Download citation
Download citation
link to html
The one-dimensional polymeric structure of sodium di­aqua­fenamate–water (1/1) was studied by X-ray diffraction. The sodium cation is coordinated to one oxygen atom of the carboxyl­ate group and to four water oxygen atoms. To characterize the Na—O bonds, the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) approaches have been used. Both methods confirmed that the Na—O bonds are very weak, comparable with the weak N—H...O intramolecular hydrogen bond. The polymeric structure is stabilized by the interaction of the sodium cation with the surrounding water molecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520619009065/wf5146sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619009065/wf5146Isup2.hkl
Contains datablock I

gz

Gzipped compressed file https://doi.org/10.1107/S2052520619009065/wf5146sup3.wfn.gz
Fenamic acid computational file in wfn format

gz

Gzipped compressed file https://doi.org/10.1107/S2052520619009065/wf5146sup4.wfn.gz
Sodium fenamate computational file in wfn format

gz

Gzipped compressed file https://doi.org/10.1107/S2052520619009065/wf5146sup5.wfn.gz
Sodium diaquafenamate-water (1/1) computational file in wfn format

gz

Gzipped compressed file https://doi.org/10.1107/S2052520619009065/wf5146sup6.wfn.gz
Fenamic acid dimer computational file in wfn format

CCDC reference: 1936254

Computing details top

Data collection: 'CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37)'; cell refinement: 'CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37)'; data reduction: 'CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(I) top
Crystal data top
C13H14NNaO4·H2OF(000) = 608
Mr = 289.26Dx = 1.341 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 6.059 (3) ÅCell parameters from 3722 reflections
b = 37.243 (7) Åθ = 2.4–68.0°
c = 6.577 (3) ŵ = 1.12 mm1
β = 105.12 (3)°T = 293 K
V = 1432.8 (10) Å3Block, colourless
Z = 40.75 × 0.69 × 0.44 mm
Data collection top
Xcalibur with CCD Onyx detector
diffractometer
2331 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.032
ω scansθmax = 68.1°, θmin = 2.4°
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
h = 47
Tmin = 0.918, Tmax = 0.952k = 4435
4755 measured reflectionsl = 77
2603 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.1355P)2 + 0.2705P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2603 reflectionsΔρmax = 0.31 e Å3
184 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na0.57350 (12)0.98451 (2)0.76298 (11)0.0382 (3)
O10.8816 (2)0.94185 (4)0.8034 (2)0.0359 (4)
O20.7285 (2)0.91140 (4)0.5121 (2)0.0388 (4)
N10.9154 (3)0.85053 (6)0.4391 (3)0.0493 (5)
H1N0.796 (5)0.8628 (9)0.432 (5)0.059*
C10.8858 (3)0.91630 (5)0.6772 (3)0.0280 (4)
C21.0883 (3)0.89173 (5)0.7230 (3)0.0298 (4)
C31.1010 (3)0.86115 (5)0.5984 (3)0.0337 (4)
C41.3041 (4)0.84086 (6)0.6461 (3)0.0419 (5)
H41.31480.82070.56550.050*
C51.4874 (3)0.85035 (6)0.8105 (4)0.0458 (5)
H51.62130.83690.83760.055*
C61.4736 (3)0.87962 (6)0.9350 (3)0.0446 (5)
H61.59630.88561.04780.054*
C71.2765 (3)0.89989 (5)0.8909 (3)0.0380 (5)
H71.26840.91960.97540.046*
C80.9074 (3)0.82217 (5)0.2970 (3)0.0352 (4)
C90.7318 (4)0.79716 (6)0.2690 (3)0.0444 (5)
H90.62900.79840.35200.053*
C100.7088 (4)0.77064 (6)0.1198 (4)0.0523 (6)
H100.58950.75420.10140.063*
C110.8611 (4)0.76813 (6)0.0033 (4)0.0515 (6)
H110.84570.75000.10340.062*
C121.0362 (4)0.79271 (7)0.0238 (4)0.0502 (6)
H121.13980.79110.05820.060*
C131.0592 (3)0.81967 (6)0.1715 (4)0.0436 (5)
H131.17700.83630.18730.052*
O1W0.2411 (2)0.99281 (4)0.8830 (2)0.0409 (4)
H1W10.17491.01220.82820.061*
H1W20.13480.97690.86130.061*
O2W0.4009 (2)0.96176 (4)0.4184 (2)0.0425 (4)
H2W10.49230.94370.43680.064*
H2W20.26690.95240.37440.064*
O3W0.9539 (3)0.94091 (5)0.2297 (2)0.0449 (4)
H3W10.88850.92620.29620.067*
H3W20.93290.93180.10620.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na0.0323 (4)0.0503 (5)0.0303 (5)0.0050 (3)0.0048 (3)0.0040 (3)
O10.0355 (7)0.0389 (8)0.0310 (7)0.0021 (5)0.0047 (5)0.0060 (5)
O20.0308 (7)0.0468 (8)0.0329 (7)0.0071 (5)0.0021 (5)0.0072 (6)
N10.0325 (9)0.0545 (11)0.0527 (11)0.0089 (7)0.0038 (8)0.0246 (9)
C10.0278 (8)0.0327 (9)0.0236 (8)0.0021 (6)0.0069 (6)0.0018 (6)
C20.0272 (8)0.0342 (9)0.0264 (8)0.0002 (7)0.0042 (7)0.0030 (7)
C30.0290 (9)0.0382 (10)0.0312 (9)0.0006 (7)0.0029 (7)0.0015 (7)
C40.0370 (10)0.0412 (11)0.0436 (11)0.0090 (8)0.0031 (8)0.0028 (8)
C50.0315 (9)0.0518 (13)0.0487 (12)0.0100 (8)0.0009 (9)0.0082 (9)
C60.0313 (9)0.0548 (13)0.0384 (10)0.0007 (8)0.0076 (8)0.0028 (9)
C70.0388 (10)0.0391 (10)0.0306 (9)0.0017 (8)0.0007 (8)0.0002 (7)
C80.0326 (9)0.0350 (10)0.0342 (10)0.0032 (7)0.0019 (7)0.0040 (7)
C90.0421 (11)0.0497 (12)0.0429 (11)0.0059 (9)0.0139 (8)0.0057 (9)
C100.0570 (13)0.0403 (12)0.0572 (14)0.0107 (9)0.0109 (11)0.0082 (10)
C110.0618 (14)0.0439 (12)0.0452 (12)0.0100 (10)0.0072 (10)0.0125 (9)
C120.0484 (12)0.0618 (14)0.0429 (11)0.0120 (10)0.0161 (10)0.0053 (10)
C130.0364 (10)0.0459 (11)0.0481 (12)0.0017 (8)0.0103 (8)0.0006 (9)
O1W0.0314 (7)0.0460 (8)0.0435 (8)0.0032 (5)0.0063 (6)0.0058 (6)
O2W0.0343 (7)0.0439 (8)0.0434 (8)0.0018 (5)0.0004 (6)0.0034 (6)
O3W0.0426 (8)0.0596 (9)0.0301 (7)0.0075 (6)0.0052 (6)0.0010 (6)
Geometric parameters (Å, º) top
Na—O2Wi2.3553 (18)C6—H60.9300
Na—O1W2.3675 (19)C7—H70.9300
Na—O2W2.3898 (19)C8—C131.389 (3)
Na—O12.4129 (18)C8—C91.390 (3)
Na—O1Wii2.4559 (19)C9—C101.374 (3)
Na—Nai3.533 (2)C9—H90.9300
Na—Naii3.646 (2)C10—C111.380 (4)
Na—H2W12.5696C10—H100.9300
O1—C11.267 (2)C11—C121.377 (4)
O2—C11.257 (2)C11—H110.9300
N1—C31.380 (3)C12—C131.379 (3)
N1—C81.403 (3)C12—H120.9300
N1—H1N0.85 (3)C13—H130.9300
C1—C21.497 (2)O1W—Naii2.4559 (19)
C2—C71.398 (3)O1W—H1W10.8572
C2—C31.417 (3)O1W—H1W20.8582
C3—C41.408 (3)O2W—Nai2.3553 (19)
C4—C51.379 (3)O2W—H2W10.8593
C4—H40.9300O2W—H2W20.8611
C5—C61.379 (3)O3W—H3W10.8590
C5—H50.9300O3W—H3W20.8587
C6—C71.379 (3)
O2Wi—Na—O1W103.43 (7)C5—C4—H4119.5
O2Wi—Na—O2W83.76 (7)C3—C4—H4119.5
O1W—Na—O2W99.36 (7)C4—C5—C6120.48 (19)
O2Wi—Na—O1117.64 (6)C4—C5—H5119.8
O1W—Na—O1138.62 (7)C6—C5—H5119.8
O2W—Na—O190.33 (6)C7—C6—C5119.42 (18)
O2Wi—Na—O1Wii96.53 (7)C7—C6—H6120.3
O1W—Na—O1Wii81.81 (6)C5—C6—H6120.3
O2W—Na—O1Wii178.71 (6)C6—C7—C2122.04 (19)
O1—Na—O1Wii88.42 (6)C6—C7—H7119.0
O2Wi—Na—Nai42.25 (4)C2—C7—H7119.0
O1W—Na—Nai105.35 (6)C13—C8—C9118.61 (19)
O2W—Na—Nai41.51 (4)C13—C8—N1122.21 (19)
O1—Na—Nai108.25 (5)C9—C8—N1119.00 (19)
O1Wii—Na—Nai138.77 (6)C10—C9—C8120.5 (2)
O2Wi—Na—Naii103.15 (6)C10—C9—H9119.7
O1W—Na—Naii41.81 (4)C8—C9—H9119.7
O2W—Na—Naii141.17 (6)C9—C10—C11120.6 (2)
O1—Na—Naii117.95 (5)C9—C10—H10119.7
O1Wii—Na—Naii39.99 (4)C11—C10—H10119.7
Nai—Na—Naii132.73 (5)C12—C11—C10119.3 (2)
O2Wi—Na—H2W195.9C12—C11—H11120.3
O1W—Na—H2W1111.2C10—C11—H11120.3
O2W—Na—H2W119.5C11—C12—C13120.5 (2)
O1—Na—H2W171.1C11—C12—H12119.7
O1Wii—Na—H2W1159.3C13—C12—H12119.7
Nai—Na—H2W155.3C12—C13—C8120.4 (2)
Naii—Na—H2W1149.9C12—C13—H13119.8
C1—O1—Na124.68 (11)C8—C13—H13119.8
C3—N1—C8126.98 (18)Na—O1W—Naii98.19 (6)
C3—N1—H1N114 (2)Na—O1W—H1W1108.4
C8—N1—H1N119 (2)Naii—O1W—H1W199.1
O2—C1—O1122.33 (16)Na—O1W—H1W2121.4
O2—C1—C2118.81 (16)Naii—O1W—H1W2122.2
O1—C1—C2118.83 (15)H1W1—O1W—H1W2105.1
C7—C2—C3118.37 (17)Nai—O2W—Na96.24 (7)
C7—C2—C1118.87 (17)Nai—O2W—H2W1127.6
C3—C2—C1122.71 (15)Na—O2W—H2W192.1
N1—C3—C4120.47 (18)Nai—O2W—H2W2110.8
N1—C3—C2120.86 (17)Na—O2W—H2W2127.1
C4—C3—C2118.61 (17)H2W1—O2W—H2W2104.3
C5—C4—C3121.0 (2)H3W1—O3W—H3W2104.8
Na—O1—C1—O22.2 (2)C4—C5—C6—C71.5 (3)
Na—O1—C1—C2179.69 (11)C5—C6—C7—C20.1 (3)
O2—C1—C2—C7171.67 (17)C3—C2—C7—C61.4 (3)
O1—C1—C2—C76.5 (2)C1—C2—C7—C6176.35 (18)
O2—C1—C2—C36.0 (3)C3—N1—C8—C1355.3 (3)
O1—C1—C2—C3175.79 (17)C3—N1—C8—C9129.6 (2)
C8—N1—C3—C46.4 (4)C13—C8—C9—C100.2 (3)
C8—N1—C3—C2176.3 (2)N1—C8—C9—C10175.1 (2)
C7—C2—C3—N1175.91 (19)C8—C9—C10—C110.7 (4)
C1—C2—C3—N16.4 (3)C9—C10—C11—C120.5 (4)
C7—C2—C3—C41.5 (3)C10—C11—C12—C130.3 (4)
C1—C2—C3—C4176.21 (18)C11—C12—C13—C80.8 (3)
N1—C3—C4—C5177.3 (2)C9—C8—C13—C120.5 (3)
C2—C3—C4—C50.1 (3)N1—C8—C13—C12175.7 (2)
C3—C4—C5—C61.4 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.85 (3)1.96 (3)2.634 (2)136 (3)
O1W—H1W1···O3Wi0.861.912.753 (2)167
O1W—H1W2···O1iii0.861.982.833 (2)178
O2W—H2W2···O3Wiii0.861.932.779 (2)166
O3W—H3W1···O20.861.992.801 (2)156
O3W—H3W2···O1iv0.861.972.722 (2)146
Symmetry codes: (i) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y, z1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds