (xxxiv) x+1/2, y+2, z1/2; (xxxv) x+1/2, y+1/2, z1/2; (xxxvi) x, y, z1.

Experimental details

Crystal data
Chemical formulaK5EuLi2F10
Mr551.35
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)20.5539 (6), 7.7356 (2), 6.8721 (2)
V3)1092.64 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.75
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerKuma KM-4 with CCD area-detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.146, 0.310
No. of measured, independent and
observed [I > 2σ(I)] reflections
23852, 4895, 3564
Rint0.034
(sin θ/λ)max1)1.032
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.039, 0.83
No. of reflections4895
No. of parameters98
Δρmax, Δρmin (e Å3)2.35, 3.02

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Selected bond lengths (Å) top
Eu1—F52.2923 (11)Li1—F6iii1.804 (3)
Eu1—F22.3236 (11)Li1—F1iv1.862 (3)
Eu1—F3i2.3262 (7)Li1—F3v1.8669 (16)
Eu1—F12.3918 (10)Li2—F71.801 (4)
Eu1—F42.3954 (7)Li2—F4iii1.817 (2)
Eu1—F8ii2.3996 (10)Li2—F81.844 (3)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y, z+1/2; (iii) x+1/2, y, z+3/2; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1992). Acta Cryst. B48, 553–572.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. IUCr monographs on Crystallography 12. Oxford University Press.  Google Scholar
First citationGagor, A. (2009). Acta Cryst. E65, i81.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, H. Y.-P. & McCollum, B. C. (1979). Mat. Res. Bull. 14, 137–142.  CrossRef CAS Web of Science Google Scholar
First citationMattausch, H. J., Eger, R. & Simon, A. (1991). Z. Anorg. Allg. Chem. 597, 145–150.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRyba-Romanowski, W., Solarz, P., Gusowski, M. & Dominiak-Dzik, G. (2007). Rad. Meas. 42, 798–802.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds