research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure studies and Hirshfeld surface analysis of 4-(di­methyl­aza­nium­yl)-2-hy­dr­oxy­anilinium dichloride monohydrate at 90 K

crossmark logo

aDepartment of Science and Humanities, PES University, BSK III Stage, Bengaluru-560 085, India, bDepartment of Chemistry, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, cT. John Institute of Technology, Bengaluru-560 083, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 August 2023; accepted 16 August 2023; online 23 August 2023)

The crystal structure and a Hirshfeld surface analysis of the substituted anilinium salt 4-(di­methyl­aza­nium­yl)-2-hy­droxy­anilinium dichloride monohydrate, C8H14N2O+·2Cl·H2O, at low temperature (90 K) are presented. The organic cation is essentially planar: the r.m.s. deviation of its non-hydrogen atoms (aside from the two methyl groups) is 0.0045 Å. The methyl carbons are 1.3125 (12) Å and 1.1278 (12) Å either side of the mean plane. The crystal packing involves extensive hydrogen bonding of types O—H⋯Cl, N—H⋯Cl, N—H⋯OW, and OW—HW⋯Cl (where W = water), which arrange into chains of R24(12) motifs that combine to form corrugated layers parallel to (10[\overline{1}]). Atom–atom contacts for the cation primarily involve hydrogen, leading to the most abundant coverage percentages being 51.3% (H⋯H), 23.0% (H⋯Cl), 12.9% (H⋯O), and 9.7% (C⋯H).

1. Chemical context

Aniline is an important industrial feedstock chemical, broadly utilized throughout the chemical industry. For example, as a precursor to indigo, it is of paramount importance in the manufacture of dyes. Indeed, the modern synthetic dyestuffs industry traces its origin to mauveine, a product of William Henry Perkin's attempts to synthesize quinine by oxidation of aniline (see e.g. Perkin, 1896[Perkin, W. H. (1896). J. Chem. Soc. Trans. 69, 596-637.]). Aniline and its derivatives find extensive use in the rubber industry for processing materials used in products such as car tires, balloons, and gloves. In addition, aniline plays a crucial role in the production of numerous pharmaceutical drugs, including such well-known medications as paracetamol (aka, acetamino­phen/Tylenol) and the fenamate family of NSAIDs (anthranilic acid deriv­atives). Within this context, a concise review of aniline and its derivatives was presented by Anjalin et al. (2020[Anjalin, M., Kanagathara, N. & Baby Suganthi, A. R. (2020). Mat Today: Proceed. 33, 4751-4755.]). The hydrogen-bonding behavior of aniline derivatives has been investigated using FT–IR spectroscopy by Meng-Xia & Yuan (2002[Meng-Xia, X. & Yuan, L. (2002). Spectrochim. Acta A Mol. Biomol. Spectrosc. 58, 2817-2826.]). The application of anilinium salts in polymer networks, resulting in materials with superior mechanical stability and mild thermally induced dynamic properties was reported by Chakma et al. (2019[Chakma, P., Digby, Z. A., Shulman, M. P., Kuhn, L. R., Morley, C. N., Sparks, J. L. & Konkolewicz, D. (2019). ACS Macro. Lett. 8, 95-100.]).

Given the industrial and pharmaceutical significance of anilinium salts, this paper presents the crystal structure and Hirshfeld-surface analysis of 4-(di­methyl­aza­nium­yl)-2-hy­droxy­anilinium dichloride monohydrate [C8H14N2O]+2Cl·H2O (I), at 90 K.

[Scheme 1]

2. Structural commentary

The asymmetric unit of I (see Fig. 1[link]) consists of a single 4-(di­methyl­aza­nium­yl)-2-hy­droxy­anilinium dication, two chloride anions and a water of crystallization. The cation is largely planar. Aside from the two methyl groups, the r.m.s. deviation from the mean plane passing through the ring carbons, two nitro­gens and phenolic oxygen atom is 0.0045 Å, with the largest deviation being only 0.0096 (7) Å, for C5. The two methyl carbons lie 1.3125 (12) Å and 1.1278 (12) Å (for C7 and C8 respectively) either side of this mean plane. The water oxygen (O1W), at 0.1059 (14) Å, is also almost coplanar with the cation, while the chloride anions deviate by 0.4827 (12) Å (Cl1) and 0.4443 (12) Å (Cl2) to either side. The only inter­nal degree of freedom involves rotation of the di­methyl­aminium group about the C4—N2 bond, leading to torsion angles C3—C4—N2—C7 = 108.41 (9)°, C3—C4—N2—C8 = −125.32 (9)° and C3—C4—N2—H2N = −8.3 (8)°. There are no unusual bond lengths or angles in the structure.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I. Hydrogen atoms are shown as small circles. Hydrogen bonds are drawn as dashed lines.

3. Supra­molecular features

Hydrogen-bonding inter­actions lead to the dominant structural features within the crystal packing of I, as qu­anti­fied in Table 1[link]. Each organic cation engages in O1—H1O⋯Cl1 [dD–A = 2.9873 (8) Å] and N2—H2N⋯Cl2 [dD–A = 3.0467 (9) Å] hydrogen bonds with the chloride anions, which in turn act as acceptors for O1W—H1W1⋯Cl1vi [dD–A = 3.1493 (9) Å] and O1W—H2W1⋯Cl2vi [dD–A = 3.1036 (9) Å] hydrogen bonds with the water mol­ecule (symmetry codes as per Table 1[link]). These inter­actions result in R42(12) motifs that link via N1—H3N1⋯O1W [dD–A = 2.7093 (12) Å] hydrogen bonds, forming chains that extend parallel to [101] (Fig. 2[link]). These chains are connected by N1—H1N1⋯Cl1ii [dD–A = 3.1364 (9) Å] and N1—H1N1⋯Cl2i [dD–A = 3.1299 (9) Å] hydrogen bonds, forming corrugated layers parallel to (10[\overline{1}]) (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯Cl2i 0.873 (14) 2.270 (14) 3.1299 (9) 168.5 (12)
N1—H1N1⋯Cl1ii 0.895 (14) 2.257 (14) 3.1364 (9) 167.4 (12)
N1—H3N1⋯O1W 0.893 (17) 1.819 (17) 2.7093 (12) 174.4 (14)
O1—H1O⋯Cl1 0.843 (18) 2.156 (18) 2.9873 (8) 168.9 (15)
N2—H2N⋯Cl2 0.903 (15) 2.161 (15) 3.0467 (9) 166.7 (12)
C5—H5⋯Cl1iii 0.95 2.98 3.8846 (10) 160
C7—H7A⋯Cl1iv 0.98 2.78 3.6641 (10) 151
C7—H7B⋯Cl1iii 0.98 2.79 3.7079 (11) 156
C8—H8A⋯Cl2v 0.98 2.82 3.6774 (10) 147
C8—H8B⋯O1i 0.98 2.64 3.4610 (13) 142
C8—H8C⋯Cl1iii 0.98 2.87 3.7809 (11) 156
O1W—H2W1⋯Cl2vi 0.857 (18) 2.259 (18) 3.1036 (9) 168.7 (13)
O1W—H1W1⋯Cl1vi 0.802 (19) 2.348 (19) 3.1493 (9) 176.4 (16)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, -y+1, -z]; (vi) x+1, y, z+1.
[Figure 2]
Figure 2
A partial packing plot of I showing R42(12) hydrogen-bonded (dotted lines) ring motifs that link to form chains that propagate parallel to [101].
[Figure 3]
Figure 3
Partial packing plots of I showing: (a) hydrogen-bonded (dotted lines) layers that extend parallel to (10[\overline{1}]) and (b) the same layers viewed side-on to highlight the corrugation.

Two-dimensional fingerprint plots (Fig. 4[link]) derived from a Hirshfeld surface analysis mapped over dnorm for the cation in I were obtained using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). These show that atom–atom contacts for the cation are dominated by hydrogen, either to other H atoms (51.3%) or to Cl (23.0%), O (12.9%), or C (9.7%), all other types giving negligible coverage.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots from a Hirshfeld-surface analysis of the cations in I showing: (a) H⋯H contacts (51.3%); (b) H⋯Cl/Cl⋯H (23.0%); (c) H⋯O/O⋯H (12.9%); (d) H⋯C/C⋯H (9.7%).

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.43 with all updates to November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a mol­ecular fragment composed of a benzene ring with any N-bound group at the 1- and 4-positions and an O-bound group at the 2-position yielded 471 matches. With the O-bound group defined as hydroxyl there were 62 hits. The further restriction of having two C-bound groups attached to the 4-N nitro­gen returned 15 entries (13 unique), but with the C-bound groups both specified as methyl there were no matches. Of the 13 unique structures only one, XAVKAJ [(C30H32N6O2)4+·4Cl·4H2O; Stylianou et al., 2017[Stylianou, M., Hadjiadamou, I., Drouza, C., Hayes, S. C., Lariou, E., Tantis, I., Lianos, P., Tsipis, A. C. & Keramidas, A. D. (2017). Dalton Trans. 46, 3688-3699.]] is a salt or a hydrate, but it has little else in common with I. Two other anilinium salts not returned in the above search but that share similar features to I are POMXUL (Smirani & Rzaigui, 2009[Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.]), or 2,5-di­methyl­anilinium chloride monohydrate (C8H12N+·Cl·H2O) and PAXXIX (Devi et al., 2012[Devi, T. U., Kalpana, G., Priya, S., Ravikumar, K. & Selvanayagam, S. (2012). Acta Cryst. E68, o1705.]), which is 4-[(E)-(hy­droxy­imino)­meth­yl]-N,N-dimethyl anilinium chloride (C9H13N2O+·Cl).

5. Synthesis and crystallization

The sample of I was obtained as a gift from Honeychem Pharma, Bengaluru, India. Crystals suitable for X-ray structure determination were obtained from a solution in ethanol by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were present in difference-Fourier maps. Carbon-bound hydrogens were subsequently included in the refinement using riding models, with constrained distances of 0.95 Å (R2CH) and 0.98 Å (RCH3) and Uiso(H) parameters set to either 1.2Ueq (R2CH) or 1.5Ueq (RCH3) of the attached carbon. Nitro­gen and oxygen-bound hydrogens were fully refined (x, y, z, and Uiso).

Table 2
Experimental details

Crystal data
Chemical formula C8H14N2O2+·2Cl·H2O
Mr 243.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 9.6493 (7), 13.0873 (8), 10.4634 (7)
β (°) 117.188 (2)
V3) 1175.36 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.32 × 0.30 × 0.22
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.888, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 36719, 2693, 2505
Rint 0.032
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.063, 1.13
No. of reflections 2693
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.22
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

4-(Dimethylazaniumyl)-2-hydroxyanilinium dichloride monohydrate top
Crystal data top
C8H14N2O2+·2Cl·H2OF(000) = 512
Mr = 243.13Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6493 (7) ÅCell parameters from 9459 reflections
b = 13.0873 (8) Åθ = 2.4–27.5°
c = 10.4634 (7) ŵ = 0.53 mm1
β = 117.188 (2)°T = 90 K
V = 1175.36 (14) Å3Irregular block, colourless
Z = 40.32 × 0.30 × 0.22 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
2693 independent reflections
Radiation source: microsource2505 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.888, Tmax = 0.971k = 1617
36719 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.034P)2 + 0.2669P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2693 reflectionsΔρmax = 0.34 e Å3
158 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.75930 (11)0.61398 (6)0.87704 (9)0.01338 (18)
H1N10.7194 (15)0.6712 (11)0.8938 (14)0.022 (3)*
H2N10.7151 (15)0.5598 (11)0.8907 (13)0.023 (3)*
H3N10.858 (2)0.6134 (10)0.9459 (17)0.028 (4)*
C10.74643 (11)0.61590 (6)0.73284 (10)0.01215 (19)
O10.47817 (9)0.62201 (5)0.65346 (8)0.01714 (17)
H1O0.392 (2)0.6321 (11)0.5805 (18)0.037 (4)*
Cl10.15713 (2)0.66738 (2)0.42367 (2)0.01449 (9)
C20.59693 (11)0.62072 (7)0.61890 (11)0.0128 (2)
N20.68764 (10)0.62236 (6)0.30958 (9)0.01355 (18)
H2N0.5849 (17)0.6154 (9)0.2501 (15)0.021 (3)*
Cl20.35654 (3)0.59763 (2)0.06980 (2)0.01665 (9)
C30.57844 (11)0.62244 (7)0.47882 (11)0.0132 (2)
H30.4775930.6250030.3990570.016*
C40.71073 (12)0.62031 (7)0.45870 (11)0.0123 (2)
C50.85995 (11)0.61711 (7)0.57131 (11)0.0137 (2)
H50.9484060.6169840.5540070.016*
C60.87688 (11)0.61406 (7)0.71058 (11)0.0136 (2)
H60.9778270.6107310.7901140.016*
C70.73470 (12)0.72278 (8)0.27212 (11)0.0172 (2)
H7A0.6995950.7258670.1682860.026*
H7B0.8483580.7294700.3230590.026*
H7C0.6868880.7786110.3005250.026*
C80.76558 (12)0.53561 (8)0.27443 (11)0.0184 (2)
H8A0.7257650.5311960.1700440.028*
H8B0.7436410.4715970.3103190.028*
H8C0.8783370.5472750.3199130.028*
O1W1.05118 (10)0.61432 (6)1.09862 (9)0.0249 (2)
H1W11.075 (2)0.6295 (12)1.180 (2)0.041 (5)*
H2W11.137 (2)0.6187 (10)1.0942 (18)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (4)0.0154 (4)0.0105 (4)0.0000 (3)0.0046 (4)0.0005 (3)
C10.0142 (5)0.0115 (4)0.0107 (4)0.0004 (3)0.0056 (4)0.0000 (3)
O10.0104 (4)0.0288 (4)0.0127 (4)0.0019 (3)0.0057 (3)0.0013 (3)
Cl10.01198 (13)0.01708 (14)0.01299 (13)0.00068 (8)0.00449 (10)0.00011 (8)
C20.0121 (5)0.0132 (4)0.0136 (5)0.0002 (3)0.0063 (4)0.0000 (3)
N20.0119 (4)0.0173 (4)0.0112 (4)0.0011 (3)0.0050 (3)0.0009 (3)
Cl20.01496 (14)0.01780 (14)0.01421 (14)0.00158 (8)0.00409 (10)0.00050 (8)
C30.0113 (4)0.0146 (5)0.0121 (5)0.0002 (3)0.0038 (4)0.0006 (3)
C40.0149 (5)0.0116 (4)0.0108 (4)0.0004 (3)0.0061 (4)0.0003 (3)
C50.0113 (5)0.0157 (5)0.0145 (5)0.0002 (3)0.0062 (4)0.0003 (3)
C60.0108 (5)0.0147 (5)0.0128 (5)0.0002 (3)0.0031 (4)0.0002 (3)
C70.0190 (5)0.0174 (5)0.0157 (5)0.0015 (4)0.0084 (4)0.0044 (4)
C80.0227 (5)0.0180 (5)0.0192 (5)0.0004 (4)0.0135 (4)0.0039 (4)
O1W0.0160 (4)0.0415 (5)0.0139 (4)0.0006 (3)0.0039 (3)0.0056 (3)
Geometric parameters (Å, º) top
N1—C11.4565 (12)C3—H30.9500
N1—H1N10.895 (14)C4—C51.3831 (14)
N1—H2N10.873 (14)C5—C61.3908 (14)
N1—H3N10.893 (17)C5—H50.9500
C1—C61.3810 (14)C6—H60.9500
C1—C21.3909 (14)C7—H7A0.9800
O1—C21.3502 (12)C7—H7B0.9800
O1—H1O0.843 (18)C7—H7C0.9800
C2—C31.3934 (14)C8—H8A0.9800
N2—C41.4721 (12)C8—H8B0.9800
N2—C81.4976 (12)C8—H8C0.9800
N2—C71.4998 (12)O1W—H1W10.802 (19)
N2—H2N0.903 (15)O1W—H2W10.857 (18)
C3—C41.3857 (14)
C1—N1—H1N1110.3 (8)C5—C4—C3122.95 (9)
C1—N1—H2N1111.5 (8)C5—C4—N2119.86 (9)
H1N1—N1—H2N1111.2 (13)C3—C4—N2117.19 (9)
C1—N1—H3N1113 (1)C4—C5—C6118.14 (9)
H1N1—N1—H3N1104.1 (12)C4—C5—H5120.9
H2N1—N1—H3N1106.3 (12)C6—C5—H5120.9
C6—C1—C2121.64 (9)C1—C6—C5119.76 (9)
C6—C1—N1121.44 (9)C1—C6—H6120.1
C2—C1—N1116.93 (9)C5—C6—H6120.1
C2—O1—H1O111.4 (11)N2—C7—H7A109.5
O1—C2—C1116.47 (9)N2—C7—H7B109.5
O1—C2—C3124.41 (9)H7A—C7—H7B109.5
C1—C2—C3119.11 (9)N2—C7—H7C109.5
C4—N2—C8113.37 (8)H7A—C7—H7C109.5
C4—N2—C7112.07 (7)H7B—C7—H7C109.5
C8—N2—C7110.74 (8)N2—C8—H8A109.5
C4—N2—H2N108.4 (9)N2—C8—H8B109.5
C8—N2—H2N105.7 (8)H8A—C8—H8B109.5
C7—N2—H2N106.1 (8)N2—C8—H8C109.5
C4—C3—C2118.39 (9)H8A—C8—H8C109.5
C4—C3—H3120.8H8B—C8—H8C109.5
C2—C3—H3120.8H1W1—O1W—H2W1103.4 (16)
C6—C1—C2—O1179.93 (8)C7—N2—C4—C571.16 (11)
N1—C1—C2—O10.70 (12)C8—N2—C4—C3125.32 (9)
C6—C1—C2—C30.81 (13)C7—N2—C4—C3108.41 (9)
N1—C1—C2—C3179.82 (8)C3—C4—C5—C61.17 (13)
O1—C2—C3—C4179.70 (8)N2—C4—C5—C6179.27 (8)
C1—C2—C3—C40.65 (13)C2—C1—C6—C50.03 (13)
C2—C3—C4—C50.34 (13)N1—C1—C6—C5179.31 (8)
C2—C3—C4—N2179.91 (8)C4—C5—C6—C10.99 (13)
C8—N2—C4—C555.10 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N1···Cl2i0.873 (14)2.270 (14)3.1299 (9)168.5 (12)
N1—H1N1···Cl1ii0.895 (14)2.257 (14)3.1364 (9)167.4 (12)
N1—H3N1···O1W0.893 (17)1.819 (17)2.7093 (12)174.4 (14)
O1—H1O···Cl10.843 (18)2.156 (18)2.9873 (8)168.9 (15)
N2—H2N···Cl20.903 (15)2.161 (15)3.0467 (9)166.7 (12)
C5—H5···Cl1iii0.952.983.8846 (10)160
C7—H7A···Cl1iv0.982.783.6641 (10)151
C7—H7B···Cl1iii0.982.793.7079 (11)156
C8—H8A···Cl2v0.982.823.6774 (10)147
C8—H8B···O1i0.982.643.4610 (13)142
C8—H8C···Cl1iii0.982.873.7809 (11)156
O1W—H2W1···Cl2vi0.857 (18)2.259 (18)3.1036 (9)168.7 (13)
O1W—H1W1···Cl1vi0.802 (19)2.348 (19)3.1493 (9)176.4 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y+1, z; (vi) x+1, y, z+1.
 

Acknowledgements

HGA and TMM are grateful to VTU for providing research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: National Science Foundation, MRI (award No. CHE1625732).

References

First citationAnjalin, M., Kanagathara, N. & Baby Suganthi, A. R. (2020). Mat Today: Proceed. 33, 4751–4755.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakma, P., Digby, Z. A., Shulman, M. P., Kuhn, L. R., Morley, C. N., Sparks, J. L. & Konkolewicz, D. (2019). ACS Macro. Lett. 8, 95–100.  CrossRef CAS PubMed Google Scholar
First citationDevi, T. U., Kalpana, G., Priya, S., Ravikumar, K. & Selvanayagam, S. (2012). Acta Cryst. E68, o1705.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMeng-Xia, X. & Yuan, L. (2002). Spectrochim. Acta A Mol. Biomol. Spectrosc. 58, 2817–2826.  PubMed Google Scholar
First citationPerkin, W. H. (1896). J. Chem. Soc. Trans. 69, 596–637.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianou, M., Hadjiadamou, I., Drouza, C., Hayes, S. C., Lariou, E., Tantis, I., Lianos, P., Tsipis, A. C. & Keramidas, A. D. (2017). Dalton Trans. 46, 3688–3699.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds