organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Benzyl-6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: bourichiselma@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 13 June 2017; accepted 16 June 2017; online 20 June 2017)

In the title compound, C19H13BrClN3, the chloro­phenyl ring occupies an equatorial position with respect to the mean plane of the imidazo­pyridine unit, while the other phenyl ring is twisted by 4.1 (2)° with respect to the mean plane of the imidazo­pyridine unit. In the crystal, pairwise C—H⋯Br inter­actions link the mol­ecules into dimers, forming an R22(16) ring motif. In addition, weak ππ stacking inter­actions stabilize the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazo­pyridine derivatives display anti­cancer (Lukasik et al., 2012[Lukasik, P. M., Elabar, S., Lam, F., Xiangrui Liu, H. S., Abbas, A. Y. & Wang, S. (2012). Eur. J. Med. Chem. 57, 311-322.]), tuberculostatic (Bukowski & Janowiec, 1989[Bukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267-269.]) and anti­mitotic activities (Aridoss et al., 2006[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268-275.]). This study is a continuation of our work (Bourichi et al., 2016[Bourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, T. J., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.]; Ouzidan et al., 2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]) on the syntheses and structures of new imidazo­pyridine derivatives.

The title compound, C19H13BrClN3, crystallizes with one mol­ecule in the asymmetric unit (Fig. 1[link]). The imidazo[4,5-b]pyridine unit is essentially planar (r.m.s. deviation = 0.010 Å). The chloro­phenyl ring occupies an equatorial position with respect to the mean plane of the imidazo­pyridine unit, with a dihedral angle of 4.1 (2)°. The other phenyl ring is twisted with respect to the mean plane of the imidazo­pyridine unit by 72.2 (3)°.

[Figure 1]
Figure 1
The structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids for the non-H atoms.

In the crystal, pairwise C19—H19⋯Br1 inter­actions link the mol­ecules into inversion dimers, forming an R22(16) ring motif (Table 1[link] and Fig. 2[link]). In addition, weak ππ stacking inter­actions stabilize the crystal packing [Cg1⋯Cg2i = 3.858 (2) Å; symmetry code: (i) −x + 1, −y + 1, −z + 1; Cg1 is the centroid of ring N2/C4/C6/N3/C5 and Cg2 of ring N1/C1/C2/C3/C4/C6].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Br1i 0.93 2.54 3.202 (3) 128
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, viewed along the a axis. Dashed lines indicate weak C—H⋯Br inter­molecular inter­actions linking the moleclues into dimers. H atoms not involved in the packing have been omitted for clarity.

Synthesis and crystallization

A mixture of 0.2 g (0.65 mmol) of 6-bromo-2-(4-chloro­phen­yl)-3H-imidazo[4,5-b]pyridine, dissolved in 25 ml of DMF, and 0.13 g (0.92 mmol) of potassium carbonate was stirred magnetically for 5 min and then 0.032 g (0.1 mmol) of tetra-n-butyl­ammonium bromide (TBAB) and 0.094 g (0.78 mmol) of benzyl bromide were added. Stirring was continued at room temperature for 24 h. After removing the salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water and the resulting mixture was chromatographed on a silica-gel column (eluent: ethyl acetate–hexane, 1:3 v/v). Yellow crystals were isolated when the solvent was allowed to evaporate (yield 65%; m.p. 464–465 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and refined using the riding model, with C—H bond lengths of 0.93 (CH) or 0.97 Å (CH2). Isotropic displacement parameters for these atoms were set at 1.2 times Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C19H13BrClN3
Mr 398.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.7749 (7), 9.9403 (7), 10.4475 (8)
α, β, γ (°) 76.030 (6), 66.511 (7), 85.843 (6)
V3) 810.76 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.00
Crystal size (mm) 0.14 × 0.12 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.393, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5047, 3076, 2637
Rint 0.037
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.04
No. of reflections 3076
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.60
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Benzyl-6-bromo-2-(4-chlorophenyl)-4H-imidazo[4,5-b]pyridine top
Crystal data top
C19H13BrClN3Z = 2
Mr = 398.68F(000) = 400
Triclinic, P1Dx = 1.633 Mg m3
a = 8.7749 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.9403 (7) ÅCell parameters from 2096 reflections
c = 10.4475 (8) Åθ = 4.6–71.2°
α = 76.030 (6)°µ = 5.00 mm1
β = 66.511 (7)°T = 293 K
γ = 85.843 (6)°Irregular, yellow
V = 810.76 (12) Å30.14 × 0.12 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3076 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.6°
ω scansh = 610
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1112
Tmin = 0.393, Tmax = 1.000l = 1212
5047 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2037P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.64 e Å3
3076 reflectionsΔρmin = 0.60 e Å3
218 parametersExtinction correction: SHELXT2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0012 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20904 (4)0.05758 (4)0.60405 (4)0.04964 (18)
Cl10.40328 (14)1.29736 (10)0.10620 (12)0.0608 (3)
N10.5634 (3)0.3647 (3)0.3684 (3)0.0384 (6)
N20.2447 (3)0.6063 (3)0.3757 (3)0.0384 (6)
N30.5333 (3)0.6100 (3)0.2869 (3)0.0391 (6)
C10.4801 (4)0.2417 (3)0.4415 (3)0.0393 (7)
H10.53920.16160.45420.047*
C20.3102 (4)0.2344 (3)0.4964 (4)0.0401 (7)
C30.2119 (4)0.3497 (3)0.4823 (4)0.0393 (7)
H30.09640.34270.52060.047*
C40.2966 (4)0.4739 (4)0.4081 (3)0.0373 (7)
C50.3881 (4)0.6806 (3)0.3058 (3)0.0373 (7)
C60.4742 (4)0.4804 (3)0.3519 (3)0.0357 (6)
C70.3929 (4)0.8314 (4)0.2557 (4)0.0385 (7)
C80.2453 (4)0.9043 (4)0.2807 (4)0.0486 (8)
H80.14380.85610.32830.058*
C90.2486 (5)1.0471 (4)0.2356 (4)0.0511 (9)
H90.15001.09500.25330.061*
C100.3991 (5)1.1173 (3)0.1645 (4)0.0425 (7)
C110.5467 (4)1.0485 (4)0.1389 (4)0.0497 (9)
H110.64771.09770.09190.060*
C120.5431 (4)0.9057 (4)0.1838 (4)0.0470 (8)
H120.64240.85880.16570.056*
C130.7474 (4)0.3741 (4)0.3102 (4)0.0416 (7)
H13A0.78650.31120.37680.050*
H13B0.78220.46750.30130.050*
C140.8254 (3)0.3382 (3)0.1653 (4)0.0362 (7)
C150.8029 (4)0.4197 (4)0.0478 (4)0.0500 (8)
H150.73840.49810.05600.060*
C160.8781 (5)0.3832 (6)0.0831 (4)0.0649 (12)
H160.86280.43480.16390.078*
C170.9753 (6)0.2690 (6)0.0899 (5)0.0676 (12)
H171.02900.24210.17620.081*
C180.9923 (5)0.1951 (5)0.0320 (5)0.0649 (12)
H181.05940.11810.02580.078*
C190.9186 (4)0.2268 (3)0.1588 (3)0.0369 (7)
H190.93190.17320.23980.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0423 (2)0.0371 (2)0.0573 (3)0.00609 (15)0.01030 (17)0.00689 (16)
Cl10.0740 (6)0.0384 (5)0.0712 (7)0.0027 (4)0.0354 (5)0.0031 (4)
N10.0338 (13)0.0426 (15)0.0375 (14)0.0121 (11)0.0121 (11)0.0132 (12)
N20.0331 (12)0.0376 (14)0.0392 (14)0.0080 (11)0.0108 (11)0.0075 (11)
N30.0323 (13)0.0410 (15)0.0403 (15)0.0071 (11)0.0104 (11)0.0111 (12)
C10.0416 (16)0.0368 (16)0.0355 (16)0.0104 (13)0.0116 (14)0.0101 (13)
C20.0442 (17)0.0325 (15)0.0380 (17)0.0062 (13)0.0114 (14)0.0078 (13)
C30.0321 (14)0.0392 (17)0.0393 (17)0.0061 (12)0.0083 (13)0.0074 (13)
C40.0335 (15)0.0411 (17)0.0335 (16)0.0107 (13)0.0097 (13)0.0109 (13)
C50.0354 (15)0.0400 (17)0.0349 (16)0.0080 (13)0.0127 (13)0.0097 (13)
C60.0352 (15)0.0372 (16)0.0322 (15)0.0109 (12)0.0107 (13)0.0113 (12)
C70.0367 (15)0.0403 (17)0.0389 (17)0.0064 (13)0.0156 (13)0.0101 (13)
C80.0329 (15)0.0441 (19)0.059 (2)0.0048 (14)0.0119 (15)0.0061 (16)
C90.0436 (18)0.047 (2)0.058 (2)0.0119 (15)0.0194 (17)0.0081 (17)
C100.0523 (19)0.0358 (17)0.0424 (18)0.0033 (14)0.0244 (16)0.0051 (14)
C110.0402 (17)0.047 (2)0.057 (2)0.0028 (15)0.0185 (16)0.0052 (17)
C120.0346 (16)0.050 (2)0.051 (2)0.0062 (14)0.0153 (15)0.0060 (16)
C130.0309 (15)0.052 (2)0.0420 (18)0.0125 (14)0.0123 (14)0.0186 (15)
C140.0241 (12)0.0405 (17)0.0393 (17)0.0001 (12)0.0074 (12)0.0094 (13)
C150.0413 (17)0.058 (2)0.048 (2)0.0093 (16)0.0183 (16)0.0084 (17)
C160.052 (2)0.098 (3)0.039 (2)0.002 (2)0.0152 (17)0.009 (2)
C170.056 (2)0.090 (3)0.045 (2)0.005 (2)0.0007 (19)0.029 (2)
C180.052 (2)0.065 (3)0.064 (3)0.013 (2)0.004 (2)0.025 (2)
C190.0307 (13)0.0339 (15)0.0349 (16)0.0091 (12)0.0038 (12)0.0061 (12)
Geometric parameters (Å, º) top
Br1—C21.902 (3)C9—H90.9300
Cl1—C101.744 (3)C9—C101.373 (5)
N1—C11.359 (4)C10—C111.379 (5)
N1—C61.359 (4)C11—H110.9300
N1—C131.482 (4)C11—C121.382 (5)
N2—C41.370 (4)C12—H120.9300
N2—C51.343 (4)C13—H13A0.9700
N3—C51.376 (4)C13—H13B0.9700
N3—C61.336 (4)C13—C141.512 (4)
C1—H10.9300C14—C151.376 (5)
C1—C21.367 (5)C14—C191.326 (4)
C2—C31.399 (4)C15—H150.9300
C3—H30.9300C15—C161.387 (6)
C3—C41.375 (5)C16—H160.9300
C4—C61.429 (4)C16—C171.367 (7)
C5—C71.461 (5)C17—H170.9300
C7—C81.398 (4)C17—C181.367 (7)
C7—C121.390 (5)C18—H180.9300
C8—H80.9300C18—C191.328 (5)
C8—C91.382 (5)C19—H190.9300
C1—N1—C13121.2 (3)C9—C10—C11121.4 (3)
C6—N1—C1118.5 (3)C11—C10—Cl1119.4 (3)
C6—N1—C13120.3 (3)C10—C11—H11120.4
C5—N2—C4103.0 (3)C10—C11—C12119.3 (3)
C6—N3—C5100.9 (3)C12—C11—H11120.4
N1—C1—H1119.6C7—C12—H12119.6
N1—C1—C2120.7 (3)C11—C12—C7120.8 (3)
C2—C1—H1119.6C11—C12—H12119.6
C1—C2—Br1116.4 (3)N1—C13—H13A109.3
C1—C2—C3123.3 (3)N1—C13—H13B109.3
C3—C2—Br1120.2 (3)N1—C13—C14111.8 (3)
C2—C3—H3122.1H13A—C13—H13B107.9
C4—C3—C2115.8 (3)C14—C13—H13A109.3
C4—C3—H3122.1C14—C13—H13B109.3
N2—C4—C3132.5 (3)C15—C14—C13121.1 (3)
N2—C4—C6107.1 (3)C19—C14—C13116.0 (3)
C3—C4—C6120.4 (3)C19—C14—C15122.9 (3)
N2—C5—N3117.5 (3)C14—C15—H15120.5
N2—C5—C7122.3 (3)C14—C15—C16118.9 (4)
N3—C5—C7120.2 (3)C16—C15—H15120.5
N1—C6—C4121.3 (3)C15—C16—H16121.0
N3—C6—N1127.2 (3)C17—C16—C15118.1 (4)
N3—C6—C4111.5 (3)C17—C16—H16121.0
C8—C7—C5120.4 (3)C16—C17—H17120.5
C12—C7—C5121.1 (3)C18—C17—C16119.0 (4)
C12—C7—C8118.5 (3)C18—C17—H17120.5
C7—C8—H8119.6C17—C18—H18118.1
C9—C8—C7120.8 (3)C19—C18—C17123.8 (4)
C9—C8—H8119.6C19—C18—H18118.1
C8—C9—H9120.4C14—C19—C18117.3 (4)
C10—C9—C8119.2 (3)C14—C19—H19121.4
C10—C9—H9120.4C18—C19—H19121.4
C9—C10—Cl1119.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br1i0.932.543.202 (3)128
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, T. J., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.  Google Scholar
First citationBukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267–269.  CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLukasik, P. M., Elabar, S., Lam, F., Xiangrui Liu, H. S., Abbas, A. Y. & Wang, S. (2012). Eur. J. Med. Chem. 57, 311–322.  CrossRef CAS PubMed Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds