research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[di-μ3-acetato-tetra­aqua­bis­­(μ2-cyclo­hexane-1,4-di­carboxyl­ato)dilanth­an­um(III)] dihydrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mahatma Gandhi College, Thiruvananthapuram 695 004, Kerala, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 2 September 2017; accepted 7 November 2017; online 21 November 2017)

The title compound, {[La2(CH3COO)2(C8H10O4)2(H2O)4]·2H2O}n or [La2(ac)2(e,a-cis-1,4-chdc)2(H2O)4]·2H2O, where ac is acetate and 1,4-chdc is cyclo­hexane-1,4-di­carboxyl­ate anion, is a binuclear lanthanum(III) complex. Each metal atom is deca­coordinated by four O atoms from two distinct 1,4-chdc2− ligands, four O atoms from three acetate groups and two O atoms from coordinated water mol­ecules to form a distorted bicapped square-anti­prismatic geometry. Two non-coordinated water mol­ecules are also present in the formula unit. The most remarkable feature of this compound is that it possesses a only cis conformation for cyclo­hexane-1,4-di­carb­oxy­lic acid, although the raw material consists of a mixture of cis and trans isomers. The μ3-η2:η2 coordination mode of the bridging acetate group and the flexible di­carboxyl­ate fragments of 1,4-chdc2− results in the formation of infinite two-dimensional lanthanide–carboxyl­ate layers within the crystal structure. The directionality of strong inter­molecular O—H⋯O and weak C—H⋯O inter­actions provides robustness to the layers, which leads to the construction of a three-dimensional supra­molecular network. The crystal studied was refined as a two-component twin.

1. Chemical context

1,4-Cyclo­hexa­nedi­carboxyic acid (1,4-chdcH2) is a flexible alicyclic, ditopic ligand having a chair-type backbone structure, which has been used for the construction of many coord­ination polymers (CPs) with remarkable architectures (Liu et al., 2010[Liu, T. F., Lü, J. & Cao, R. (2010). CrystEngComm, 12, 660-670.]). It can exist in three different conformations – two trans isomers, (a,a) and (e,e), and one cis (e,a) form. From a thermodynamical point of view, the trans (e,e) form is the most stable of the three different conformations as a result of the equatorial–equatorial –COOH groups and the trans (a,a) isomer is the least stable because of 1,3-diaxial hindrance (Yu et al., 2007[Yu, M., Xie, L., Liu, S., Wang, C., Cheng, H., Ren, Y. & Su, Z. (2007). Inorg. Chim. Acta, 360, 3108-3112.]; Gong et al., 2005[Gong, Y., Hu, C. W., Li, H., Huang, K. L. & Tang, W. (2005). J. Solid State Chem. 178, 3152-3158.]; Bi et al., 2003[Bi, W., Cao, R., Sun, D., Yuan, D., Li, X. & Hong, M. (2003). Inorg. Chem. Commun. 6, 1426-1428.]; Du et al., 2005[Du, M., Cai, H. & Zhao, X. J. (2005). Inorg. Chim. Acta, 358, 4034-4038.]; Chen et al., 2014[Chen, Z. H., Zhao, Y., Wang, P., Chen, S. S. & Sun, W. Y. (2014). Polyhedron, 67, 253-263.])·Theoretical calculations suggest that the isomers tend to cause conformational inversion within the ligand structure due to the flexibility of the C—C bond rotation and also because of the extremely low free energy change between them (Qiblawi et al., 2013[Qiblawi, S. H., Sposato, L. K. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 407, 297-305.]; Lin & Tong, 2011[Lin, Z. & Tong, M. L. (2011). Coord. Chem. Rev. 255, 421-450.]; Liu et al., 2010[Liu, T. F., Lü, J. & Cao, R. (2010). CrystEngComm, 12, 660-670.]). Furthermore, the isomeric separation of the organic ligand can be controlled by several factors such as the pH of the solution, the nature of the metal ion, the co-ligand, the reaction solvent and the temperature (Lin & Tong, 2011[Lin, Z. & Tong, M. L. (2011). Coord. Chem. Rev. 255, 421-450.]; Liu et al., 2010[Liu, T. F., Lü, J. & Cao, R. (2010). CrystEngComm, 12, 660-670.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of one crystallographically unique La metal ion, a fully deprotonated 1,4-chdc2− anion, an acetate moiety and three water mol­ecules (two coordinated and one non-coordinated). From the mol­ecular structure (Fig. 1[link]), it is evident that each LaIII atom has a distorted bicapped square-anti­prismatic coordination sphere defined by four oxygen atoms from two distinct 1,4-chdc2− ligands (O1, O2, O7, O8), four oxygen atoms from three acetate groups (O5, O6, O5′, O6′) and two oxygen atoms from coordinated water mol­ecules (O3, O4) to form a [LaO10] coordination polyhedron (Fig. 2[link]). Of the three prevalent conformations of 1,4-chdcH2, low temperature usually favours the cis (e,a) and high temperature favours the trans (e,e) conformational compounds (Lin & Tong, 2011[Lin, Z. & Tong, M. L. (2011). Coord. Chem. Rev. 255, 421-450.]; Lu et al., 2008[Lü, J., Bi, W. H., Xiao, F. X., Batten, S. R. & Cao, R. (2008). Chem. Asian J. 3, 542-547.]; Bi et al., 2004[Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X., Wang, Y. Q., Li, X. J. & Hong, M. C. (2004). Chem. Commun. pp. 2104-2105.]). Here, the bent structure of the organic linker possesses an L-shaped cis (e,a) conformation within the crystal structure. The corresponding La—O bond lengths are in the range 2.506 (8)—2.792 (7) Å and the O—La—O bond angles vary from 46.51 (19) to 170.7 (2)°. The La—O bond distances are comparable with those in several reported structures in which 1,4-cyclo­hexa­nedi­carb­oxy­lic acid exists in various coordination modes and conformations (Rao et al., 2007[Rao, K. P., Thirumurugan, A. & Rao, C. N. R. (2007). Chem. Eur. J. 13, 3193-3201.]; Qi et al., 2008[Qi, Y., Li, H., Liu, C. & Hu, C. (2008). J. Coord. Chem. 61, 315-321.]).

[Figure 1]
Figure 1
ORTEP view of the mol­ecular structure of the title complex with the atom-numbering scheme and ellipsoids drawn at the 50% probability level..
[Figure 2]
Figure 2
Bicapped square-anti­prismatic geometry of an [LaO10] polyhedron. Displacement ellipsoids are drawn at the 80% probability level.

The bridging μ3-η2:η2 coordination mode (each oxygen atom connects two metal atoms) of the acetate group joins two [LaO10] polyhedra by edge sharing to form a dimeric structure. The dimers are then inter­linked by La—O—La bonding and as a consequence of this, infinite zigzag 1D [La2O2] chains are formed. Within these chains, LaLa non-bonding distances are found to be 4.5835 (9) and 4.4125 (9) Å. Additionally, the bis-bidentate chelating μ2-η1:η1:η1:η1 coordination mode of the di­carboxyl­ate group of 1,4-chdc2− connects two metal atoms and hence converts it into a 2D coordination polymeric structure parallel to the ab plane. A perspective view of the packing along the c axis in a wireframe model (Fig. 3[link]) shows the formation of infinite 2D lanthanide–carboxyl­ate layers. The [La2O2] chains are then further inter­connected by a di­carboxyl­ate anion from two 1,4-chdc2− units to form a 24-membered macrocyclic ring as shown in Fig. 4[link]. A series of organotin complexes of the cis and trans isomers of 1,4-chdcH2 show similar 2D networks containing 26- and 36-membered tetra­tin macrocyclic rings (Ma et al., 2009[Ma, C., Wang, Y. & Zhang, R. (2009). Inorg. Chim. Acta, 362, 4137-4144.]).

[Figure 3]
Figure 3
Perspective view of the packing along the c axis.
[Figure 4]
Figure 4
The 24-membered macrocyclic ring formation by 1,4-chdc2− between two [La2O2] chains.

3. Supra­molecular features

From the polyhedral view along the a axis (Fig. 5[link]), it is clear that the two lattice water mol­ecules residing in the voids of the 1,4-chdc2− units are responsible for the development of hydro­philic channels within the crystal structure. The hydrogen-bonding inter­actions (Table 1[link]) shown in Fig. 6[link] play a vital role in increasing the stability and higher dimensionality of the crystal packing. Here, the oxygen atom O9 of the lattice water mol­ecule acts as a donor for hydrogen bonds with oxygen atoms O1 and O2 of the carboxyl­ate group of the 1,4-chdc2− ligand [O9—H9A⋯O2 = 2.786 (12) Å and O9—H9B⋯O1iii = 2.846 (11) Å]. It also acts as the hydrogen-bond acceptor for oxygen atoms O3 and O4 of the coordinated water mol­ecules [O3—H3C⋯O9 = 2.858 (12) Å and O4—H4D⋯O9ii 2.812 (11) Å]. Similarly, oxygen atom O7 of the carboxyl­ate group of 1,4-chdc acts as an acceptor to atoms O3 and O4 of the coordinated water mol­ecules [O3—H3D⋯O7ii = 2.750 (11) Å and O4—H4C⋯O7i = 2.771 (10) Å]. Apart from this strong inter­molecular hydrogen bonding, there are also weak C—H⋯O inter­actions between the carbon atom C10 of the coordinated acetate group and the O1 oxygen atom of a carboxyl­ate group of the organic linker [C10—H10C⋯O1 = 3.295 (14) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1 0.96 2.49 3.295 (14) 141
O4—H4C⋯O7i 0.90 (2) 1.92 (5) 2.771 (10) 158 (12)
O4—H4D⋯O9ii 0.89 (2) 1.96 (6) 2.812 (11) 158 (12)
O3—H3C⋯O9 0.90 (2) 1.97 (3) 2.858 (12) 172 (13)
O3—H3D⋯O7ii 0.90 (2) 1.86 (3) 2.750 (11) 170 (14)
O9—H9A⋯O2 0.90 (2) 2.20 (11) 2.786 (12) 122 (11)
O9—H9B⋯O1iii 0.90 (2) 1.97 (5) 2.846 (11) 164 (13)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z.
[Figure 5]
Figure 5
Polyhedral view along the a axis showing the free water mol­ecules.
[Figure 6]
Figure 6
Hydrogen-bonding inter­actions (dashed lines) in the structure of the title compound. For symmetry operations, see Table 1[link].

4. Database survey

In the three-dimensional structures of [La2(1,4-chdc)3(H2O)4], [La3(1,4-Hchdc)2(1,4-chdc)5(H2O)2]·H2O and [La2(1,4-chdc)3(H2O)]·2.5H2O, the di­carboxyl­ate anion exists in different conformations obtained under hydro­thermal conditions (Rao et al., 2007[Rao, K. P., Thirumurugan, A. & Rao, C. N. R. (2007). Chem. Eur. J. 13, 3193-3201.]). Similarly a two-dimensional lanthanum coordin­ation polymer [La2(1,10-phen)2(1,4-chdc)3]·2.5H2O with ππ stacking was observed by the incorporation of 1,10-phenanthroline as a co-ligand along with 1,4-cyclo­hexa­nedi­carb­oxy­lic acid (Qi et al., 2008[Qi, Y., Li, H., Liu, C. & Hu, C. (2008). J. Coord. Chem. 61, 315-321.]). Additionally, dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) solvent-coordinated lanthanum complexes, one-dimensional [La(cis-chdc)(DMF)2(NO3)] and three-dimensional [La2(trans-chdc)3(DMSO)4] have also been reported. The presence of solvent mol­ecules can completely segregate the cis and trans conformations of 1,4-chdc (Tian et al., 2009[Tian, G., Zhu, G., Su, B.-L. & Qiu, S. (2009). J. Mater. Sci. 44, 6576-6582.]).

5. Synthesis and crystallization

Single crystals of the title compound were prepared by the gel-diffusion technique at ambient temperature using sodium metasilicate nona­hydrate (Na2S2O3·9H2O) as the gel medium. The optimum condition for crystal growth was obtained by dissolving 0.75 g of 1,4-H2chdc in 25 ml of 1.04 g cm−3 dense gel medium. 5 ml of the above solution was poured into glass tubes and the pH of the solution was set to 7.0 by adding glacial acetic acid drop by drop. On completion of the gel-setting process, 3 ml of 0.5 M concentration of aqueous lanthanum nitrate solution was added as the upper reagent. The whole arrangement was kept undisturbed at room temperature and was covered to protect it from the foreign matter present in the atmosphere. Within seven days, transparent, colourless block-shaped crystals were observed at the gel inter­face. The diffusion of La3+ ions and 1,4-chdcH2 through the fine pores of the gel media lead to the expected chemical reaction as shown below:

2La(NO3)3·6H2O + 2C8H12O4 + 2CH3COOH[La2(CH3COO)2(C8H10O4)2(H2O)4]·2H2O + 6HNO3.

Elemental analysis calculated (%) for C20H38La2O18 (844.32): C, 28.42; H, 4.50. Found (%): C, 28.36; H, 4.33. IR (KBr, cm−1): 3380, 2940, 1573, 1460, 743, 673, 597.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound hydrogen atoms were placed in calculated positions and included in the refinement in the riding-model approximation with C—H distances of 0.96–0.98 Å and with Uiso(H) = 1.2Ueq(C) for methyl hydrogen atoms and Uiso(H) = 1.2Ueq(C) for all others. Water hydrogen atoms were located from difference-Fourier maps and refined with an O—H distance restraint of 0.90 (2) Å and an H⋯H separation of 1.39 (2) Å. The isotropic displacement parameters of the hydrogen atoms attached to atoms O3, O4 and O9 were made equal by using an EDAP instruction. The crystal studied was refined as a two-component twin (BASF = 0.4203).

Table 2
Experimental details

Crystal data
Chemical formula [La2(C2H3O2)2(C8H10O4)2(H2O)4]·2H2O
Mr 844.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.9341 (8), 8.9597 (13), 12.3030 (16)
α, β, γ (°) 110.217 (5), 91.060 (5), 93.280 (5)
V3) 715.49 (16)
Z 1
Radiation type Mo Kα
μ (mm−1) 3.02
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.60, 0.74
No. of measured, independent and observed [I > 2σ(I)] reflections 2818, 2815, 2447
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.146, 1.07
No. of reflections 2818
No. of parameters 204
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.17, −2.46
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010)'.

Poly[[di-µ3-acetato-tetraaquabis(µ2-cyclohexane-1,4-dicarboxylato)dilanthanum(III)] dihydrate] top
Crystal data top
[La2(C2H3O2)2(C8H10O4)2(H2O)4]·2H2OZ = 1
Mr = 844.32F(000) = 416
Triclinic, P1Dx = 1.960 Mg m3
a = 6.9341 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9597 (13) ÅCell parameters from 7100 reflections
c = 12.3030 (16) Åθ = 2.8–30.9°
α = 110.217 (5)°µ = 3.02 mm1
β = 91.060 (5)°T = 293 K
γ = 93.280 (5)°Block, colourless
V = 715.49 (16) Å30.20 × 0.15 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2815 independent reflections
Radiation source: Sealed tube2447 reflections with I > 2σ(I)
ω and φ scanθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.60, Tmax = 0.74k = 1110
2818 measured reflectionsl = 015
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0821P)2 + 6.1459P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.005
2818 reflectionsΔρmax = 2.17 e Å3
204 parametersΔρmin = 2.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2377 (17)0.7936 (10)0.7752 (7)0.0203 (18)
C20.2486 (18)0.7706 (11)0.8920 (8)0.030 (2)
H20.24470.87600.95220.036*
C30.0724 (17)0.6681 (16)0.9058 (11)0.033 (3)
H3A0.06980.67150.98550.040*
H3B0.04480.71160.88890.040*
C40.0778 (17)0.4962 (14)0.8253 (10)0.030 (3)
H4A0.06940.49190.74550.036*
H4B0.03310.43390.83790.036*
C50.2631 (16)0.4239 (11)0.8460 (7)0.024 (2)
H50.26330.41960.92450.028*
C60.4375 (16)0.5264 (15)0.8372 (11)0.030 (3)
H6A0.44680.52130.75740.036*
H6B0.55260.48360.85760.036*
C70.4325 (17)0.6994 (14)0.9147 (10)0.028 (2)
H7A0.54380.76020.90100.034*
H7B0.44030.70670.99520.034*
C80.2736 (16)0.2574 (10)0.7614 (8)0.0229 (19)
C90.7522 (14)1.0347 (9)0.6555 (7)0.0141 (16)
C100.7542 (18)1.0729 (13)0.7831 (8)0.030 (2)
H10A0.70301.17490.81940.046*
H10B0.88461.07580.81180.046*
H10C0.67630.99260.80060.046*
O10.3916 (11)0.7991 (10)0.7225 (7)0.0280 (18)
O20.0804 (11)0.8116 (10)0.7334 (7)0.0272 (18)
O30.0144 (11)0.6946 (10)0.4871 (7)0.0310 (18)
O40.3865 (13)0.6914 (10)0.4470 (8)0.039 (2)
O50.5999 (10)0.9978 (10)0.5957 (6)0.0219 (16)
O60.9100 (10)1.0455 (9)0.6066 (6)0.0220 (16)
O70.2827 (11)0.2366 (7)0.6530 (5)0.0223 (14)
O80.2635 (12)0.1397 (7)0.7932 (5)0.0283 (15)
O90.2682 (13)0.6345 (9)0.6499 (7)0.0384 (18)
La10.23952 (8)0.92768 (5)0.58722 (4)0.01486 (18)
H4C0.474 (15)0.704 (14)0.398 (8)0.05 (3)*
H4D0.326 (16)0.597 (8)0.406 (8)0.05 (3)*
H3C0.088 (14)0.668 (17)0.538 (9)0.06 (3)*
H3D0.105 (12)0.705 (17)0.437 (9)0.06 (3)*
H9A0.207 (15)0.687 (15)0.719 (6)0.06 (3)*
H9B0.388 (9)0.669 (17)0.663 (10)0.06 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (5)0.012 (4)0.025 (4)0.004 (4)0.006 (5)0.008 (3)
C20.047 (7)0.023 (5)0.019 (4)0.003 (5)0.002 (5)0.008 (4)
C30.029 (7)0.041 (7)0.034 (7)0.011 (5)0.007 (5)0.017 (6)
C40.031 (7)0.027 (6)0.030 (6)0.004 (5)0.003 (4)0.005 (5)
C50.030 (6)0.026 (5)0.016 (4)0.005 (4)0.002 (4)0.011 (4)
C60.022 (6)0.037 (7)0.033 (6)0.004 (5)0.005 (4)0.014 (5)
C70.041 (8)0.025 (6)0.017 (5)0.001 (5)0.004 (4)0.007 (4)
C80.017 (5)0.024 (5)0.029 (5)0.002 (4)0.001 (4)0.012 (4)
C90.010 (4)0.012 (3)0.018 (4)0.003 (4)0.002 (4)0.001 (3)
C100.026 (6)0.042 (6)0.020 (4)0.006 (5)0.003 (5)0.007 (4)
O10.016 (4)0.039 (5)0.039 (5)0.005 (3)0.005 (3)0.025 (4)
O20.026 (5)0.031 (5)0.028 (4)0.004 (3)0.005 (3)0.015 (4)
O30.026 (5)0.035 (5)0.034 (5)0.005 (3)0.002 (3)0.017 (4)
O40.033 (5)0.022 (4)0.051 (5)0.009 (3)0.023 (4)0.001 (4)
O50.012 (4)0.037 (4)0.020 (4)0.001 (3)0.002 (3)0.014 (3)
O60.011 (4)0.032 (4)0.025 (4)0.001 (3)0.002 (3)0.011 (3)
O70.025 (4)0.024 (3)0.018 (3)0.001 (3)0.006 (3)0.007 (2)
O80.042 (4)0.021 (3)0.024 (3)0.001 (4)0.004 (3)0.011 (3)
O90.023 (5)0.033 (4)0.057 (5)0.004 (4)0.004 (4)0.013 (4)
La10.0121 (3)0.0169 (3)0.0169 (3)0.0017 (2)0.0015 (2)0.00745 (18)
Geometric parameters (Å, º) top
C1—O21.240 (13)C9—La1ii3.119 (8)
C1—O11.266 (13)C10—H10A0.9600
C1—C21.522 (12)C10—H10B0.9600
C1—La12.952 (8)C10—H10C0.9600
C2—C71.521 (17)O1—La12.570 (7)
C2—C31.533 (17)O2—La12.601 (8)
C2—H20.9800O3—La12.588 (8)
C3—C41.519 (18)O3—H3C0.90 (2)
C3—H3A0.9700O3—H3D0.90 (2)
C3—H3B0.9700O4—La12.506 (8)
C4—C51.527 (16)O4—H4C0.90 (2)
C4—H4A0.9700O4—H4D0.89 (2)
C4—H4B0.9700O5—La12.533 (7)
C5—C81.502 (12)O5—La1ii2.792 (7)
C5—C61.505 (15)O6—La1iii2.552 (7)
C5—H50.9800O6—La1ii2.674 (7)
C6—C71.516 (17)O7—La1i2.598 (6)
C6—H6A0.9700O8—La1i2.585 (6)
C6—H6B0.9700O9—H9A0.90 (2)
C7—H7A0.9700O9—H9B0.90 (2)
C7—H7B0.9700La1—O6iv2.552 (7)
C8—O81.244 (11)La1—O8v2.585 (6)
C8—O71.284 (11)La1—O7v2.598 (6)
C8—La1i2.983 (9)La1—O6ii2.674 (7)
C9—O51.237 (11)La1—O5ii2.792 (7)
C9—O61.273 (11)La1—C8v2.983 (9)
C9—C101.487 (11)
O2—C1—O1120.1 (8)C9—O6—La1ii98.1 (5)
O2—C1—C2120.4 (9)La1iii—O6—La1ii115.2 (3)
O1—C1—C2119.5 (10)C8—O7—La1i94.3 (5)
O2—C1—La161.6 (5)C8—O8—La1i96.0 (5)
O1—C1—La160.2 (5)H9A—O9—H9B101 (3)
C2—C1—La1164.8 (6)O4—La1—O573.2 (3)
C1—C2—C7114.2 (9)O4—La1—O6iv135.8 (3)
C1—C2—C3110.9 (9)O5—La1—O6iv143.4 (2)
C7—C2—C3109.4 (8)O4—La1—O177.7 (3)
C1—C2—H2107.4O5—La1—O173.8 (2)
C7—C2—H2107.4O6iv—La1—O1126.4 (2)
C3—C2—H2107.4O4—La1—O8v146.0 (3)
C4—C3—C2111.4 (9)O5—La1—O8v82.5 (3)
C4—C3—H3A109.4O6iv—La1—O8v76.9 (2)
C2—C3—H3A109.4O1—La1—O8v72.8 (2)
C4—C3—H3B109.4O4—La1—O367.5 (3)
C2—C3—H3B109.4O5—La1—O3140.7 (3)
H3A—C3—H3B108.0O6iv—La1—O373.0 (3)
C3—C4—C5111.4 (10)O1—La1—O396.1 (3)
C3—C4—H4A109.4O8v—La1—O3131.7 (3)
C5—C4—H4A109.4O4—La1—O7v138.0 (2)
C3—C4—H4B109.4O5—La1—O7v73.7 (2)
C5—C4—H4B109.4O6iv—La1—O7v69.9 (2)
H4A—C4—H4B108.0O1—La1—O7v116.4 (2)
C8—C5—C6110.0 (9)O8v—La1—O7v49.88 (18)
C8—C5—C4111.2 (9)O3—La1—O7v140.6 (2)
C6—C5—C4110.4 (8)O4—La1—O2103.1 (3)
C8—C5—H5108.4O5—La1—O2121.8 (2)
C6—C5—H5108.4O6iv—La1—O278.8 (2)
C4—C5—H5108.4O1—La1—O249.7 (2)
C5—C6—C7113.4 (9)O8v—La1—O269.9 (2)
C5—C6—H6A108.9O3—La1—O267.7 (3)
C7—C6—H6A108.9O7v—La1—O2116.2 (2)
C5—C6—H6B108.9O4—La1—O6ii83.0 (3)
C7—C6—H6B108.9O5—La1—O6ii107.7 (2)
H6A—C6—H6B107.7O6iv—La1—O6ii64.8 (3)
C6—C7—C2111.4 (9)O1—La1—O6ii159.3 (3)
C6—C7—H7A109.3O8v—La1—O6ii127.8 (2)
C2—C7—H7A109.3O3—La1—O6ii69.3 (2)
C6—C7—H7B109.3O7v—La1—O6ii83.2 (2)
C2—C7—H7B109.3O2—La1—O6ii129.9 (2)
H7A—C7—H7B108.0O4—La1—O5ii68.8 (3)
O8—C8—O7119.6 (8)O5—La1—O5ii61.3 (3)
O8—C8—C5121.6 (8)O6iv—La1—O5ii103.7 (2)
O7—C8—C5118.7 (7)O1—La1—O5ii129.6 (2)
O8—C8—La1i59.5 (5)O8v—La1—O5ii119.3 (2)
O7—C8—La1i60.3 (4)O3—La1—O5ii104.2 (2)
C5—C8—La1i172.5 (8)O7v—La1—O5ii72.9 (2)
O5—C9—O6118.9 (7)O2—La1—O5ii170.7 (2)
O5—C9—C10121.7 (9)O6ii—La1—O5ii46.51 (19)
O6—C9—C10119.4 (9)O4—La1—C193.6 (3)
O5—C9—La1ii63.3 (4)O5—La1—C197.2 (3)
O6—C9—La1ii58.1 (4)O6iv—La1—C1101.4 (3)
C10—C9—La1ii161.8 (6)O1—La1—C125.3 (3)
C9—C10—H10A109.5O8v—La1—C165.9 (2)
C9—C10—H10B109.5O3—La1—C184.1 (3)
H10A—C10—H10B109.5O7v—La1—C1115.7 (2)
C9—C10—H10C109.5O2—La1—C124.8 (3)
H10A—C10—H10C109.5O6ii—La1—C1152.5 (3)
H10B—C10—H10C109.5O5ii—La1—C1154.8 (3)
C1—O1—La194.4 (6)O4—La1—C8v151.3 (3)
C1—O2—La193.6 (6)O5—La1—C8v78.0 (3)
La1—O3—H3C113 (9)O6iv—La1—C8v70.6 (3)
La1—O3—H3D120 (9)O1—La1—C8v94.8 (3)
H3C—O3—H3D101 (3)O8v—La1—C8v24.5 (2)
La1—O4—H4C121 (8)O3—La1—C8v141.2 (3)
La1—O4—H4D127 (8)O7v—La1—C8v25.4 (2)
H4C—O4—H4D102 (3)O2—La1—C8v92.3 (3)
C9—O5—La1147.1 (6)O6ii—La1—C8v105.7 (2)
C9—O5—La1ii93.4 (5)O5ii—La1—C8v97.0 (2)
La1—O5—La1ii118.7 (3)C1—La1—C8v90.4 (2)
C9—O6—La1iii138.0 (6)
O2—C1—C2—C7161.8 (9)C4—C5—C8—O763.7 (13)
O1—C1—C2—C720.4 (13)O2—C1—O1—La115.4 (9)
La1—C1—C2—C7105 (3)C2—C1—O1—La1162.5 (7)
O2—C1—C2—C337.7 (12)O1—C1—O2—La115.2 (9)
O1—C1—C2—C3144.5 (9)C2—C1—O2—La1162.6 (7)
La1—C1—C2—C3131 (3)O6—C9—O5—La1174.3 (8)
C1—C2—C3—C469.6 (12)C10—C9—O5—La18.2 (16)
C7—C2—C3—C457.2 (11)La1ii—C9—O5—La1168.1 (12)
C2—C3—C4—C557.2 (12)O6—C9—O5—La1ii17.7 (8)
C3—C4—C5—C8176.5 (9)C10—C9—O5—La1ii159.9 (7)
C3—C4—C5—C654.1 (12)O5—C9—O6—La1iii124.4 (8)
C8—C5—C6—C7176.5 (9)C10—C9—O6—La1iii58.0 (12)
C4—C5—C6—C753.4 (11)La1ii—C9—O6—La1iii143.1 (9)
C5—C6—C7—C255.0 (12)O5—C9—O6—La1ii18.6 (9)
C1—C2—C7—C669.6 (12)C10—C9—O6—La1ii158.9 (7)
C3—C2—C7—C655.3 (11)O8—C8—O7—La1i4.7 (11)
C6—C5—C8—O8124.8 (11)C5—C8—O7—La1i171.5 (9)
C4—C5—C8—O8112.5 (12)O7—C8—O8—La1i4.8 (11)
C6—C5—C8—O759.0 (13)C5—C8—O8—La1i171.4 (9)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O10.962.493.295 (14)141
O4—H4C···O7vi0.90 (2)1.92 (5)2.771 (10)158 (12)
O4—H4D···O9vii0.89 (2)1.96 (6)2.812 (11)158 (12)
O3—H3C···O90.90 (2)1.97 (3)2.858 (12)172 (13)
O3—H3D···O7vii0.90 (2)1.86 (3)2.750 (11)170 (14)
O9—H9A···O20.90 (2)2.20 (11)2.786 (12)122 (11)
O9—H9B···O1iv0.90 (2)1.97 (5)2.846 (11)164 (13)
Symmetry codes: (iv) x1, y, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1.
 

Acknowledgements

The authors are thankful to the authorities of SAIF, Kochi for instrumental facilities. We are indebted to Dr M. R. Prathachandra Kurup, Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, for helping us to visualize the crystal structure using DIAMOND software. RD is thankful to the University of Kerala, Trivandrum, India, for the award of a University Research Fellowship.

References

First citationBi, W., Cao, R., Sun, D., Yuan, D., Li, X. & Hong, M. (2003). Inorg. Chem. Commun. 6, 1426–1428.  Web of Science CSD CrossRef CAS
First citationBi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X., Wang, Y. Q., Li, X. J. & Hong, M. C. (2004). Chem. Commun. pp. 2104–2105.  CSD CrossRef
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, Z. H., Zhao, Y., Wang, P., Chen, S. S. & Sun, W. Y. (2014). Polyhedron, 67, 253–263.  CSD CrossRef CAS
First citationDu, M., Cai, H. & Zhao, X. J. (2005). Inorg. Chim. Acta, 358, 4034–4038.  CSD CrossRef CAS
First citationGong, Y., Hu, C. W., Li, H., Huang, K. L. & Tang, W. (2005). J. Solid State Chem. 178, 3152–3158.  CSD CrossRef CAS
First citationLin, Z. & Tong, M. L. (2011). Coord. Chem. Rev. 255, 421–450.  CrossRef CAS
First citationLiu, T. F., Lü, J. & Cao, R. (2010). CrystEngComm, 12, 660–670.  Web of Science CrossRef CAS
First citationLü, J., Bi, W. H., Xiao, F. X., Batten, S. R. & Cao, R. (2008). Chem. Asian J. 3, 542–547.  PubMed
First citationMa, C., Wang, Y. & Zhang, R. (2009). Inorg. Chim. Acta, 362, 4137–4144.  CSD CrossRef CAS
First citationQi, Y., Li, H., Liu, C. & Hu, C. (2008). J. Coord. Chem. 61, 315–321.  CSD CrossRef CAS
First citationQiblawi, S. H., Sposato, L. K. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 407, 297–305.  CSD CrossRef CAS
First citationRao, K. P., Thirumurugan, A. & Rao, C. N. R. (2007). Chem. Eur. J. 13, 3193–3201.  Web of Science CSD CrossRef PubMed CAS
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTian, G., Zhu, G., Su, B.-L. & Qiu, S. (2009). J. Mater. Sci. 44, 6576–6582.  CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYu, M., Xie, L., Liu, S., Wang, C., Cheng, H., Ren, Y. & Su, Z. (2007). Inorg. Chim. Acta, 360, 3108–3112.  CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds