inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zr3NiSb7: a new anti­mony-enriched ZrSb2 derivative

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine, and bDepartment of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
*Correspondence e-mail: romakav@yahoo.com

(Received 27 June 2008; accepted 2 July 2008; online 5 July 2008)

Single crystals of trizirconium nickel hepta­anti­monide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb) are located at sites with m symmetry. The structure contains `Zr2Ni2Sb5' and `Zr4Sb9' fragments and might be described as a new ZrSb2 derivative with a high Sb content.

Related literature

The structure of ZrSb2 was described by Garcia & Corbett (1988[Garcia, E. & Corbett, J. D. (1988). J. Solid State Chem. 73, 440-451.]). For related anti­monides, see: Romaka et al. (2007[Romaka, L., Tkachuk, A. & Stadnyk, Yu. (2007). 11th Scientific Conference `L'viv Chemistry Reading 2007', Collected Abstracts, p. H37. L'viv: Publishing Center of Ivan Franko National University.]); Tkachuk et al. (2007[Tkachuk, A., Romaka, L. & Stadnyk, Yu. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, L'viv (Ukraine), Collected Abstracts, p. 71. L'viv: Publishing Center of Ivan Franko National University.]). For related literature, see: Emsley (1991[Emsley, J. (1991). The Elements, 2nd ed. Oxford: Clarendon Press.]).

Experimental

Crystal data
  • Zr3NiSb7

  • Mr = 1184.62

  • Orthorhombic, P n m a

  • a = 17.5165 (19) Å

  • b = 3.9266 (4) Å

  • c = 14.3968 (15) Å

  • V = 990.22 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 23.56 mm−1

  • T = 295 (2) K

  • 0.37 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: numerical (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.057, Tmax = 0.426

  • 11118 measured reflections

  • 1722 independent reflections

  • 1500 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.053

  • S = 1.18

  • 1722 reflections

  • 68 parameters

  • Δρmax = 2.12 e Å−3

  • Δρmin = −2.89 e Å−3

Table 1
Selected bond lengths (Å)

Zr1—Sb4i 2.9620 (6)
Zr1—Sb6 2.9876 (8)
Zr1—Sb1ii 3.0669 (8)
Zr1—Sb3iii 3.0720 (7)
Zr1—Sb7iii 3.0960 (6)
Zr1—Sb5 3.1324 (8)
Zr2—Sb6iv 2.9478 (6)
Zr2—Sb4iii 2.9499 (6)
Zr2—Sb2iv 2.9604 (6)
Zr2—Sb2ii 3.0029 (8)
Zr2—Sb5 3.0044 (8)
Zr3—Sb1iv 2.9569 (6)
Zr3—Sb3iv 2.9944 (7)
Zr3—Sb5iv 2.9958 (6)
Zr3—Sb6v 2.9975 (8)
Zr3—Sb3vi 3.1616 (9)
Ni1—Sb7 2.5728 (10)
Ni1—Sb2iv 2.5875 (7)
Ni1—Sb1iv 2.6140 (7)
Ni1—Sb4vi 2.7141 (10)
Sb1—Sb2 3.1998 (8)
Sb1—Sb3vii 3.2645 (6)
Sb1—Sb4viii 3.2981 (6)
Sb2—Sb2ix 3.2250 (7)
Sb2—Sb4viii 3.3111 (6)
Sb5—Sb7iii 3.1380 (6)
Sb5—Sb6iv 3.1387 (6)
Sb6—Sb7i 3.1393 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (v) x, y, z+1; (vi) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) -x, -y+1, -z+1; (viii) -x, -y, -z+1; (ix) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Antimony based intermetallics attract interest due to interesting thermoelectric properties of some phases, e.g. antimonides with MgAgAs and Y3Au3Sb4 type structures. The investigation of new intermetallic phases is useful for the development of new materials, and the accurate determination of their crystal structures is a basic requirement for a better understanding of the corresponding physical properties.

Investigation of the Zr–Ni–Sb ternary system revealed the presence of several compounds in the Sb-enriched area (Romaka et al., 2007), including the new title antimonide with composition Zr27Ni9Sb64 (in %at). Interatomic distances (Table 1) between Sb atoms are in good agreement with the sum of the atomic radius (Emsley, 1991), whereas the majority of Zr—Sb and all Ni—Sb distances are somewhat shortened. Such shortening may be explained by partial covalent bonding which appears to be significant between Ni—Sb atoms because their contact distances are rather close to the sum of their covalent radii (2.56 Å). As the majority of ternary intermetallics are constructed from the fragments of their most stable binary compounds, the structure analysis of the antimonides Zr3NiSb7 and the already known Zr2NiSb3 (Tkachuk et al., 2007) in the Sb-enriched area shows that both can be derived from the binary compound ZrSb2 (Garcia & Corbett, 1988), which crystallizes in the PbCl2 structure type.

Zr3NiSb7 belongs to the family of two-layer structures. It may be represented as a net of trigonal prisms formed by Sb atoms that are bridged by nickel atoms (Fig. 1a). Such an arrangement is very similar to that in the binary ZrSb2 structure (Fig. 1b). The coordination polyhedra are distorted tri-capped trigonal prisms for the Zr atoms, and distorted octahedra for Ni atoms. In an alternative description, the Zr3NiSb7 structure contains fragments of the hypothetical "Zr2Ni2Sb5" and "Zr4Sb9" structures (Fig. 2) which are so far unknown for the ternary Zr–Ni–Sb or binary Zr–Sb systems. The main feature of the Zr3NiSb7 structure is the absence of covalent bonding between antimony atoms in contrast to the ZrSb2 structure. The general conclusion is that the presence of Ni atoms intensifies the interaction between Zr/Ni and Sb and, at the same time, reduces the bonding between Sb atoms. One may speculate that the composition of the Zr3NiSb7 compound may be the boundary limit of some solid solutions based on ZrSb2. However, the detailed study of the phase equilibria in the Zr–Ni–Sb system did not show a formation of any substitutional or interstitial solid solution. Moreover, the diffraction patterns of Zr3NiSb7 and ZrSb2 are rather different.

Related literature top

The structure of ZrSb2 was described by Garcia & Corbett (1988). For related antimonides, see: Romaka et al. (2007); Tkachuk et al. (2007). For related literature, see: Emsley (1991).

Experimental top

A sample with nominal composition Zr30Ni10Sb60 was prepared by arc-melting the constituent elements Zr (99.99 wt.%), Ni (99.99 wt.%), and Sb (99.99 wt.%) on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. 5 wt.% excess of Sb was required to compensate the evaporative loss during arc-melting. The ingot was annealed at 870 K for 720 h in an evacuated silica ampoule, and finally quenched in cold water. A crystal of the title compound suitable for single-crystal X-ray diffraction was extracted directly from the annealed sample. The chemical composition of the crystal was determined on the basis of an energy dispersive X-ray spectroscopical analysis using a Hitachi S-2700 scanning electron microscope. The result of the analysis is in good aggreement with the composition calculated from the structural refinement: Measured: 24.5 (8) %at Zr, 11.3 (6) %at Ni, 64.2 (16) %at Sb; calculated Zr 27 %at, Ni 9%at, Sb 64 %at.

Refinement top

The highest remaining electron density peak and the deepest hole are located 0.80 Å from Sb1 and 1.78 Å from Ni1, respectively. The structure solution and refinement were also performed in the non-centrosymmetric space group Pna21, but were less satisfactory and resulted in larger R indices and atomic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a). Projection of the Zr3NiSb7 structure onto the (010) plane with displacement ellipsoids drawn at the 95% probability level. [Symmetry codes: (i) 0.5 - x, 1 - y, -1/2 + z; (iv) 0.5 - x, -y, 0.5 - z; (vi) 1/2 + x, y, 1.5 - z]; (b) Projection of the ZrSb2 structure onto the (010) plane.
[Figure 2] Fig. 2. The stacked "Zr2Ni2Sb5" and "Zr4Sb9" fragments in the Zr3NiSb7 structure.
trizirconium nickel heptaantimonide top
Crystal data top
Zr3NiSb7F(000) = 2020
Mr = 1184.62Dx = 7.946 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4956 reflections
a = 17.5165 (19) Åθ = 2.3–33.1°
b = 3.9266 (4) ŵ = 23.56 mm1
c = 14.3968 (15) ÅT = 295 K
V = 990.22 (18) Å3Needle, silver
Z = 40.37 × 0.06 × 0.04 mm
Data collection top
Bruker SMART 1000
diffractometer
1722 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
h = 2525
Tmin = 0.057, Tmax = 0.426k = 55
11118 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0223P)2 + 1.1518P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.001
S = 1.18Δρmax = 2.12 e Å3
1722 reflectionsΔρmin = 2.89 e Å3
68 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00069 (5)
Crystal data top
Zr3NiSb7V = 990.22 (18) Å3
Mr = 1184.62Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.5165 (19) ŵ = 23.56 mm1
b = 3.9266 (4) ÅT = 295 K
c = 14.3968 (15) Å0.37 × 0.06 × 0.04 mm
Data collection top
Bruker SMART 1000
diffractometer
1722 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
1500 reflections with I > 2σ(I)
Tmin = 0.057, Tmax = 0.426Rint = 0.044
11118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02468 parameters
wR(F2) = 0.0540 restraints
S = 1.18Δρmax = 2.12 e Å3
1722 reflectionsΔρmin = 2.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.34664 (4)0.25000.19076 (5)0.00788 (14)
Zr20.37045 (4)0.25000.47072 (5)0.00721 (13)
Zr30.39237 (4)0.25000.90990 (5)0.00782 (14)
Ni10.43680 (5)0.25000.68908 (6)0.00903 (18)
Sb10.02147 (3)0.25000.29766 (3)0.00871 (11)
Sb20.03748 (2)0.25000.07626 (3)0.00790 (10)
Sb30.07123 (3)0.25000.56057 (3)0.00957 (11)
Sb40.09131 (3)0.25000.82504 (3)0.00823 (10)
Sb50.22833 (3)0.25000.35390 (3)0.00918 (11)
Sb60.24792 (2)0.25000.02153 (3)0.00875 (11)
Sb70.28995 (3)0.25000.68532 (4)0.01218 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0068 (3)0.0083 (3)0.0085 (3)0.0000.0007 (2)0.000
Zr20.0054 (3)0.0077 (3)0.0085 (3)0.0000.0002 (2)0.000
Zr30.0064 (3)0.0078 (3)0.0092 (3)0.0000.0004 (2)0.000
Ni10.0085 (4)0.0092 (5)0.0094 (4)0.0000.0000 (3)0.000
Sb10.0081 (2)0.0089 (2)0.0092 (2)0.0000.00158 (15)0.000
Sb20.0069 (2)0.0084 (2)0.0084 (2)0.0000.00046 (15)0.000
Sb30.0104 (2)0.0100 (2)0.0083 (2)0.0000.00042 (16)0.000
Sb40.0082 (2)0.0086 (2)0.0079 (2)0.0000.00022 (15)0.000
Sb50.0069 (2)0.0104 (2)0.0102 (2)0.0000.00005 (15)0.000
Sb60.0069 (2)0.0100 (2)0.0094 (2)0.0000.00051 (15)0.000
Sb70.0076 (2)0.0100 (3)0.0189 (3)0.0000.00142 (16)0.000
Geometric parameters (Å, º) top
Zr1—Sb4i2.9620 (6)Sb2—Ni1ii2.5876 (7)
Zr1—Sb4ii2.9620 (6)Sb2—Zr2ii2.9604 (6)
Zr1—Sb62.9876 (8)Sb2—Zr2i2.9604 (6)
Zr1—Sb1iii3.0669 (8)Sb2—Zr2viii3.0030 (8)
Zr1—Sb3ii3.0720 (7)Sb2—Sb2xi3.2250 (7)
Zr1—Sb3i3.0720 (7)Sb2—Sb2xii3.2250 (7)
Zr1—Sb7ii3.0960 (6)Sb2—Sb4x3.3111 (6)
Zr1—Sb7i3.0960 (6)Sb2—Sb4ix3.3111 (6)
Zr1—Sb53.1324 (8)Sb3—Zr3ii2.9943 (7)
Zr2—Sb6iv2.9478 (6)Sb3—Zr3i2.9943 (7)
Zr2—Sb6v2.9478 (6)Sb3—Zr1v3.0720 (7)
Zr2—Sb4ii2.9499 (6)Sb3—Zr1iv3.0720 (7)
Zr2—Sb4i2.9499 (6)Sb3—Zr3xiii3.1617 (9)
Zr2—Sb2v2.9604 (6)Sb3—Sb1ix3.2645 (6)
Zr2—Sb2iv2.9604 (6)Sb3—Sb1x3.2645 (6)
Zr2—Sb2iii3.0029 (8)Sb4—Ni1xiii2.7141 (10)
Zr2—Sb53.0044 (8)Sb4—Zr2v2.9499 (6)
Zr2—Sb73.3962 (9)Sb4—Zr2iv2.9499 (6)
Zr3—Sb1iv2.9569 (6)Sb4—Zr1iv2.9619 (6)
Zr3—Sb1v2.9569 (6)Sb4—Zr1v2.9619 (6)
Zr3—Sb3v2.9944 (7)Sb4—Sb1x3.2981 (6)
Zr3—Sb3iv2.9944 (7)Sb4—Sb1ix3.2981 (6)
Zr3—Sb5iv2.9958 (6)Sb4—Sb2x3.3111 (6)
Zr3—Sb5v2.9958 (6)Sb4—Sb2ix3.3110 (6)
Zr3—Sb6vi2.9975 (8)Sb5—Zr3ii2.9958 (6)
Zr3—Sb3vii3.1616 (9)Sb5—Zr3i2.9958 (6)
Zr3—Ni13.2730 (12)Sb5—Sb7ii3.1380 (6)
Ni1—Sb72.5728 (10)Sb5—Sb7i3.1380 (6)
Ni1—Sb2iv2.5875 (7)Sb5—Sb6v3.1387 (6)
Ni1—Sb2v2.5875 (7)Sb5—Sb6iv3.1387 (6)
Ni1—Sb1v2.6140 (7)Sb6—Zr2ii2.9478 (6)
Ni1—Sb1iv2.6140 (7)Sb6—Zr2i2.9478 (6)
Ni1—Sb4vii2.7141 (10)Sb6—Zr3xiv2.9974 (8)
Sb1—Ni1ii2.6139 (7)Sb6—Sb5ii3.1388 (6)
Sb1—Ni1i2.6139 (7)Sb6—Sb5i3.1388 (6)
Sb1—Zr3i2.9570 (6)Sb6—Sb7i3.1393 (6)
Sb1—Zr3ii2.9570 (6)Sb6—Sb7ii3.1393 (6)
Sb1—Zr1viii3.0669 (8)Sb7—Zr1iv3.0960 (6)
Sb1—Sb23.1998 (8)Sb7—Zr1v3.0960 (6)
Sb1—Sb3ix3.2645 (6)Sb7—Sb5v3.1380 (6)
Sb1—Sb3x3.2645 (6)Sb7—Sb5iv3.1380 (6)
Sb1—Sb4x3.2981 (6)Sb7—Sb6iv3.1393 (6)
Sb1—Sb4ix3.2981 (6)Sb7—Sb6v3.1393 (6)
Sb2—Ni1i2.5876 (7)
Sb4i—Zr1—Sb4ii83.03 (2)Ni1i—Sb2—Zr2viii108.12 (2)
Sb4i—Zr1—Sb6138.128 (11)Ni1ii—Sb2—Zr2viii108.12 (2)
Sb4ii—Zr1—Sb6138.128 (11)Zr2ii—Sb2—Zr2viii114.528 (17)
Sb4i—Zr1—Sb1iii66.303 (16)Zr2i—Sb2—Zr2viii114.528 (17)
Sb4ii—Zr1—Sb1iii66.303 (16)Ni1i—Sb2—Sb152.409 (19)
Sb6—Zr1—Sb1iii128.48 (3)Ni1ii—Sb2—Sb152.409 (19)
Sb4i—Zr1—Sb3ii130.54 (3)Zr2ii—Sb2—Sb1123.991 (17)
Sb4ii—Zr1—Sb3ii78.623 (15)Zr2i—Sb2—Sb1123.991 (17)
Sb6—Zr1—Sb3ii76.910 (19)Zr2viii—Sb2—Sb197.986 (19)
Sb1iii—Zr1—Sb3ii64.250 (16)Ni1i—Sb2—Sb2xi163.78 (3)
Sb4i—Zr1—Sb3i78.623 (15)Ni1ii—Sb2—Sb2xi92.085 (17)
Sb4ii—Zr1—Sb3i130.54 (3)Zr2ii—Sb2—Sb2xi57.900 (17)
Sb6—Zr1—Sb3i76.911 (19)Zr2i—Sb2—Sb2xi106.03 (2)
Sb1iii—Zr1—Sb3i64.250 (16)Zr2viii—Sb2—Sb2xi56.628 (16)
Sb3ii—Zr1—Sb3i79.45 (2)Sb1—Sb2—Sb2xi129.982 (17)
Sb4i—Zr1—Sb7ii136.09 (3)Ni1i—Sb2—Sb2xii92.085 (17)
Sb4ii—Zr1—Sb7ii83.092 (15)Ni1ii—Sb2—Sb2xii163.78 (3)
Sb6—Zr1—Sb7ii62.103 (16)Zr2ii—Sb2—Sb2xii106.03 (2)
Sb1iii—Zr1—Sb7ii140.627 (10)Zr2i—Sb2—Sb2xii57.900 (16)
Sb3ii—Zr1—Sb7ii86.630 (15)Zr2viii—Sb2—Sb2xii56.628 (16)
Sb3i—Zr1—Sb7ii138.75 (3)Sb1—Sb2—Sb2xii129.982 (17)
Sb4i—Zr1—Sb7i83.092 (15)Sb2xi—Sb2—Sb2xii75.00 (2)
Sb4ii—Zr1—Sb7i136.09 (3)Ni1i—Sb2—Sb4x107.40 (3)
Sb6—Zr1—Sb7i62.103 (16)Ni1ii—Sb2—Sb4x53.08 (2)
Sb1iii—Zr1—Sb7i140.627 (10)Zr2ii—Sb2—Sb4x101.431 (12)
Sb3ii—Zr1—Sb7i138.75 (3)Zr2i—Sb2—Sb4x169.95 (2)
Sb3i—Zr1—Sb7i86.630 (15)Zr2viii—Sb2—Sb4x55.446 (14)
Sb7ii—Zr1—Sb7i78.71 (2)Sb1—Sb2—Sb4x60.840 (12)
Sb4i—Zr1—Sb575.722 (19)Sb2xi—Sb2—Sb4x69.745 (15)
Sb4ii—Zr1—Sb575.722 (19)Sb2xii—Sb2—Sb4x112.07 (2)
Sb6—Zr1—Sb5103.21 (2)Ni1i—Sb2—Sb4ix53.08 (2)
Sb1iii—Zr1—Sb5128.31 (3)Ni1ii—Sb2—Sb4ix107.40 (3)
Sb3ii—Zr1—Sb5140.115 (11)Zr2ii—Sb2—Sb4ix169.95 (2)
Sb3i—Zr1—Sb5140.115 (11)Zr2i—Sb2—Sb4ix101.431 (12)
Sb7ii—Zr1—Sb560.504 (16)Zr2viii—Sb2—Sb4ix55.446 (14)
Sb7i—Zr1—Sb560.504 (16)Sb1—Sb2—Sb4ix60.840 (12)
Sb6iv—Zr2—Sb6v83.52 (2)Sb2xi—Sb2—Sb4ix112.07 (2)
Sb6iv—Zr2—Sb4ii83.851 (14)Sb2xii—Sb2—Sb4ix69.745 (15)
Sb6v—Zr2—Sb4ii141.21 (3)Sb4x—Sb2—Sb4ix72.732 (15)
Sb6iv—Zr2—Sb4i141.21 (3)Zr3ii—Sb3—Zr3i81.94 (2)
Sb6v—Zr2—Sb4i83.851 (14)Zr3ii—Sb3—Zr1v139.58 (2)
Sb4ii—Zr2—Sb4i83.45 (2)Zr3i—Sb3—Zr1v85.597 (17)
Sb6iv—Zr2—Sb2v134.23 (3)Zr3ii—Sb3—Zr1iv85.597 (16)
Sb6v—Zr2—Sb2v79.287 (15)Zr3i—Sb3—Zr1iv139.58 (2)
Sb4ii—Zr2—Sb2v133.05 (3)Zr1v—Sb3—Zr1iv79.45 (2)
Sb4i—Zr2—Sb2v78.456 (15)Zr3ii—Sb3—Zr3xiii107.962 (18)
Sb6iv—Zr2—Sb2iv79.287 (15)Zr3i—Sb3—Zr3xiii107.962 (18)
Sb6v—Zr2—Sb2iv134.23 (3)Zr1v—Sb3—Zr3xiii112.458 (19)
Sb4ii—Zr2—Sb2iv78.456 (15)Zr1iv—Sb3—Zr3xiii112.458 (19)
Sb4i—Zr2—Sb2iv133.05 (3)Zr3ii—Sb3—Sb1ix162.39 (2)
Sb2v—Zr2—Sb2iv83.09 (2)Zr3i—Sb3—Sb1ix99.468 (13)
Sb6iv—Zr2—Sb2iii137.839 (11)Zr1v—Sb3—Sb1ix57.799 (16)
Sb6v—Zr2—Sb2iii137.839 (11)Zr1iv—Sb3—Sb1ix103.64 (2)
Sb4ii—Zr2—Sb2iii67.583 (16)Zr3xiii—Sb3—Sb1ix54.764 (13)
Sb4i—Zr2—Sb2iii67.583 (16)Zr3ii—Sb3—Sb1x99.468 (13)
Sb2v—Zr2—Sb2iii65.474 (17)Zr3i—Sb3—Sb1x162.39 (2)
Sb2iv—Zr2—Sb2iii65.474 (17)Zr1v—Sb3—Sb1x103.64 (2)
Sb6iv—Zr2—Sb563.641 (17)Zr1iv—Sb3—Sb1x57.799 (15)
Sb6v—Zr2—Sb563.641 (17)Zr3xiii—Sb3—Sb1x54.764 (13)
Sb4ii—Zr2—Sb577.886 (19)Sb1ix—Sb3—Sb1x73.942 (15)
Sb4i—Zr2—Sb577.886 (19)Ni1xiii—Sb4—Zr2v106.24 (2)
Sb2v—Zr2—Sb5137.621 (11)Ni1xiii—Sb4—Zr2iv106.24 (2)
Sb2iv—Zr2—Sb5137.621 (12)Zr2v—Sb4—Zr2iv83.45 (2)
Sb2iii—Zr2—Sb5132.94 (3)Ni1xiii—Sb4—Zr1iv108.49 (2)
Sb6iv—Zr2—Sb758.813 (15)Zr2v—Sb4—Zr1iv145.27 (2)
Sb6v—Zr2—Sb758.813 (15)Zr2iv—Sb4—Zr1iv86.535 (17)
Sb4ii—Zr2—Sb7137.823 (12)Ni1xiii—Sb4—Zr1v108.49 (2)
Sb4i—Zr2—Sb7137.823 (12)Zr2v—Sb4—Zr1v86.535 (17)
Sb2v—Zr2—Sb776.068 (18)Zr2iv—Sb4—Zr1v145.27 (2)
Sb2iv—Zr2—Sb776.068 (18)Zr1iv—Sb4—Zr1v83.03 (2)
Sb2iii—Zr2—Sb7127.55 (2)Ni1xiii—Sb4—Sb1x50.403 (16)
Sb5—Zr2—Sb799.51 (2)Zr2v—Sb4—Sb1x155.92 (2)
Sb1iv—Zr3—Sb1v83.21 (2)Zr2iv—Sb4—Sb1x96.928 (13)
Sb1iv—Zr3—Sb3v136.27 (3)Zr1iv—Sb4—Sb1x58.375 (16)
Sb1v—Zr3—Sb3v81.481 (15)Zr1v—Sb4—Sb1x105.36 (2)
Sb1iv—Zr3—Sb3iv81.481 (16)Ni1xiii—Sb4—Sb1ix50.403 (16)
Sb1v—Zr3—Sb3iv136.27 (3)Zr2v—Sb4—Sb1ix96.928 (13)
Sb3v—Zr3—Sb3iv81.94 (2)Zr2iv—Sb4—Sb1ix155.92 (2)
Sb1iv—Zr3—Sb5iv77.172 (16)Zr1iv—Sb4—Sb1ix105.36 (2)
Sb1v—Zr3—Sb5iv130.41 (3)Zr1v—Sb4—Sb1ix58.375 (16)
Sb3v—Zr3—Sb5iv140.80 (3)Sb1x—Sb4—Sb1ix73.066 (15)
Sb3iv—Zr3—Sb5iv85.155 (14)Ni1xiii—Sb4—Sb2x49.662 (16)
Sb1iv—Zr3—Sb5v130.41 (3)Zr2v—Sb4—Sb2x104.14 (2)
Sb1v—Zr3—Sb5v77.172 (15)Zr2iv—Sb4—Sb2x56.972 (16)
Sb3v—Zr3—Sb5v85.155 (14)Zr1iv—Sb4—Sb2x97.880 (13)
Sb3iv—Zr3—Sb5v140.80 (3)Zr1v—Sb4—Sb2x157.39 (2)
Sb5iv—Zr3—Sb5v81.89 (2)Sb1x—Sb4—Sb2x57.912 (14)
Sb1iv—Zr3—Sb6vi136.371 (13)Sb1ix—Sb4—Sb2x100.063 (17)
Sb1v—Zr3—Sb6vi136.371 (13)Ni1xiii—Sb4—Sb2ix49.662 (16)
Sb3v—Zr3—Sb6vi77.956 (19)Zr2v—Sb4—Sb2ix56.972 (16)
Sb3iv—Zr3—Sb6vi77.956 (19)Zr2iv—Sb4—Sb2ix104.14 (2)
Sb5iv—Zr3—Sb6vi63.164 (17)Zr1iv—Sb4—Sb2ix157.39 (2)
Sb5v—Zr3—Sb6vi63.164 (17)Zr1v—Sb4—Sb2ix97.880 (13)
Sb1iv—Zr3—Sb3vii64.388 (16)Sb1x—Sb4—Sb2ix100.063 (17)
Sb1v—Zr3—Sb3vii64.388 (16)Sb1ix—Sb4—Sb2ix57.912 (14)
Sb3v—Zr3—Sb3vii72.038 (18)Sb2x—Sb4—Sb2ix72.734 (15)
Sb3iv—Zr3—Sb3vii72.038 (18)Zr3ii—Sb5—Zr3i81.89 (2)
Sb5iv—Zr3—Sb3vii137.351 (12)Zr3ii—Sb5—Zr2115.73 (2)
Sb5v—Zr3—Sb3vii137.351 (12)Zr3i—Sb5—Zr2115.73 (2)
Sb6vi—Zr3—Sb3vii139.85 (3)Zr3ii—Sb5—Zr1131.970 (16)
Sb1iv—Zr3—Ni149.295 (15)Zr3i—Sb5—Zr1131.970 (16)
Sb1v—Zr3—Ni149.295 (15)Zr2—Sb5—Zr182.62 (2)
Sb3v—Zr3—Ni1130.769 (18)Zr3ii—Sb5—Sb7ii74.105 (16)
Sb3iv—Zr3—Ni1130.769 (18)Zr3i—Sb5—Sb7ii123.11 (2)
Sb5iv—Zr3—Ni184.63 (2)Zr2—Sb5—Sb7ii121.163 (17)
Sb5v—Zr3—Ni184.63 (2)Zr1—Sb5—Sb7ii59.174 (15)
Sb6vi—Zr3—Ni1136.18 (3)Zr3ii—Sb5—Sb7i123.11 (2)
Sb3vii—Zr3—Ni183.97 (2)Zr3i—Sb5—Sb7i74.105 (16)
Sb7—Ni1—Sb2iv99.26 (3)Zr2—Sb5—Sb7i121.163 (17)
Sb7—Ni1—Sb2v99.26 (3)Zr1—Sb5—Sb7i59.174 (15)
Sb2iv—Ni1—Sb2v98.71 (3)Sb7ii—Sb5—Sb7i77.460 (18)
Sb7—Ni1—Sb1v106.99 (3)Zr3ii—Sb5—Sb6v107.25 (2)
Sb2iv—Ni1—Sb1v153.71 (4)Zr3i—Sb5—Sb6v58.444 (16)
Sb2v—Ni1—Sb1v75.925 (16)Zr2—Sb5—Sb6v57.301 (14)
Sb7—Ni1—Sb1iv106.99 (3)Zr1—Sb5—Sb6v119.266 (16)
Sb2iv—Ni1—Sb1iv75.925 (16)Sb7ii—Sb5—Sb6v178.23 (2)
Sb2v—Ni1—Sb1iv153.71 (4)Sb7i—Sb5—Sb6v102.523 (11)
Sb1v—Ni1—Sb1iv97.37 (3)Zr3ii—Sb5—Sb6iv58.444 (16)
Sb7—Ni1—Sb4vii174.50 (4)Zr3i—Sb5—Sb6iv107.25 (2)
Sb2iv—Ni1—Sb4vii77.26 (2)Zr2—Sb5—Sb6iv57.302 (14)
Sb2v—Ni1—Sb4vii77.26 (2)Zr1—Sb5—Sb6iv119.266 (16)
Sb1v—Ni1—Sb4vii76.46 (2)Sb7ii—Sb5—Sb6iv102.523 (11)
Sb1iv—Ni1—Sb4vii76.46 (2)Sb7i—Sb5—Sb6iv178.23 (2)
Sb7—Ni1—Zr377.45 (3)Sb6v—Sb5—Sb6iv77.438 (18)
Sb2iv—Ni1—Zr3130.623 (17)Zr2ii—Sb6—Zr2i83.52 (2)
Sb2v—Ni1—Zr3130.623 (17)Zr2ii—Sb6—Zr1127.554 (17)
Sb1v—Ni1—Zr359.04 (2)Zr2i—Sb6—Zr1127.554 (17)
Sb1iv—Ni1—Zr359.04 (2)Zr2ii—Sb6—Zr3xiv117.435 (19)
Sb4vii—Ni1—Zr3108.05 (3)Zr2i—Sb6—Zr3xiv117.435 (19)
Ni1ii—Sb1—Ni1i97.37 (3)Zr1—Sb6—Zr3xiv87.06 (2)
Ni1ii—Sb1—Zr3i133.06 (3)Zr2ii—Sb6—Sb5ii59.058 (16)
Ni1i—Sb1—Zr3i71.66 (2)Zr2i—Sb6—Sb5ii108.60 (2)
Ni1ii—Sb1—Zr3ii71.66 (2)Zr1—Sb6—Sb5ii123.387 (17)
Ni1i—Sb1—Zr3ii133.06 (3)Zr3xiv—Sb6—Sb5ii58.391 (14)
Zr3i—Sb1—Zr3ii83.21 (2)Zr2ii—Sb6—Sb5i108.60 (2)
Ni1ii—Sb1—Zr1viii108.17 (2)Zr2i—Sb6—Sb5i59.058 (16)
Ni1i—Sb1—Zr1viii108.17 (2)Zr1—Sb6—Sb5i123.387 (17)
Zr3i—Sb1—Zr1viii118.681 (19)Zr3xiv—Sb6—Sb5i58.391 (14)
Zr3ii—Sb1—Zr1viii118.681 (19)Sb5ii—Sb6—Sb5i77.437 (18)
Ni1ii—Sb1—Sb251.665 (19)Zr2ii—Sb6—Sb7i117.02 (2)
Ni1i—Sb1—Sb251.665 (19)Zr2i—Sb6—Sb7i67.743 (16)
Zr3i—Sb1—Sb2119.976 (18)Zr1—Sb6—Sb7i60.643 (16)
Zr3ii—Sb1—Sb2119.976 (18)Zr3xiv—Sb6—Sb7i125.528 (15)
Zr1viii—Sb1—Sb298.147 (19)Sb5ii—Sb6—Sb7i175.37 (2)
Ni1ii—Sb1—Sb3ix164.74 (2)Sb5i—Sb6—Sb7i102.379 (11)
Ni1i—Sb1—Sb3ix93.514 (18)Zr2ii—Sb6—Sb7ii67.743 (16)
Zr3i—Sb1—Sb3ix60.848 (17)Zr2i—Sb6—Sb7ii117.02 (2)
Zr3ii—Sb1—Sb3ix108.15 (2)Zr1—Sb6—Sb7ii60.643 (16)
Zr1viii—Sb1—Sb3ix57.951 (14)Zr3xiv—Sb6—Sb7ii125.528 (15)
Sb2—Sb1—Sb3ix131.792 (14)Sb5ii—Sb6—Sb7ii102.379 (11)
Ni1ii—Sb1—Sb3x93.514 (18)Sb5i—Sb6—Sb7ii175.37 (2)
Ni1i—Sb1—Sb3x164.74 (2)Sb7i—Sb6—Sb7ii77.422 (18)
Zr3i—Sb1—Sb3x108.15 (2)Ni1—Sb7—Zr1iv140.543 (10)
Zr3ii—Sb1—Sb3x60.848 (17)Ni1—Sb7—Zr1v140.543 (10)
Zr1viii—Sb1—Sb3x57.951 (14)Zr1iv—Sb7—Zr1v78.71 (2)
Sb2—Sb1—Sb3x131.792 (13)Ni1—Sb7—Sb5v94.92 (2)
Sb3ix—Sb1—Sb3x73.942 (16)Zr1iv—Sb7—Sb5v107.36 (2)
Ni1ii—Sb1—Sb4x53.14 (2)Zr1v—Sb7—Sb5v60.321 (16)
Ni1i—Sb1—Sb4x107.12 (3)Ni1—Sb7—Sb5iv94.92 (2)
Zr3i—Sb1—Sb4x173.544 (17)Zr1iv—Sb7—Sb5iv60.321 (16)
Zr3ii—Sb1—Sb4x101.722 (12)Zr1v—Sb7—Sb5iv107.36 (2)
Zr1viii—Sb1—Sb4x55.321 (14)Sb5v—Sb7—Sb5iv77.460 (18)
Sb2—Sb1—Sb4x61.249 (13)Ni1—Sb7—Sb6iv103.12 (2)
Sb3ix—Sb1—Sb4x113.263 (18)Zr1iv—Sb7—Sb6iv57.253 (16)
Sb3x—Sb1—Sb4x71.272 (14)Zr1v—Sb7—Sb6iv104.61 (2)
Ni1ii—Sb1—Sb4ix107.12 (3)Sb5v—Sb7—Sb6iv161.93 (2)
Ni1i—Sb1—Sb4ix53.14 (2)Sb5iv—Sb7—Sb6iv99.677 (12)
Zr3i—Sb1—Sb4ix101.722 (12)Ni1—Sb7—Sb6v103.12 (2)
Zr3ii—Sb1—Sb4ix173.544 (17)Zr1iv—Sb7—Sb6v104.61 (2)
Zr1viii—Sb1—Sb4ix55.321 (14)Zr1v—Sb7—Sb6v57.253 (16)
Sb2—Sb1—Sb4ix61.249 (13)Sb5v—Sb7—Sb6v99.677 (12)
Sb3ix—Sb1—Sb4ix71.272 (14)Sb5iv—Sb7—Sb6v161.93 (2)
Sb3x—Sb1—Sb4ix113.263 (18)Sb6iv—Sb7—Sb6v77.422 (18)
Sb4x—Sb1—Sb4ix73.066 (15)Ni1—Sb7—Zr266.67 (2)
Ni1i—Sb2—Ni1ii98.71 (3)Zr1iv—Sb7—Zr2110.11 (2)
Ni1i—Sb2—Zr2ii136.93 (3)Zr1v—Sb7—Zr2110.11 (2)
Ni1ii—Sb2—Zr2ii73.99 (2)Sb5v—Sb7—Zr2138.240 (11)
Ni1i—Sb2—Zr2i73.99 (2)Sb5iv—Sb7—Zr2138.240 (11)
Ni1ii—Sb2—Zr2i136.93 (3)Sb6iv—Sb7—Zr253.446 (14)
Zr2ii—Sb2—Zr2i83.09 (2)Sb6v—Sb7—Zr253.446 (14)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, z+3/2; (viii) x1/2, y, z+1/2; (ix) x, y+1, z+1; (x) x, y, z+1; (xi) x, y, z; (xii) x, y+1, z; (xiii) x1/2, y, z+3/2; (xiv) x, y, z1.

Experimental details

Crystal data
Chemical formulaZr3NiSb7
Mr1184.62
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)17.5165 (19), 3.9266 (4), 14.3968 (15)
V3)990.22 (18)
Z4
Radiation typeMo Kα
µ (mm1)23.56
Crystal size (mm)0.37 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.057, 0.426
No. of measured, independent and
observed [I > 2σ(I)] reflections
11118, 1722, 1500
Rint0.044
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.18
No. of reflections1722
No. of parameters68
Δρmax, Δρmin (e Å3)2.12, 2.89

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zr1—Sb4i2.9620 (6)Zr3—Sb6v2.9975 (8)
Zr1—Sb62.9876 (8)Zr3—Sb3vi3.1616 (9)
Zr1—Sb1ii3.0669 (8)Ni1—Sb72.5728 (10)
Zr1—Sb3iii3.0720 (7)Ni1—Sb2iv2.5875 (7)
Zr1—Sb7iii3.0960 (6)Ni1—Sb1iv2.6140 (7)
Zr1—Sb53.1324 (8)Ni1—Sb4vi2.7141 (10)
Zr2—Sb6iv2.9478 (6)Sb1—Sb23.1998 (8)
Zr2—Sb4iii2.9499 (6)Sb1—Sb3vii3.2645 (6)
Zr2—Sb2iv2.9604 (6)Sb1—Sb4viii3.2981 (6)
Zr2—Sb2ii3.0029 (8)Sb2—Sb2ix3.2250 (7)
Zr2—Sb53.0044 (8)Sb2—Sb4viii3.3111 (6)
Zr3—Sb1iv2.9569 (6)Sb5—Sb7iii3.1380 (6)
Zr3—Sb3iv2.9944 (7)Sb5—Sb6iv3.1387 (6)
Zr3—Sb5iv2.9958 (6)Sb6—Sb7i3.1393 (6)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y, z1/2; (iv) x+1/2, y, z+1/2; (v) x, y, z+1; (vi) x+1/2, y, z+3/2; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x, y, z.
 

Acknowledgements

The work was in part supported by the Ministry of Ukraine for Education and Science (grant No. 0106U001299).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmsley, J. (1991). The Elements, 2nd ed. Oxford: Clarendon Press.  Google Scholar
First citationGarcia, E. & Corbett, J. D. (1988). J. Solid State Chem. 73, 440–451.  CrossRef CAS Web of Science Google Scholar
First citationRomaka, L., Tkachuk, A. & Stadnyk, Yu. (2007). 11th Scientific Conference `L'viv Chemistry Reading 2007', Collected Abstracts, p. H37. L'viv: Publishing Center of Ivan Franko National University.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTkachuk, A., Romaka, L. & Stadnyk, Yu. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, L'viv (Ukraine), Collected Abstracts, p. 71. L'viv: Publishing Center of Ivan Franko National University.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds