Download citation
Download citation
link to html
The crystal structure of the low-temperature phase of diethyl­ammonium tetra­chloridocuprate(II), (C4H12N)2[CuCl4], has been determined by Simonsen & Harlow [(1977). Am. Crystallogr. Assoc. Ser. 2 Vol. 5, No. 1, Abstract HN5], but no atomic coordinates are available. We therefore redetermined the structure at 100 K. It comprises three crystallographically independent formula units linked by hydrogen bonds into a two-dimensional network. One tetra­chloridocuprate(II) anion is virtually square-planar while the two others are tetra­hedrally distorted.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054098/wm2156sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054098/wm2156Isup2.hkl
Contains datablock I

CCDC reference: 672598

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.111
  • Data-to-parameter ratio = 24.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C8 H24 Cl4 Cu1 N2 Atom count from _chemical_formula_moiety: PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.05 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 1.95 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu3 (2) 1.98
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

In the course of an experiment in the inorganic chemistry practical at our university the thermochromic behaviour of diethylammonium tetrachloridocuprate(II) (I) is studied. Surprisingly, atomic coordinates of the low-temperature phase have only been presented at a meeting of the American Crystallographic Association (Simonsen & Harlow, 1977), but not published in a journal or deposited in a data base. However, the structure is briefly discussed in a later publication together with the high-temperature phase (Bloomquist et al., 1988). Redetermination of the crystal and molecular structure was now done at 100 K from a crystal obtained at 293 K.

The molecular and crystal structures of both high- and low-temperature phases of other dialkylammonium tetrachlorocuprates(II), the anion being approximately tetrahedral and square-planar, respectively, have been determined, for example the dipropylammonium analogue (Bond et al., 1988).

The asymmetric unit of (I) is shown in Figure 1. The compound consists of three crystallographically independent formula units of which the anion containing Cu2 is virtually square-planar, the others show a certain degree of distortion towards tetrahedral. The r.m.s. deviations of the atoms constituting the anions from a plane fitted to them is 0.588, 0.017 and 0.344 Å for Cu1, Cu2 and Cu3, respectively. Except for N2 which only engages in one hydrogen bond to Cl12, the other five diethylammonium cations each link two tetrachlorocuprate anions to form a two-dimensional hydrogen-bond network in the (101) plane. Likewise, all chlorine atoms of the anions are hydrogen bond acceptors with the exception of Cl34 (see Table). The connectivity of the hydrogen bonds is shown in Figure 2, a perspective view in Figure 3. Bond lengths and angles are unexceptional.

Related literature top

The compound was prepared according to Van Oort (1988). For a previous structure report of the low-temperature polymorph of diethylammonium tetrachloridocuprate(II), see: Simonsen & Harlow (1977). The high-temperature polymorph was determined by Bloomquist et al. (1988), and high- and low-temperature forms of the dipropylammonium analogue were reported by Bond et al. (1988).

Experimental top

The compound was prepared according to literature (Van Oort, 1988) and crystallized at room temperature by diffusing diethyl ether vapour into an ethanolic solution. A suitable emerald green crystal was quickly covered in oil and transferred to the cold nitrogen stream of the diffractometer.

Refinement top

All H atoms were positioned geometrically (C—H = 0.98 and 0.99 Å for CH3 and CH2, respectively; and N—H = 0.92 Å) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.2 times Ueq(C,N) for CH2 or NH2 and 1.5 times Ueq(C) for CH3.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Atwood & Barbour, 2003 and Barbour, 2001); software used to prepare material for publication: X-SEED.

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I). Ellipsoids are shown at the 50% probability level, hydrogen bonds are shown with dashed lines. C—H hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Schematic representation of the hydrogen bonding network. Hydrogen bonds are shown as dashed lines and bonds to symmetry equivalent atoms as wiggled lines. Symmetry operators: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (v) x, y - 1, z.
[Figure 3] Fig. 3. Perspective view of the hydrogen-bonded layer. Atoms are drawn as spheres of arbitrary radius, only N—H hydrogen atoms are shown. Symmetry operators: (iii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (vi) x - 1/2, -y + 1/2, z + 1/2; (vii) x - 1/2, -y + 3/2, z + 1/2; (viii) -x, -y + 1, -z + 1.
diethylammonium tetrachloridocuprate(II) top
Crystal data top
(C4H12N)2[CuCl4]F(000) = 2196
Mr = 353.63Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7081 reflections
a = 7.315 (4) Åθ = 2.3–26.4°
b = 14.843 (8) ŵ = 1.96 mm1
c = 45.24 (2) ÅT = 100 K
β = 90.258 (9)°Block, green
V = 4912 (5) Å30.45 × 0.25 × 0.15 mm
Z = 12
Data collection top
Bruker APEX CCD area detector
diffractometer
10012 independent reflections
Radiation source: fine-focus sealed tube8231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω–scansθmax = 26.6°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 79
Tmin = 0.421, Tmax = 0.742k = 1818
28089 measured reflectionsl = 5650
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0356P)2 + 2.1467P]
where P = (Fo2 + 2Fc2)/3
10012 reflections(Δ/σ)max = 0.001
418 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
(C4H12N)2[CuCl4]V = 4912 (5) Å3
Mr = 353.63Z = 12
Monoclinic, P21/nMo Kα radiation
a = 7.315 (4) ŵ = 1.96 mm1
b = 14.843 (8) ÅT = 100 K
c = 45.24 (2) Å0.45 × 0.25 × 0.15 mm
β = 90.258 (9)°
Data collection top
Bruker APEX CCD area detector
diffractometer
10012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
8231 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.742Rint = 0.055
28089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.78 e Å3
10012 reflectionsΔρmin = 0.49 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50841 (5)0.74787 (2)0.084049 (8)0.02153 (10)
Cu20.92389 (5)0.24762 (2)0.083225 (8)0.01820 (10)
Cu30.46748 (5)0.24221 (2)0.255011 (8)0.02002 (10)
Cl110.58990 (12)0.62256 (5)0.059822 (18)0.03125 (19)
Cl120.42965 (12)0.67724 (5)0.126298 (19)0.0324 (2)
Cl130.60562 (11)0.87259 (5)0.107010 (18)0.03002 (19)
Cl140.40684 (11)0.81893 (5)0.043124 (19)0.0313 (2)
Cl210.92291 (11)0.38662 (5)0.062999 (17)0.02863 (18)
Cl220.91811 (11)0.18729 (5)0.036970 (17)0.02770 (18)
Cl230.91308 (12)0.10889 (5)0.103458 (17)0.02896 (19)
Cl240.92597 (11)0.30808 (5)0.129495 (17)0.02811 (18)
Cl310.41369 (12)0.11216 (5)0.231532 (18)0.0319 (2)
Cl320.60609 (13)0.30356 (5)0.215033 (19)0.0367 (2)
Cl330.41713 (12)0.38062 (5)0.274342 (18)0.0331 (2)
Cl340.42615 (11)0.17926 (5)0.300217 (17)0.02779 (18)
N10.6974 (3)0.49583 (16)0.11481 (6)0.0214 (5)
H1B0.76530.45420.10460.026*
H1A0.65970.53910.10160.026*
N20.3228 (3)0.84386 (16)0.16754 (6)0.0224 (6)
H2A0.36560.80150.15450.027*
H2B0.24740.81480.18070.027*
N30.6853 (3)1.00067 (16)0.05136 (5)0.0209 (5)
H3A0.65170.95790.06500.025*
H3B0.75671.04260.06100.025*
N40.3125 (3)0.65577 (16)0.00079 (5)0.0202 (5)
H4A0.34910.69670.01330.024*
H4B0.24150.68600.01440.024*
N50.6930 (3)0.15370 (16)0.16653 (5)0.0216 (6)
H5A0.75970.18270.15220.026*
H5B0.66290.19560.18070.026*
N60.3193 (3)0.49932 (16)0.21770 (6)0.0215 (6)
H6B0.35070.46040.23270.026*
H6A0.24780.54410.22570.026*
C110.4155 (5)0.4129 (2)0.10258 (8)0.0362 (8)
H11A0.37910.46190.08930.054*
H11B0.30620.38480.11100.054*
H11C0.48500.36780.09150.054*
C120.5325 (4)0.4500 (2)0.12712 (7)0.0254 (7)
H12A0.46060.49350.13890.031*
H12B0.57120.40040.14040.031*
C130.8173 (4)0.5392 (2)0.13752 (7)0.0281 (7)
H13A0.86360.49300.15150.034*
H13B0.74600.58390.14890.034*
C140.9751 (5)0.5849 (3)0.12256 (9)0.0465 (10)
H14A1.04400.54050.11110.070*
H14B1.05540.61190.13750.070*
H14C0.92880.63210.10930.070*
C210.0591 (5)0.8678 (3)0.13455 (10)0.0476 (10)
H21A0.10810.82530.12000.071*
H21B0.01280.91410.12430.071*
H21C0.01910.83550.14850.071*
C220.2136 (4)0.9113 (2)0.15093 (7)0.0288 (7)
H22A0.29350.94310.13670.035*
H22B0.16420.95650.16490.035*
C230.4815 (4)0.8823 (2)0.18419 (8)0.0295 (8)
H23A0.43760.92930.19790.035*
H23B0.56730.91080.17020.035*
C240.5795 (5)0.8103 (3)0.20133 (9)0.0491 (11)
H24A0.49400.78130.21500.074*
H24B0.68020.83740.21260.074*
H24C0.62830.76530.18760.074*
C310.9615 (5)0.9117 (3)0.04137 (8)0.0411 (9)
H31A1.03740.95710.05130.062*
H31B1.03260.88240.02580.062*
H31C0.92210.86660.05580.062*
C320.7971 (4)0.9564 (2)0.02798 (7)0.0258 (7)
H32A0.83681.00200.01340.031*
H32B0.72200.91090.01750.031*
C330.5180 (4)1.0460 (2)0.04010 (7)0.0251 (7)
H33A0.44381.00260.02860.030*
H33B0.55281.09600.02680.030*
C340.4059 (5)1.0825 (2)0.06546 (8)0.0357 (8)
H34A0.36671.03260.07810.054*
H34B0.29811.11380.05760.054*
H34C0.48021.12470.07710.054*
C410.0368 (5)0.6264 (3)0.02894 (9)0.0453 (10)
H41A0.07920.66700.04460.068*
H41B0.03780.57840.03760.068*
H41C0.03670.66030.01460.068*
C420.1987 (4)0.5856 (2)0.01366 (7)0.0272 (7)
H42A0.27400.55230.02830.033*
H42B0.15560.54210.00140.033*
C430.4786 (4)0.6202 (2)0.01612 (7)0.0254 (7)
H43A0.44070.57990.03250.031*
H43B0.55290.58460.00200.031*
C440.5921 (5)0.6961 (2)0.02826 (8)0.0366 (8)
H44A0.52010.73000.04280.055*
H44B0.70140.67150.03780.055*
H44C0.62880.73640.01210.055*
C510.4105 (5)0.1946 (2)0.14004 (8)0.0354 (8)
H51A0.37850.23720.15570.053*
H51B0.29850.17030.13110.053*
H51C0.48210.22560.12490.053*
C520.5214 (4)0.1188 (2)0.15287 (7)0.0247 (7)
H52A0.44860.08700.16800.030*
H52B0.55190.07520.13710.030*
C530.8102 (4)0.0835 (2)0.18044 (7)0.0272 (7)
H53A0.83410.03490.16600.033*
H53B0.74580.05690.19760.033*
C540.9882 (4)0.1238 (3)0.19054 (8)0.0362 (9)
H54A1.05410.14780.17350.054*
H54B1.06250.07730.20020.054*
H54C0.96410.17260.20460.054*
C610.0415 (5)0.4100 (3)0.20903 (10)0.0479 (10)
H61A0.07720.36660.22430.072*
H61B0.03180.37960.19380.072*
H61C0.03070.45840.21800.072*
C620.2104 (4)0.4494 (2)0.19511 (7)0.0285 (7)
H62A0.28560.40050.18660.034*
H62B0.17480.49090.17890.034*
C630.4895 (4)0.5406 (2)0.20549 (7)0.0262 (7)
H63A0.45660.58750.19080.031*
H63B0.56230.49390.19530.031*
C640.6021 (5)0.5821 (2)0.23000 (8)0.0366 (9)
H64A0.53030.62890.23990.055*
H64B0.71300.60890.22170.055*
H64C0.63590.53540.24430.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0198 (2)0.0189 (2)0.0259 (2)0.00035 (14)0.00180 (16)0.00107 (15)
Cu20.01714 (19)0.01684 (19)0.0206 (2)0.00001 (14)0.00077 (15)0.00040 (14)
Cu30.0188 (2)0.0190 (2)0.0223 (2)0.00079 (14)0.00224 (15)0.00094 (15)
Cl110.0407 (5)0.0278 (4)0.0252 (4)0.0129 (3)0.0024 (4)0.0007 (3)
Cl120.0428 (5)0.0199 (4)0.0346 (5)0.0009 (3)0.0175 (4)0.0015 (3)
Cl130.0354 (5)0.0291 (4)0.0256 (4)0.0127 (3)0.0006 (3)0.0011 (3)
Cl140.0381 (5)0.0198 (4)0.0360 (5)0.0020 (3)0.0144 (4)0.0002 (3)
Cl210.0430 (5)0.0187 (4)0.0242 (4)0.0008 (3)0.0026 (3)0.0011 (3)
Cl220.0413 (5)0.0202 (4)0.0215 (4)0.0007 (3)0.0003 (3)0.0010 (3)
Cl230.0449 (5)0.0184 (4)0.0236 (4)0.0014 (3)0.0007 (4)0.0012 (3)
Cl240.0419 (5)0.0205 (4)0.0220 (4)0.0003 (3)0.0013 (3)0.0009 (3)
Cl310.0396 (5)0.0295 (4)0.0268 (4)0.0120 (3)0.0053 (4)0.0045 (3)
Cl320.0499 (5)0.0248 (4)0.0355 (5)0.0058 (4)0.0233 (4)0.0019 (4)
Cl330.0516 (5)0.0204 (4)0.0275 (4)0.0072 (3)0.0124 (4)0.0031 (3)
Cl340.0397 (5)0.0202 (4)0.0235 (4)0.0014 (3)0.0037 (3)0.0022 (3)
N10.0226 (13)0.0204 (13)0.0212 (14)0.0021 (10)0.0011 (11)0.0010 (10)
N20.0226 (13)0.0171 (13)0.0275 (15)0.0012 (10)0.0021 (11)0.0013 (11)
N30.0218 (13)0.0186 (13)0.0222 (14)0.0012 (10)0.0004 (11)0.0008 (10)
N40.0196 (13)0.0180 (13)0.0228 (14)0.0010 (10)0.0018 (10)0.0003 (10)
N50.0226 (13)0.0193 (13)0.0231 (14)0.0002 (10)0.0025 (11)0.0019 (10)
N60.0208 (13)0.0201 (13)0.0235 (14)0.0003 (10)0.0029 (11)0.0014 (11)
C110.0309 (19)0.035 (2)0.043 (2)0.0107 (15)0.0002 (16)0.0034 (17)
C120.0269 (17)0.0230 (16)0.0265 (18)0.0017 (13)0.0078 (14)0.0009 (13)
C130.0311 (18)0.0268 (17)0.0263 (18)0.0021 (14)0.0046 (14)0.0030 (14)
C140.036 (2)0.053 (3)0.050 (3)0.0169 (18)0.0004 (19)0.011 (2)
C210.035 (2)0.049 (2)0.058 (3)0.0062 (18)0.0163 (19)0.005 (2)
C220.0315 (18)0.0235 (17)0.0313 (19)0.0067 (13)0.0047 (15)0.0017 (14)
C230.0255 (17)0.0294 (18)0.034 (2)0.0055 (14)0.0036 (14)0.0018 (15)
C240.041 (2)0.051 (3)0.055 (3)0.0009 (19)0.020 (2)0.004 (2)
C310.038 (2)0.048 (2)0.038 (2)0.0141 (17)0.0055 (17)0.0007 (18)
C320.0262 (17)0.0261 (17)0.0252 (18)0.0011 (13)0.0061 (14)0.0044 (13)
C330.0232 (16)0.0216 (16)0.0305 (18)0.0025 (12)0.0042 (14)0.0029 (13)
C340.0295 (19)0.038 (2)0.040 (2)0.0097 (15)0.0059 (16)0.0069 (17)
C410.033 (2)0.047 (2)0.057 (3)0.0060 (17)0.0129 (19)0.004 (2)
C420.0285 (17)0.0227 (16)0.0304 (19)0.0058 (13)0.0038 (14)0.0041 (14)
C430.0252 (17)0.0270 (17)0.0241 (17)0.0054 (13)0.0021 (13)0.0028 (13)
C440.0309 (19)0.036 (2)0.043 (2)0.0006 (15)0.0079 (16)0.0037 (17)
C510.0267 (18)0.036 (2)0.043 (2)0.0001 (15)0.0014 (16)0.0009 (17)
C520.0220 (16)0.0248 (17)0.0272 (18)0.0047 (12)0.0029 (13)0.0006 (13)
C530.0292 (18)0.0242 (17)0.0284 (18)0.0043 (13)0.0028 (14)0.0042 (14)
C540.0283 (19)0.047 (2)0.033 (2)0.0048 (16)0.0033 (16)0.0059 (17)
C610.036 (2)0.051 (2)0.057 (3)0.0185 (18)0.0003 (19)0.003 (2)
C620.0283 (18)0.0282 (18)0.0291 (19)0.0026 (14)0.0022 (14)0.0050 (14)
C630.0235 (17)0.0276 (17)0.0276 (18)0.0024 (13)0.0072 (14)0.0029 (14)
C640.0328 (19)0.037 (2)0.040 (2)0.0112 (15)0.0024 (16)0.0079 (17)
Geometric parameters (Å, º) top
Cu1—Cl132.2371 (12)C23—C241.500 (5)
Cu1—Cl112.2410 (12)C23—H23A0.9900
Cu1—Cl142.2540 (12)C23—H23B0.9900
Cu1—Cl122.2570 (13)C24—H24A0.9800
Cu2—Cl232.2550 (13)C24—H24B0.9800
Cu2—Cl212.2570 (13)C24—H24C0.9800
Cu2—Cl222.2764 (13)C31—C321.498 (5)
Cu2—Cl242.2775 (13)C31—H31A0.9800
Cu3—Cl312.2372 (13)C31—H31B0.9800
Cu3—Cl332.2636 (13)C31—H31C0.9800
Cu3—Cl322.2683 (12)C32—H32A0.9900
Cu3—Cl342.2700 (13)C32—H32B0.9900
N1—C131.493 (4)C33—C341.514 (5)
N1—C121.495 (4)C33—H33A0.9900
N1—H1B0.9200C33—H33B0.9900
N1—H1A0.9200C34—H34A0.9800
N2—C221.483 (4)C34—H34B0.9800
N2—C231.494 (4)C34—H34C0.9800
N2—H2A0.9200C41—C421.501 (5)
N2—H2B0.9200C41—H41A0.9800
N3—C331.485 (4)C41—H41B0.9800
N3—C321.493 (4)C41—H41C0.9800
N3—H3A0.9200C42—H42A0.9900
N3—H3B0.9200C42—H42B0.9900
N4—C421.487 (4)C43—C441.505 (5)
N4—C431.498 (4)C43—H43A0.9900
N4—H4A0.9200C43—H43B0.9900
N4—H4B0.9200C44—H44A0.9800
N5—C531.487 (4)C44—H44B0.9800
N5—C521.490 (4)C44—H44C0.9800
N5—H5A0.9200C51—C521.501 (4)
N5—H5B0.9200C51—H51A0.9800
N6—C621.490 (4)C51—H51B0.9800
N6—C631.496 (4)C51—H51C0.9800
N6—H6B0.9200C52—H52A0.9900
N6—H6A0.9200C52—H52B0.9900
C11—C121.503 (4)C53—C541.502 (4)
C11—H11A0.9800C53—H53A0.9900
C11—H11B0.9800C53—H53B0.9900
C11—H11C0.9800C54—H54A0.9800
C12—H12A0.9900C54—H54B0.9800
C12—H12B0.9900C54—H54C0.9800
C13—C141.503 (5)C61—C621.507 (5)
C13—H13A0.9900C61—H61A0.9800
C13—H13B0.9900C61—H61B0.9800
C14—H14A0.9800C61—H61C0.9800
C14—H14B0.9800C62—H62A0.9900
C14—H14C0.9800C62—H62B0.9900
C21—C221.495 (5)C63—C641.510 (4)
C21—H21A0.9800C63—H63A0.9900
C21—H21B0.9800C63—H63B0.9900
C21—H21C0.9800C64—H64A0.9800
C22—H22A0.9900C64—H64B0.9800
C22—H22B0.9900C64—H64C0.9800
Cl13—Cu1—Cl11146.02 (4)C23—C24—H24C109.5
Cl13—Cu1—Cl1495.57 (5)H24A—C24—H24C109.5
Cl11—Cu1—Cl1494.24 (5)H24B—C24—H24C109.5
Cl13—Cu1—Cl1294.18 (5)C32—C31—H31A109.5
Cl11—Cu1—Cl1295.64 (5)C32—C31—H31B109.5
Cl14—Cu1—Cl12145.95 (4)H31A—C31—H31B109.5
Cl23—Cu2—Cl21177.81 (4)C32—C31—H31C109.5
Cl23—Cu2—Cl2290.77 (4)H31A—C31—H31C109.5
Cl21—Cu2—Cl2289.25 (4)H31B—C31—H31C109.5
Cl23—Cu2—Cl2489.24 (4)N3—C32—C31110.5 (3)
Cl21—Cu2—Cl2490.72 (4)N3—C32—H32A109.6
Cl22—Cu2—Cl24179.32 (3)C31—C32—H32A109.6
Cl31—Cu3—Cl33159.70 (4)N3—C32—H32B109.6
Cl31—Cu3—Cl3292.64 (5)C31—C32—H32B109.6
Cl33—Cu3—Cl3291.02 (4)H32A—C32—H32B108.1
Cl31—Cu3—Cl3492.80 (5)N3—C33—C34110.5 (3)
Cl33—Cu3—Cl3490.17 (4)N3—C33—H33A109.5
Cl32—Cu3—Cl34160.99 (4)C34—C33—H33A109.5
C13—N1—C12114.3 (2)N3—C33—H33B109.5
C13—N1—H1B108.7C34—C33—H33B109.5
C12—N1—H1B108.7H33A—C33—H33B108.1
C13—N1—H1A108.7C33—C34—H34A109.5
C12—N1—H1A108.7C33—C34—H34B109.5
H1B—N1—H1A107.6H34A—C34—H34B109.5
C22—N2—C23114.4 (2)C33—C34—H34C109.5
C22—N2—H2A108.7H34A—C34—H34C109.5
C23—N2—H2A108.7H34B—C34—H34C109.5
C22—N2—H2B108.7C42—C41—H41A109.5
C23—N2—H2B108.7C42—C41—H41B109.5
H2A—N2—H2B107.6H41A—C41—H41B109.5
C33—N3—C32114.2 (2)C42—C41—H41C109.5
C33—N3—H3A108.7H41A—C41—H41C109.5
C32—N3—H3A108.7H41B—C41—H41C109.5
C33—N3—H3B108.7N4—C42—C41111.4 (3)
C32—N3—H3B108.7N4—C42—H42A109.4
H3A—N3—H3B107.6C41—C42—H42A109.4
C42—N4—C43114.5 (2)N4—C42—H42B109.4
C42—N4—H4A108.6C41—C42—H42B109.4
C43—N4—H4A108.6H42A—C42—H42B108.0
C42—N4—H4B108.6N4—C43—C44110.8 (3)
C43—N4—H4B108.6N4—C43—H43A109.5
H4A—N4—H4B107.6C44—C43—H43A109.5
C53—N5—C52114.6 (2)N4—C43—H43B109.5
C53—N5—H5A108.6C44—C43—H43B109.5
C52—N5—H5A108.6H43A—C43—H43B108.1
C53—N5—H5B108.6C43—C44—H44A109.5
C52—N5—H5B108.6C43—C44—H44B109.5
H5A—N5—H5B107.6H44A—C44—H44B109.5
C62—N6—C63113.2 (2)C43—C44—H44C109.5
C62—N6—H6B108.9H44A—C44—H44C109.5
C63—N6—H6B108.9H44B—C44—H44C109.5
C62—N6—H6A108.9C52—C51—H51A109.5
C63—N6—H6A108.9C52—C51—H51B109.5
H6B—N6—H6A107.8H51A—C51—H51B109.5
C12—C11—H11A109.5C52—C51—H51C109.5
C12—C11—H11B109.5H51A—C51—H51C109.5
H11A—C11—H11B109.5H51B—C51—H51C109.5
C12—C11—H11C109.5N5—C52—C51110.7 (3)
H11A—C11—H11C109.5N5—C52—H52A109.5
H11B—C11—H11C109.5C51—C52—H52A109.5
N1—C12—C11110.4 (3)N5—C52—H52B109.5
N1—C12—H12A109.6C51—C52—H52B109.5
C11—C12—H12A109.6H52A—C52—H52B108.1
N1—C12—H12B109.6N5—C53—C54110.3 (3)
C11—C12—H12B109.6N5—C53—H53A109.6
H12A—C12—H12B108.1C54—C53—H53A109.6
N1—C13—C14109.5 (3)N5—C53—H53B109.6
N1—C13—H13A109.8C54—C53—H53B109.6
C14—C13—H13A109.8H53A—C53—H53B108.1
N1—C13—H13B109.8C53—C54—H54A109.5
C14—C13—H13B109.8C53—C54—H54B109.5
H13A—C13—H13B108.2H54A—C54—H54B109.5
C13—C14—H14A109.5C53—C54—H54C109.5
C13—C14—H14B109.5H54A—C54—H54C109.5
H14A—C14—H14B109.5H54B—C54—H54C109.5
C13—C14—H14C109.5C62—C61—H61A109.5
H14A—C14—H14C109.5C62—C61—H61B109.5
H14B—C14—H14C109.5H61A—C61—H61B109.5
C22—C21—H21A109.5C62—C61—H61C109.5
C22—C21—H21B109.5H61A—C61—H61C109.5
H21A—C21—H21B109.5H61B—C61—H61C109.5
C22—C21—H21C109.5N6—C62—C61110.0 (3)
H21A—C21—H21C109.5N6—C62—H62A109.7
H21B—C21—H21C109.5C61—C62—H62A109.7
N2—C22—C21111.3 (3)N6—C62—H62B109.7
N2—C22—H22A109.4C61—C62—H62B109.7
C21—C22—H22A109.4H62A—C62—H62B108.2
N2—C22—H22B109.4N6—C63—C64110.3 (3)
C21—C22—H22B109.4N6—C63—H63A109.6
H22A—C22—H22B108.0C64—C63—H63A109.6
N2—C23—C24110.9 (3)N6—C63—H63B109.6
N2—C23—H23A109.5C64—C63—H63B109.6
C24—C23—H23A109.5H63A—C63—H63B108.1
N2—C23—H23B109.5C63—C64—H64A109.5
C24—C23—H23B109.5C63—C64—H64B109.5
H23A—C23—H23B108.0H64A—C64—H64B109.5
C23—C24—H24A109.5C63—C64—H64C109.5
C23—C24—H24B109.5H64A—C64—H64C109.5
H24A—C24—H24B109.5H64B—C64—H64C109.5
C13—N1—C12—C11176.9 (3)C43—N4—C42—C41179.1 (3)
C12—N1—C13—C14178.5 (3)C42—N4—C43—C44176.1 (3)
C23—N2—C22—C21179.2 (3)C53—N5—C52—C51178.7 (3)
C22—N2—C23—C24177.6 (3)C52—N5—C53—C54173.8 (3)
C33—N3—C32—C31179.4 (3)C63—N6—C62—C61179.9 (3)
C32—N3—C33—C34175.5 (3)C62—N6—C63—C64174.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl110.922.313.214 (3)166
N1—H1B···Cl210.922.433.298 (3)158
N2—H2A···Cl120.922.293.197 (3)168
N3—H3A···Cl130.922.313.210 (3)166
N3—H3B···Cl23i0.922.443.298 (3)155
N4—H4A···Cl140.922.303.205 (3)169
N4—H4B···Cl22ii0.922.443.306 (3)158
N5—H5A···Cl240.922.453.315 (3)156
N5—H5B···Cl320.922.273.190 (3)176
N6—H6A···Cl31iii0.922.493.320 (3)151
N6—H6B···Cl330.922.283.188 (3)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H12N)2[CuCl4]
Mr353.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.315 (4), 14.843 (8), 45.24 (2)
β (°) 90.258 (9)
V3)4912 (5)
Z12
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.45 × 0.25 × 0.15
Data collection
DiffractometerBruker APEX CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.421, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
28089, 10012, 8231
Rint0.055
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.09
No. of reflections10012
No. of parameters418
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.49

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Atwood & Barbour, 2003 and Barbour, 2001), X-SEED.

Selected geometric parameters (Å, º) top
Cu1—Cl132.2371 (12)Cu2—Cl222.2764 (13)
Cu1—Cl112.2410 (12)Cu2—Cl242.2775 (13)
Cu1—Cl142.2540 (12)Cu3—Cl312.2372 (13)
Cu1—Cl122.2570 (13)Cu3—Cl332.2636 (13)
Cu2—Cl232.2550 (13)Cu3—Cl322.2683 (12)
Cu2—Cl212.2570 (13)Cu3—Cl342.2700 (13)
Cl13—Cu1—Cl11146.02 (4)Cl23—Cu2—Cl2489.24 (4)
Cl13—Cu1—Cl1495.57 (5)Cl21—Cu2—Cl2490.72 (4)
Cl11—Cu1—Cl1494.24 (5)Cl22—Cu2—Cl24179.32 (3)
Cl13—Cu1—Cl1294.18 (5)Cl31—Cu3—Cl33159.70 (4)
Cl11—Cu1—Cl1295.64 (5)Cl31—Cu3—Cl3292.64 (5)
Cl14—Cu1—Cl12145.95 (4)Cl33—Cu3—Cl3291.02 (4)
Cl23—Cu2—Cl21177.81 (4)Cl31—Cu3—Cl3492.80 (5)
Cl23—Cu2—Cl2290.77 (4)Cl33—Cu3—Cl3490.17 (4)
Cl21—Cu2—Cl2289.25 (4)Cl32—Cu3—Cl34160.99 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl110.922.313.214 (3)165.8
N1—H1B···Cl210.922.433.298 (3)158.1
N2—H2A···Cl120.922.293.197 (3)168.4
N3—H3A···Cl130.922.313.210 (3)166.2
N3—H3B···Cl23i0.922.443.298 (3)155.2
N4—H4A···Cl140.922.303.205 (3)168.6
N4—H4B···Cl22ii0.922.443.306 (3)157.8
N5—H5A···Cl240.922.453.315 (3)156.4
N5—H5B···Cl320.922.273.190 (3)176.3
N6—H6A···Cl31iii0.922.493.320 (3)150.6
N6—H6B···Cl330.922.283.188 (3)171.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds