organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-bromo-9-eth­­oxy-2-oxo-2H-pyrano[2,3-g]quinoline-8-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Campus do Valonguinho–Centro, Niterói, RJ 24020-150, Brazil, bDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and dLaboratory of Organic Synthesis of Far-Manguinhos/FIOCRUZ, R. Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: j.skakle@abdn.ac.uk

(Received 15 February 2006; accepted 27 February 2006; online 22 March 2006)

The title compound, C17H14BrNO5, was studied as part of a study on the biological properties of pyran­oquinoline derivatives. Alkyl­ation of the parent pyran­oquinoline was shown to have occurred at the carbonyl rather than the amino site. The mol­ecules are linked by a C—H⋯O hydrogen bond forming C(5) chains along [001].

Comment

As part of a study on the synthesis and biological activities of pyran­oquinoline derivatives (da Matta et al., 2000[Matta, A. S. D. da, de Oliviera C. D. & Romeiro, G. A. (2000). Heterocycl. Commun. 6, 511-514.]; de Oliveira, 2003[Oliveira, C. D. de (2003). PhD thesis, Universidade Federal Fluminense, Rio de Janeiro, Brazil.]), alkyl­ation of compound (1) (see scheme) using EtBr was carried out. Compound (1) contains two potential reaction sites, viz. the carbonyl and amino sites. While NMR spectroscopy strongly indicated that bromination had occurred predominantly at the carbonyl site to give the pyran­oquinoline derivative (2), confirmation was sought using X-ray crystallography.

[Scheme 1]

Structural analysis confirmed that alkyl­ation had indeed occurred at the carbonyl site (Fig. 1[link]). The pyran­oquinoline ring system in (2) was confirmed.

Hydrogen bonding occurs via C9—H9⋯O11i [C9⋯O11i = 3.367 (4) Å and C9—H9⋯O11i = 148°; symmetry code: (i) 1 − x, −y, z[{1\over 2}]], leading to C(5) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along [001] (Fig. 2[link]).

The compound is isostructural with the chloro analogue (de Oliveira et al., 2006[Oliveira, C. D. de, Romeiro, G. A., Skakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, o1494-o1495.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the formation of a C(5) chain (hydrogen bonds as dashed lines) along [001]. [Symmetry code: (i) 1 − x, −y, z[{1\over 2}].]

Experimental

The title compound was obtained from the reaction between EtBr and (1) in DMF solution in the presence of K2CO3 (de Oliveira, 2003[Oliveira, C. D. de (2003). PhD thesis, Universidade Federal Fluminense, Rio de Janeiro, Brazil.]). Pure product (2) was obtained from the reaction mixture by column chromatography using hexa­ne–ethyl acetate as the eluent (gradient 1:4 to 1:1). Crystals suitable for X-ray crystallography were grown from ethyl acetate (67% yield; m.p. 409–410 K).

Crystal data
  • C17H14BrNO5

  • Mr = 392.20

  • Orthorhombic, P n a 21

  • a = 7.2542 (8) Å

  • b = 19.542 (2) Å

  • c = 11.2855 (11) Å

  • V = 1599.9 (3) Å3

  • Z = 4

  • Dx = 1.628 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4263 reflections

  • θ = 3.5–25.3°

  • μ = 2.60 mm−1

  • T = 291 (2) K

  • Prism, pale yellow

  • 0.42 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.549, Tmax = 0.752

  • 15681 measured reflections

  • 5296 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 32.5°

  • h = −10 → 10

  • k = −27 → 29

  • l = −17 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 0.80

  • 5296 reflections

  • 219 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.013 (7)

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.96 Å (meth­yl) and Uiso(H) values of 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (meth­yl). PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 35, 7-13.]) was used for the hydrogen-bonding analysis.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Ethyl 5-bromo-9-ethoxy-2-oxo-2H-pyrano[2,3-g]quinoline-8-carboxylate top
Crystal data top
C17H14BrNO5F(000) = 792
Mr = 392.20Dx = 1.628 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4263 reflections
a = 7.2542 (8) Åθ = 3.5–25.3°
b = 19.542 (2) ŵ = 2.60 mm1
c = 11.2855 (11) ÅT = 291 K
V = 1599.9 (3) Å3Prism, pale yellow
Z = 40.42 × 0.22 × 0.11 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5296 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.549, Tmax = 0.752k = 2729
15681 measured reflectionsl = 1714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max < 0.001
5296 reflectionsΔρmax = 0.35 e Å3
219 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (7)
Special details top

Experimental. IR (KBr, cm-1): 2977, 1749, 1718, 1624, 1590, 1340, 1300. 1H NMR (DMSO-d6, 300 MHz): δ 1.51 (t, J = 7.2 Hz, 3H), 1.58 (t, J = 6.9 Hz, 3H), 4.43 (q, J = 6.9 Hz, 2H), 4.54 (q, J = 7.2 Hz, 2H), 6.89 (d, J = 9.9 Hz, 1H), 8.12 (s, 1H), 8.47 (d, J = 9.9 Hz, 1H), 9.19 (s, 1H). 13C NMR (DMSO-d6, 75 MHz): δ 14.1, 15.6, 61.9, 72.5, 108.7, 114.7, 120.7, 123.0, 15.1, 125.6, 142.1, 143.5, 150.7, 152.2, 158.7, 162.3, 164.4.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5465 (4)0.26565 (12)0.79440 (19)0.0403 (5)
C20.5712 (4)0.32561 (14)0.8664 (2)0.0431 (6)
O20.6179 (3)0.31203 (10)0.97852 (13)0.0573 (5)
C210.7329 (4)0.35662 (13)1.0487 (2)0.0532 (7)
H21A0.65900.39191.08610.064*
H21B0.82520.37840.99930.064*
C220.8232 (5)0.31265 (16)1.1406 (3)0.0746 (8)
H22A0.73080.29381.19200.112*
H22B0.90760.33981.18620.112*
H22C0.88900.27621.10240.112*
C30.5449 (4)0.38935 (12)0.8149 (2)0.0444 (6)
C310.5426 (4)0.45529 (14)0.8793 (2)0.0521 (7)
O310.6127 (3)0.50489 (9)0.81235 (17)0.0669 (6)
O320.4762 (3)0.46482 (10)0.97594 (16)0.0718 (6)
C320.5945 (5)0.57525 (15)0.8543 (3)0.0793 (10)
H32A0.65740.58080.92960.095*
H32B0.46560.58690.86500.095*
C330.6788 (6)0.61979 (16)0.7632 (3)0.0887 (11)
H33A0.80930.61180.76060.133*
H33B0.65590.66690.78260.133*
H33C0.62600.60960.68720.133*
C40.4998 (4)0.38994 (13)0.6918 (2)0.0476 (6)
H40.49160.43270.65590.057*
N50.4691 (3)0.33752 (10)0.62482 (17)0.0463 (5)
C60.4915 (3)0.27423 (11)0.67461 (19)0.0389 (5)
C70.4597 (3)0.21492 (13)0.6070 (2)0.0432 (6)
Br70.38160 (3)0.224825 (12)0.44876 (3)0.05827 (9)
C80.4855 (3)0.14966 (13)0.6517 (2)0.0424 (5)
C90.4568 (4)0.08662 (15)0.5862 (2)0.0555 (7)
H90.41380.08820.50860.067*
C100.4920 (4)0.02688 (15)0.6370 (3)0.0621 (8)
H100.47190.01280.59340.075*
C110.5597 (4)0.02044 (16)0.7560 (3)0.0585 (7)
O110.6006 (4)0.03111 (11)0.8062 (2)0.0831 (7)
O120.5771 (3)0.08092 (9)0.81977 (15)0.0539 (5)
C130.5460 (3)0.14392 (12)0.7696 (2)0.0427 (6)
C140.5759 (3)0.19997 (13)0.8405 (2)0.0447 (6)
H140.61530.19440.91830.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (12)0.0495 (15)0.0342 (12)0.0018 (11)0.0001 (10)0.0032 (10)
C20.0450 (16)0.0529 (17)0.0314 (13)0.0058 (12)0.0022 (10)0.0016 (11)
O20.0836 (14)0.0540 (10)0.0344 (11)0.0195 (10)0.0123 (8)0.0045 (7)
C210.067 (2)0.0550 (16)0.0381 (13)0.0098 (14)0.0046 (12)0.0074 (11)
C220.090 (2)0.082 (2)0.0516 (16)0.0017 (19)0.0200 (16)0.0001 (15)
C30.0458 (14)0.0496 (16)0.0377 (13)0.0007 (12)0.0012 (11)0.0010 (11)
C310.0584 (18)0.0506 (18)0.0473 (17)0.0066 (13)0.0022 (13)0.0035 (13)
O310.0949 (16)0.0458 (11)0.0599 (12)0.0074 (11)0.0144 (10)0.0113 (9)
O320.0991 (17)0.0641 (12)0.0522 (13)0.0133 (12)0.0118 (10)0.0052 (9)
C320.113 (3)0.0495 (17)0.075 (2)0.0023 (18)0.007 (2)0.0234 (15)
C330.118 (3)0.0493 (18)0.099 (3)0.007 (2)0.004 (2)0.0037 (18)
C40.0507 (17)0.0478 (15)0.0444 (13)0.0039 (12)0.0004 (11)0.0029 (12)
N50.0532 (13)0.0467 (13)0.0390 (11)0.0026 (10)0.0036 (10)0.0027 (9)
C60.0360 (13)0.0481 (14)0.0326 (11)0.0006 (12)0.0013 (9)0.0032 (11)
C70.0403 (13)0.0601 (17)0.0292 (11)0.0006 (12)0.0008 (9)0.0018 (10)
Br70.06948 (16)0.06983 (14)0.03550 (11)0.00117 (13)0.01183 (16)0.00210 (16)
C80.0418 (14)0.0484 (15)0.0370 (12)0.0008 (11)0.0052 (10)0.0030 (10)
C90.0608 (17)0.0620 (18)0.0438 (15)0.0048 (15)0.0020 (13)0.0078 (13)
C100.078 (2)0.0468 (18)0.0613 (18)0.0034 (16)0.0012 (16)0.0107 (14)
C110.0665 (19)0.0496 (17)0.0595 (17)0.0031 (15)0.0010 (15)0.0029 (14)
O110.115 (2)0.0488 (13)0.0849 (16)0.0071 (13)0.0164 (13)0.0045 (12)
O120.0656 (13)0.0456 (10)0.0505 (11)0.0022 (9)0.0056 (8)0.0022 (8)
C130.0406 (13)0.0495 (15)0.0380 (13)0.0019 (11)0.0012 (10)0.0079 (11)
C140.0477 (16)0.0516 (14)0.0349 (12)0.0052 (12)0.0031 (10)0.0038 (11)
Geometric parameters (Å, º) top
C1—C141.401 (3)C33—H33A0.9600
C1—C61.419 (3)C33—H33B0.9600
C1—C21.437 (3)C33—H33C0.9600
C2—O21.336 (3)C4—N51.292 (3)
C2—C31.388 (3)C4—H40.9300
O2—C211.443 (3)N5—C61.368 (3)
C21—C221.497 (4)C6—C71.407 (3)
C21—H21A0.9700C7—C81.384 (3)
C21—H21B0.9700C7—Br71.883 (2)
C22—H22A0.9600C8—C131.406 (3)
C22—H22B0.9600C8—C91.452 (4)
C22—H22C0.9600C9—C101.326 (4)
C3—C41.427 (3)C9—H90.9300
C3—C311.480 (3)C10—C111.435 (4)
C31—O321.206 (3)C10—H100.9300
C31—O311.330 (3)C11—O111.193 (3)
O31—C321.460 (3)C11—O121.390 (3)
C32—C331.480 (5)O12—C131.374 (3)
C32—H32A0.9700C13—C141.373 (3)
C32—H32B0.9700C14—H140.9300
C14—C1—C6120.3 (2)H33A—C33—H33B109.5
C14—C1—C2121.2 (2)C32—C33—H33C109.5
C6—C1—C2118.5 (2)H33A—C33—H33C109.5
O2—C2—C3127.6 (2)H33B—C33—H33C109.5
O2—C2—C1113.9 (2)N5—C4—C3127.0 (2)
C3—C2—C1118.5 (2)N5—C4—H4116.5
C2—O2—C21123.1 (2)C3—C4—H4116.5
O2—C21—C22106.6 (2)C4—N5—C6117.1 (2)
O2—C21—H21A110.4N5—C6—C7120.2 (2)
C22—C21—H21A110.4N5—C6—C1122.1 (2)
O2—C21—H21B110.4C7—C6—C1117.7 (2)
C22—C21—H21B110.4C8—C7—C6122.6 (2)
H21A—C21—H21B108.6C8—C7—Br7118.76 (18)
C21—C22—H22A109.5C6—C7—Br7118.63 (18)
C21—C22—H22B109.5C7—C8—C13117.4 (2)
H22A—C22—H22B109.5C7—C8—C9125.2 (2)
C21—C22—H22C109.5C13—C8—C9117.3 (2)
H22A—C22—H22C109.5C10—C9—C8120.0 (3)
H22B—C22—H22C109.5C10—C9—H9120.0
C2—C3—C4116.5 (2)C8—C9—H9120.0
C2—C3—C31125.2 (2)C9—C10—C11123.2 (3)
C4—C3—C31118.0 (2)C9—C10—H10118.4
O32—C31—O31123.6 (3)C11—C10—H10118.4
O32—C31—C3125.7 (3)O11—C11—O12116.7 (3)
O31—C31—C3110.5 (2)O11—C11—C10127.1 (3)
C31—O31—C32117.9 (2)O12—C11—C10116.2 (3)
O31—C32—C33106.9 (2)C13—O12—C11122.3 (2)
O31—C32—H32A110.3C14—C13—O12116.7 (2)
C33—C32—H32A110.3C14—C13—C8122.5 (2)
O31—C32—H32B110.3O12—C13—C8120.9 (2)
C33—C32—H32B110.3C13—C14—C1119.4 (2)
H32A—C32—H32B108.6C13—C14—H14120.3
C32—C33—H33A109.5C1—C14—H14120.3
C32—C33—H33B109.5
C14—C1—C2—O21.9 (4)C2—C1—C6—C7177.1 (2)
C6—C1—C2—O2178.2 (2)N5—C6—C7—C8178.0 (2)
C14—C1—C2—C3178.3 (2)C1—C6—C7—C82.1 (4)
C6—C1—C2—C31.6 (4)N5—C6—C7—Br71.2 (3)
C3—C2—O2—C2131.6 (4)C1—C6—C7—Br7178.68 (18)
C1—C2—O2—C21148.6 (2)C6—C7—C8—C130.0 (4)
C2—O2—C21—C22154.4 (3)Br7—C7—C8—C13179.23 (18)
O2—C2—C3—C4178.4 (3)C6—C7—C8—C9179.4 (2)
C1—C2—C3—C41.8 (4)Br7—C7—C8—C90.1 (4)
O2—C2—C3—C317.6 (5)C7—C8—C9—C10177.7 (3)
C1—C2—C3—C31172.2 (3)C13—C8—C9—C101.7 (4)
C2—C3—C31—O3238.1 (5)C8—C9—C10—C110.4 (5)
C4—C3—C31—O32135.7 (3)C9—C10—C11—O11177.1 (3)
C2—C3—C31—O31146.4 (3)C9—C10—C11—O123.7 (4)
C4—C3—C31—O3139.7 (4)O11—C11—O12—C13175.6 (3)
O32—C31—O31—C325.1 (4)C10—C11—O12—C135.1 (4)
C3—C31—O31—C32170.5 (3)C11—O12—C13—C14177.1 (2)
C31—O31—C32—C33178.7 (3)C11—O12—C13—C83.3 (4)
C2—C3—C4—N54.9 (4)C7—C8—C13—C141.3 (4)
C31—C3—C4—N5169.5 (3)C9—C8—C13—C14179.3 (2)
C3—C4—N5—C63.8 (4)C7—C8—C13—O12179.1 (2)
C4—N5—C6—C7179.7 (2)C9—C8—C13—O120.3 (4)
C4—N5—C6—C10.2 (4)O12—C13—C14—C1179.9 (2)
C14—C1—C6—N5177.1 (2)C8—C13—C14—C10.4 (4)
C2—C1—C6—N52.8 (4)C6—C1—C14—C131.8 (4)
C14—C1—C6—C73.0 (4)C2—C1—C14—C13178.3 (2)
 

Acknowledgements

We thank the University of Aberdeen for funding of the X-ray diffractometer, and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury Laboratory (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationMatta, A. S. D. da, de Oliviera C. D. & Romeiro, G. A. (2000). Heterocycl. Commun. 6, 511–514.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.  Google Scholar
First citationOliveira, C. D. de (2003). PhD thesis, Universidade Federal Fluminense, Rio de Janeiro, Brazil.  Google Scholar
First citationOliveira, C. D. de, Romeiro, G. A., Skakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, o1494–o1495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 35, 7–13.  Web of Science CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds