metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­gen-bonding motifs in the solid-state structure of ferroceneboronic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Cardiff University, PO Box 912, Park Place, Cardiff CF10 3TB, Wales
*Correspondence e-mail: aldridges@cf.ac.uk

(Received 27 February 2004; accepted 15 March 2004; online 24 March 2004)

At 180 K, the crystal structure of ferroceneboronic acid, [Fe(C5H5)(C5H6BO2)], consists of centrosymmetric [FcB(OH)2]2 dimers [Fc is (η5-C5H5)Fe(η5-C5H4)], formed by a pair of complementary O—H⋯O hydrogen-bonding interactions [O⋯H 1.97 Å and O⋯O 2.806 (3) Å]. The remaining two O-bound H atoms per [FcB(OH)2]2 moiety serve to link the dimeric units to adjacent dimers in a criss-cross fashion, very similar to that between hydrogen-bonded chains in solid Fe[η5-C5H4B(OH)2]2.

Comment

The title compound, ferroceneboronic acid, FcB(OH)2 [Fc is (η5-C5H5)Fe(η5-C5H4)], has been known since the late 1950s, having been initially synthesized by Nesmeyanov et al. (1959[Nesmeyanov, A. N., Sazonowa, V. A. & Drozd, V. N. (1959). Dokl. Akad. Nauk SSSR, 126, 1004-1008. (In Russian.)]) by the reaction of lithio­ferrocene with (BuO)3B, and subsequent hydro­lytic work-up. A number of alternative syntheses have been reported in the interim (Shechter & Helling, 1961[Shechter, H. & Helling, J. F. (1961). J. Org. Chem. 26, 1034-1037.]; McVey et al., 1967[McVey, S., Morrison, I. G. & Pauson, P. L. (1967). J. Chem. Soc. C, pp. 1847-1850.]), and continued interest in this compound and related derivatives is in part due to their implication in Suzuki-type coupling reactions (Hua et al., 2001[Hua, D. H., McGill, J. W., Ueda, M. & Stephany, H. A. (2001). J. Organomet. Chem. 637-639, 832-836.]) and in anion and neutral mol­ecule sensing (Dusemund et al., 1995[Dusemund, C., Sandanayake, K. R. A. S. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 333-334.]; Ori & Shinkai, 1995[Ori, A. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1771-1772.]). Although the solid-state structures of a number of related compounds, including the diboronic acid Fe[η5-C5H4B(OH)2]2 (Braga et al., 2003[Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142-2150.]), the cyclic boronic anhydride (FcBO)3 (Bats et al., 2002[Bats, J. W., Ma, K. & Wagner, M. (2002). Acta Cryst. C58, m129-m132.]), boronic esters (such as FcBO2C6H4-1,2; Aldridge & Bresner, 2003[Aldridge, S. & Bresner, C. (2003). Coord. Chem. Rev. 244, 71-92.]; Aldridge, Bresner & Fallis, 2004[Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.]) and [5]­trovacenyl­boronic acid, (η7-C7H7)V[η5-C5H4B(OH)2] (Elschenbroich et al., 2004[Elschenbroich, C., Wolf, M., Pebler, J. & Harms, K. (2004). Organometallics, 23, 454-459.]), have been determined, to our knowledge there have been no reports to date concerning the crystal structure of FcB(OH)2. The title compound, (I[link]), was isolated in this instance as the main organometallic product from the aerobic hydro­lysis of FcB(OCH2CH2)2S in a mixed toluene–hexane solvent (Aldridge et al., 2004[Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.]).

[Scheme 1]

The structural parameters relating to the individual FcB(OH)2 units of (I[link]) are unremarkable, with the geometries at the Fe and B centres mirroring those found in related compounds (Bats et al., 2002[Bats, J. W., Ma, K. & Wagner, M. (2002). Acta Cryst. C58, m129-m132.]; Braga et al., 2003[Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142-2150.]; Aldridge et al., 2004[Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.]). In particular, the small degree of bending of the boronic acid moiety out of the plane of the cyclo­penta­dienyl ligand [Cp centroid—C1—B1 176.4 (2)°] mirrors that observed in related ferrocenes containing weakly Lewis acidic boryl (BX2) substituents [e.g. 178.5 (3)° for FcBO2C2H2Ph2; Aldridge et al., 2004[Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.]], but contrasts with that found in the much more electron-deficient FcBBr2 (ca 162° for both crystallographically independent mol­ecules; Appel et al., 1996[Appel, A., Jäkle, F., Priermeier, T., Schmid, R. & Wagner, M. (1996). Organometallics, 15, 1188-1194.]; Aldridge & Bresner, 2003[Aldridge, S. & Bresner, C. (2003). Coord. Chem. Rev. 244, 71-92.]).

In the solid state, the molecular units of (I[link]) aggregate into centrosymmetric dimers, [FcB(OH)2]2, formed by a pair of complementary O—H⋯O hydrogen-bonding interactions characterized by O⋯H distances of 1.97 Å and O—H⋯O angles of 172°. The eight-membered ring thus formed is very similar to that seen in the crystal structures of Fe[η5-C5H4B(OH)2]2 and PhB(OH)2 (Braga et al., 2003[Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142-2150.]; Rettig & Trotter, 1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]). Indeed, the O⋯O separations between the two components of the dimer [2.806 (3) Å] are essentially identical to those found in Fe[η5-C5H4B(OH)2]2 [2.81 (1) Å]. The remaining two O-bound H atoms per [FcB(OH)2]2 moiety serve to link the dimeric units to adjacent dimers in a criss-cross fashion, very similar to the linking between hydrogen-bonded chains in solid Fe[η5-C5H4B(OH)2]2 (Braga et al., 2003[Braga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142-2150.]). The 16-membered ring thus formed (Fig. 2[link]) incorporates two [FcB(OH)2]2 dimers from within the same layer, bridged by two FcB(OH)2 moieties from different dimeric units of the intervening stack. The O⋯H and O⋯O distances [2.14 and 2.930 (3) Å, respectively] are somewhat longer than those found within each dimeric unit, but are consistent with the O⋯O distance found for the very similar structural motif present in Fe[η5-C5H4B(OH)2]2 [O⋯O 2.89 (1) Å].

[Figure 1]
Figure 1
A view of the molecular structure of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by spheres of arbitrary size.
[Figure 2]
Figure 2
A packing diagram, showing the hydrogen-bonding motifs both within and between the dimeric [FcB(OH)2]2 units in solid (I[link]). Distances are in Å.

Experimental

The title compound was isolated as the main organometallic product from the aerobic hydro­lysis of FcB(OCH2CH2)2S (Aldridge et al., 2004[Aldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.]). Attempted recrystallization of FcB(OCH2CH2)2S in air by hexane diffusion into a toluene solution led to the isolation of FcB(OH)2, (I[link]), as single yellow–orange crystals suitable for X-ray diffraction. Spectroscopic data obtained (11B, 1H and 13C NMR, and mass spectrometry) were in agreement with those reported previously (Shechter & Helling, 1961[Shechter, H. & Helling, J. F. (1961). J. Org. Chem. 26, 1034-1037.]; McVey et al., 1967[McVey, S., Morrison, I. G. & Pauson, P. L. (1967). J. Chem. Soc. C, pp. 1847-1850.]).

Crystal data
  • [Fe(C5H5)(C5H6BO2)]

  • Mr = 229.85

  • Monoclinic, P21/a

  • a = 10.0680 (7) Å

  • b = 7.0080 (5) Å

  • c = 14.0300 (13) Å

  • β = 106.320 (3)°

  • V = 950.02 (13) Å3

  • Z = 4

  • Dx = 1.607 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1453 reflections

  • θ = 2.9–27.5°

  • μ = 1.55 mm−1

  • T = 180 (2) K

  • Triangular plate, yellow

  • 0.13 × 0.10 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.824, Tmax = 0.955

  • 6820 measured reflections

  • 2130 independent reflections

  • 1398 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 27.4°

  • h = −12 → 12

  • k = −9 → 9

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.105

  • S = 1.03

  • 2130 reflections

  • 129 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0264P)2 + 0.3652P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—C6 2.020 (4)
Fe1—C10 2.032 (4)
Fe1—C7 2.039 (4)
Fe1—C5 2.043 (3)
Fe1—C4 2.047 (4)
Fe1—C3 2.048 (3)
Fe1—C2 2.049 (3)
Fe1—C9 2.053 (3)
Fe1—C1 2.054 (3)
Fe1—C8 2.056 (4)
C1—B1 1.551 (5)
B1—O2 1.375 (4)
B1—O1 1.376 (4)
O1—H1 0.84
O2—H2A 0.84
O2—B1—O1 118.0 (3)
O2—B1—C1 118.1 (3)
O1—B1—C1 123.9 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 2.14 2.930 (3) 156
O2—H2A⋯O1ii 0.84 1.97 2.806 (3) 172
Symmetry codes: (i) [{\script{1\over 2}}+x,-{\script{1\over 2}}-y,z]; (ii) -x,-1-y,-1-z.

Aromatic H atoms were constrained as riding atoms, with C—H distances of 0.95 Å. Hydroxyl H atoms were located in a difference Fourier map and refined as a rigid rotor, with O—H distances of 0.84 Å. The Uiso(H) values were fixed at 1.2 times Ueq(C) or 1.5 times Ueq(O).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: DIRDIF99 (Beurskens, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
[Fe(C5H5)(C5H6BO2)]F(000) = 472
Mr = 229.85Dx = 1.607 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 10.0680 (7) ÅCell parameters from 1453 reflections
b = 7.0080 (5) Åθ = 2.9–27.5°
c = 14.0300 (13) ŵ = 1.55 mm1
β = 106.320 (3)°T = 180 K
V = 950.02 (13) Å3Triangular plate, yellow
Z = 40.13 × 0.10 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1398 reflections with I > 2σ(I)
φ scansRint = 0.092
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 27.4°, θmin = 3.0°
Tmin = 0.824, Tmax = 0.955h = 1212
6820 measured reflectionsk = 99
2130 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.49 e Å3
2130 reflectionsΔρmin = 0.57 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.11105 (5)0.00607 (7)0.22534 (3)0.02057 (18)
C10.0238 (3)0.0392 (5)0.3745 (2)0.0178 (8)
C20.0747 (4)0.0449 (5)0.3306 (2)0.0214 (8)
H20.1610.00950.33040.026*
C30.0229 (4)0.2212 (5)0.2877 (3)0.0248 (9)
H30.06790.30480.25340.03*
C40.1073 (4)0.2525 (5)0.3044 (3)0.0255 (9)
H40.16470.3610.28380.031*
C50.1378 (4)0.0929 (5)0.3577 (2)0.0203 (8)
H50.21910.07650.37850.024*
C60.2554 (6)0.1909 (8)0.1623 (3)0.0616 (16)
H60.3090.26060.19640.074*
C70.1288 (6)0.2463 (6)0.1505 (3)0.0519 (13)
H70.08060.36070.17510.062*
C80.0843 (5)0.1061 (6)0.0966 (3)0.0388 (11)
H80.00060.10850.0780.047*
C90.1839 (4)0.0400 (6)0.0743 (2)0.0366 (11)
H90.17950.15360.03840.044*
C100.2912 (4)0.0128 (8)0.1148 (3)0.0544 (14)
H100.37280.05830.1110.065*
B10.0135 (4)0.2396 (6)0.4231 (3)0.0163 (9)
O10.1187 (2)0.3230 (3)0.45319 (16)0.0202 (6)
H10.1850.24610.44480.03*
O20.1077 (2)0.3400 (3)0.43684 (17)0.0212 (6)
H2A0.10290.44240.46670.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0174 (3)0.0271 (3)0.0165 (3)0.0004 (3)0.0035 (2)0.0031 (2)
C10.0145 (18)0.0231 (19)0.0138 (16)0.0024 (15)0.0007 (14)0.0025 (14)
C20.0137 (18)0.025 (2)0.0235 (19)0.0004 (15)0.0014 (15)0.0024 (15)
C30.022 (2)0.0234 (19)0.029 (2)0.0057 (17)0.0081 (17)0.0060 (17)
C40.027 (2)0.0185 (19)0.031 (2)0.0040 (17)0.0089 (17)0.0020 (17)
C50.021 (2)0.0210 (19)0.0207 (18)0.0043 (17)0.0087 (15)0.0028 (16)
C60.067 (4)0.091 (4)0.019 (2)0.054 (3)0.000 (2)0.003 (3)
C70.082 (4)0.040 (3)0.027 (2)0.007 (3)0.004 (3)0.007 (2)
C80.042 (3)0.057 (3)0.016 (2)0.009 (2)0.0051 (19)0.002 (2)
C90.044 (3)0.046 (3)0.0152 (19)0.010 (2)0.0008 (18)0.0119 (18)
C100.021 (2)0.117 (5)0.020 (2)0.004 (3)0.0025 (17)0.016 (3)
B10.010 (2)0.023 (2)0.0134 (19)0.0051 (17)0.0002 (15)0.0045 (17)
O10.0139 (13)0.0170 (12)0.0296 (14)0.0025 (10)0.0060 (11)0.0033 (11)
O20.0183 (14)0.0202 (13)0.0263 (14)0.0004 (11)0.0081 (11)0.0056 (11)
Geometric parameters (Å, º) top
Fe1—C62.020 (4)C4—C51.426 (5)
Fe1—C102.032 (4)C4—H40.95
Fe1—C72.039 (4)C5—H50.95
Fe1—C52.043 (3)C6—C71.387 (7)
Fe1—C42.047 (4)C6—C101.413 (7)
Fe1—C32.048 (3)C6—H60.95
Fe1—C22.049 (3)C7—C81.388 (6)
Fe1—C92.053 (3)C7—H70.95
Fe1—C12.054 (3)C8—C91.406 (6)
Fe1—C82.056 (4)C8—H80.95
C1—C21.433 (5)C9—C101.404 (6)
C1—C51.441 (5)C9—H90.95
C1—B11.551 (5)C10—H100.95
C2—C31.408 (5)B1—O21.375 (4)
C2—H20.95B1—O11.376 (4)
C3—C41.413 (5)O1—H10.84
C3—H30.95O2—H2A0.84
C6—Fe1—C1040.8 (2)C1—C2—H2125.4
C6—Fe1—C740.0 (2)Fe1—C2—H2126.5
C10—Fe1—C767.7 (2)C2—C3—C4108.3 (3)
C6—Fe1—C5109.83 (18)C2—C3—Fe169.92 (19)
C10—Fe1—C5113.32 (16)C4—C3—Fe169.8 (2)
C7—Fe1—C5135.38 (17)C2—C3—H3125.8
C6—Fe1—C4135.7 (2)C4—C3—H3125.8
C10—Fe1—C4110.18 (18)Fe1—C3—H3126
C7—Fe1—C4175.16 (19)C3—C4—C5108.2 (3)
C5—Fe1—C440.80 (13)C3—C4—Fe169.9 (2)
C6—Fe1—C3175.5 (2)C5—C4—Fe169.4 (2)
C10—Fe1—C3135.48 (19)C3—C4—H4125.9
C7—Fe1—C3144.1 (2)C5—C4—H4125.9
C5—Fe1—C368.39 (14)Fe1—C4—H4126.4
C4—Fe1—C340.36 (14)C4—C5—C1108.1 (3)
C6—Fe1—C2143.6 (2)C4—C5—Fe169.77 (19)
C10—Fe1—C2175.10 (18)C1—C5—Fe169.84 (19)
C7—Fe1—C2114.60 (18)C4—C5—H5125.9
C5—Fe1—C268.41 (14)C1—C5—H5125.9
C4—Fe1—C267.88 (14)Fe1—C5—H5126
C3—Fe1—C240.21 (13)C7—C6—C10108.2 (4)
C6—Fe1—C967.82 (17)C7—C6—Fe170.8 (3)
C10—Fe1—C940.20 (17)C10—C6—Fe170.1 (3)
C7—Fe1—C967.33 (17)C7—C6—H6125.9
C5—Fe1—C9143.53 (16)C10—C6—H6125.9
C4—Fe1—C9114.13 (15)Fe1—C6—H6124.8
C3—Fe1—C9110.92 (15)C6—C7—C8108.3 (4)
C2—Fe1—C9135.85 (16)C6—C7—Fe169.3 (3)
C6—Fe1—C1112.94 (16)C8—C7—Fe170.8 (2)
C10—Fe1—C1143.31 (17)C6—C7—H7125.8
C7—Fe1—C1109.94 (15)C8—C7—H7125.8
C5—Fe1—C141.20 (13)Fe1—C7—H7125.7
C4—Fe1—C168.94 (13)C7—C8—C9108.6 (4)
C3—Fe1—C168.71 (13)C7—C8—Fe169.5 (2)
C2—Fe1—C140.89 (13)C9—C8—Fe169.9 (2)
C9—Fe1—C1175.15 (15)C7—C8—H8125.7
C6—Fe1—C867.02 (19)C9—C8—H8125.7
C10—Fe1—C867.28 (17)Fe1—C8—H8126.4
C7—Fe1—C839.64 (17)C10—C9—C8107.4 (4)
C5—Fe1—C8174.84 (16)C10—C9—Fe169.1 (2)
C4—Fe1—C8144.27 (16)C8—C9—Fe170.1 (2)
C3—Fe1—C8115.06 (17)C10—C9—H9126.3
C2—Fe1—C8111.44 (16)C8—C9—H9126.3
C9—Fe1—C840.01 (15)Fe1—C9—H9126
C1—Fe1—C8135.39 (15)C9—C10—C6107.5 (4)
C2—C1—C5106.3 (3)C9—C10—Fe170.7 (2)
C2—C1—B1126.3 (3)C6—C10—Fe169.1 (2)
C5—C1—B1127.2 (3)C9—C10—H10126.2
C2—C1—Fe169.35 (18)C6—C10—H10126.2
C5—C1—Fe168.96 (17)Fe1—C10—H10125.6
B1—C1—Fe1123.0 (2)O2—B1—O1118.0 (3)
C3—C2—C1109.1 (3)O2—B1—C1118.1 (3)
C3—C2—Fe169.86 (19)O1—B1—C1123.9 (3)
C1—C2—Fe169.76 (18)B1—O1—H1109.5
C3—C2—H2125.5B1—O2—H2A109.5
C6—Fe1—C1—C2147.9 (3)C3—Fe1—C5—C181.9 (2)
C10—Fe1—C1—C2176.0 (3)C2—Fe1—C5—C138.53 (19)
C7—Fe1—C1—C2104.9 (3)C9—Fe1—C5—C1178.3 (2)
C5—Fe1—C1—C2117.8 (3)C10—Fe1—C6—C7118.5 (4)
C4—Fe1—C1—C280.1 (2)C5—Fe1—C6—C7138.4 (3)
C3—Fe1—C1—C236.7 (2)C4—Fe1—C6—C7176.9 (2)
C8—Fe1—C1—C267.9 (3)C2—Fe1—C6—C758.2 (4)
C6—Fe1—C1—C594.4 (3)C9—Fe1—C6—C780.7 (3)
C10—Fe1—C1—C558.2 (4)C1—Fe1—C6—C794.1 (3)
C7—Fe1—C1—C5137.3 (2)C8—Fe1—C6—C737.2 (3)
C4—Fe1—C1—C537.7 (2)C7—Fe1—C6—C10118.5 (4)
C3—Fe1—C1—C581.1 (2)C5—Fe1—C6—C10103.1 (3)
C2—Fe1—C1—C5117.8 (3)C4—Fe1—C6—C1064.6 (3)
C8—Fe1—C1—C5174.3 (2)C2—Fe1—C6—C10176.7 (3)
C6—Fe1—C1—B127.2 (4)C9—Fe1—C6—C1037.8 (3)
C10—Fe1—C1—B163.3 (4)C1—Fe1—C6—C10147.4 (3)
C7—Fe1—C1—B115.8 (4)C8—Fe1—C6—C1081.3 (3)
C5—Fe1—C1—B1121.5 (4)C10—C6—C7—C80.1 (5)
C4—Fe1—C1—B1159.2 (3)Fe1—C6—C7—C860.3 (3)
C3—Fe1—C1—B1157.4 (3)C10—C6—C7—Fe160.4 (3)
C2—Fe1—C1—B1120.7 (4)C10—Fe1—C7—C638.4 (3)
C8—Fe1—C1—B152.8 (4)C5—Fe1—C7—C662.8 (4)
C5—C1—C2—C30.4 (4)C3—Fe1—C7—C6176.8 (3)
B1—C1—C2—C3175.4 (3)C2—Fe1—C7—C6146.4 (3)
Fe1—C1—C2—C358.9 (2)C9—Fe1—C7—C682.0 (3)
C5—C1—C2—Fe159.4 (2)C1—Fe1—C7—C6102.3 (3)
B1—C1—C2—Fe1116.4 (3)C8—Fe1—C7—C6119.2 (4)
C6—Fe1—C2—C3176.1 (3)C6—Fe1—C7—C8119.2 (4)
C7—Fe1—C2—C3147.0 (2)C10—Fe1—C7—C880.8 (3)
C5—Fe1—C2—C381.6 (2)C5—Fe1—C7—C8178.0 (2)
C4—Fe1—C2—C337.5 (2)C3—Fe1—C7—C857.6 (4)
C9—Fe1—C2—C364.9 (3)C2—Fe1—C7—C894.4 (3)
C1—Fe1—C2—C3120.4 (3)C9—Fe1—C7—C837.2 (3)
C8—Fe1—C2—C3103.9 (2)C1—Fe1—C7—C8138.5 (3)
C6—Fe1—C2—C155.7 (4)C6—C7—C8—C90.2 (5)
C7—Fe1—C2—C192.5 (2)Fe1—C7—C8—C959.2 (3)
C5—Fe1—C2—C138.81 (19)C6—C7—C8—Fe159.3 (3)
C4—Fe1—C2—C182.9 (2)C6—Fe1—C8—C737.5 (3)
C3—Fe1—C2—C1120.4 (3)C10—Fe1—C8—C782.0 (3)
C9—Fe1—C2—C1174.7 (2)C4—Fe1—C8—C7175.3 (3)
C8—Fe1—C2—C1135.6 (2)C3—Fe1—C8—C7146.9 (3)
C1—C2—C3—C40.6 (4)C2—Fe1—C8—C7103.1 (3)
Fe1—C2—C3—C459.4 (2)C9—Fe1—C8—C7119.9 (4)
C1—C2—C3—Fe158.9 (2)C1—Fe1—C8—C762.4 (4)
C10—Fe1—C3—C2176.5 (2)C6—Fe1—C8—C982.4 (3)
C7—Fe1—C3—C257.6 (3)C10—Fe1—C8—C937.9 (3)
C5—Fe1—C3—C281.7 (2)C7—Fe1—C8—C9119.9 (4)
C4—Fe1—C3—C2119.4 (3)C4—Fe1—C8—C955.4 (4)
C9—Fe1—C3—C2137.5 (2)C3—Fe1—C8—C993.2 (3)
C1—Fe1—C3—C237.3 (2)C2—Fe1—C8—C9137.0 (3)
C8—Fe1—C3—C294.1 (2)C1—Fe1—C8—C9177.7 (2)
C10—Fe1—C3—C464.1 (3)C7—C8—C9—C100.3 (4)
C7—Fe1—C3—C4177.0 (3)Fe1—C8—C9—C1059.3 (3)
C5—Fe1—C3—C437.7 (2)C7—C8—C9—Fe159.0 (3)
C2—Fe1—C3—C4119.4 (3)C6—Fe1—C9—C1038.4 (3)
C9—Fe1—C3—C4103.1 (2)C7—Fe1—C9—C1081.8 (3)
C1—Fe1—C3—C482.1 (2)C5—Fe1—C9—C1055.3 (4)
C8—Fe1—C3—C4146.5 (2)C4—Fe1—C9—C1093.2 (3)
C2—C3—C4—C50.5 (4)C3—Fe1—C9—C10136.9 (3)
Fe1—C3—C4—C559.0 (2)C2—Fe1—C9—C10175.7 (3)
C2—C3—C4—Fe159.5 (2)C8—Fe1—C9—C10118.6 (4)
C6—Fe1—C4—C3176.8 (2)C6—Fe1—C9—C880.2 (3)
C10—Fe1—C4—C3137.8 (2)C10—Fe1—C9—C8118.6 (4)
C5—Fe1—C4—C3119.5 (3)C7—Fe1—C9—C836.8 (3)
C2—Fe1—C4—C337.4 (2)C5—Fe1—C9—C8173.9 (3)
C9—Fe1—C4—C394.4 (2)C4—Fe1—C9—C8148.2 (3)
C1—Fe1—C4—C381.5 (2)C3—Fe1—C9—C8104.5 (3)
C8—Fe1—C4—C359.0 (3)C2—Fe1—C9—C865.7 (3)
C6—Fe1—C4—C563.7 (3)C8—C9—C10—C60.4 (4)
C10—Fe1—C4—C5102.7 (2)Fe1—C9—C10—C659.5 (3)
C3—Fe1—C4—C5119.5 (3)C8—C9—C10—Fe159.9 (3)
C2—Fe1—C4—C582.1 (2)C7—C6—C10—C90.3 (5)
C9—Fe1—C4—C5146.1 (2)Fe1—C6—C10—C960.5 (3)
C1—Fe1—C4—C538.0 (2)C7—C6—C10—Fe160.8 (3)
C8—Fe1—C4—C5178.5 (3)C6—Fe1—C10—C9118.4 (4)
C3—C4—C5—C10.2 (4)C7—Fe1—C10—C980.8 (3)
Fe1—C4—C5—C159.5 (2)C5—Fe1—C10—C9147.8 (2)
C3—C4—C5—Fe159.3 (2)C4—Fe1—C10—C9103.9 (3)
C2—C1—C5—C40.1 (4)C3—Fe1—C10—C965.5 (3)
B1—C1—C5—C4175.6 (3)C1—Fe1—C10—C9174.6 (2)
Fe1—C1—C5—C459.5 (2)C8—Fe1—C10—C937.7 (3)
C2—C1—C5—Fe159.6 (2)C7—Fe1—C10—C637.6 (3)
B1—C1—C5—Fe1116.1 (3)C5—Fe1—C10—C693.8 (3)
C6—Fe1—C5—C4138.2 (3)C4—Fe1—C10—C6137.8 (3)
C10—Fe1—C5—C494.3 (3)C3—Fe1—C10—C6176.1 (3)
C7—Fe1—C5—C4175.6 (3)C9—Fe1—C10—C6118.4 (4)
C3—Fe1—C5—C437.3 (2)C1—Fe1—C10—C656.2 (4)
C2—Fe1—C5—C480.7 (2)C8—Fe1—C10—C680.6 (3)
C9—Fe1—C5—C459.0 (3)C2—C1—B1—O28.3 (5)
C1—Fe1—C5—C4119.2 (3)C5—C1—B1—O2176.8 (3)
C6—Fe1—C5—C1102.5 (3)Fe1—C1—B1—O295.7 (3)
C10—Fe1—C5—C1146.4 (2)C2—C1—B1—O1171.6 (3)
C7—Fe1—C5—C165.1 (3)C5—C1—B1—O13.3 (5)
C4—Fe1—C5—C1119.2 (3)Fe1—C1—B1—O184.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.842.142.930 (3)156
O2—H2A···O1ii0.841.972.806 (3)172
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1, z1.
 

Acknowledgements

The authors acknowledge funding from the EPSRC for this and related work.

References

First citationAldridge, S. & Bresner, C. (2003). Coord. Chem. Rev. 244, 71–92.  Web of Science CrossRef CAS Google Scholar
First citationAldridge, S., Bresner, C. & Fallis, I. A. (2004). In preparation.  Google Scholar
First citationAppel, A., Jäkle, F., Priermeier, T., Schmid, R. & Wagner, M. (1996). Organometallics, 15, 1188–1194.  CSD CrossRef CAS Web of Science Google Scholar
First citationBats, J. W., Ma, K. & Wagner, M. (2002). Acta Cryst. C58, m129–m132.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraga, D., Polito, M., Bracaccini, M., D'Addario, D., Tagliavini, E, Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationDusemund, C., Sandanayake, K. R. A. S. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 333–334.  CrossRef Web of Science Google Scholar
First citationElschenbroich, C., Wolf, M., Pebler, J. & Harms, K. (2004). Organometallics, 23, 454–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHua, D. H., McGill, J. W., Ueda, M. & Stephany, H. A. (2001). J. Organomet. Chem. 637–639, 832–836.  Web of Science CrossRef CAS Google Scholar
First citationMcVey, S., Morrison, I. G. & Pauson, P. L. (1967). J. Chem. Soc. C, pp. 1847–1850.  Google Scholar
First citationNesmeyanov, A. N., Sazonowa, V. A. & Drozd, V. N. (1959). Dokl. Akad. Nauk SSSR, 126, 1004–1008. (In Russian.)  CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOri, A. & Shinkai, S. (1995). J. Chem. Soc. Chem. Commun. pp. 1771–1772.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075.  CAS Google Scholar
First citationShechter, H. & Helling, J. F. (1961). J. Org. Chem. 26, 1034–1037.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds