research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization and anti­mycobacterial evaluation of a benzimidazole analogue of the anti­tuberculosis clinical drug candidate TBA-7371

crossmark logo

aMartin-Luther-Universität Halle-Wittenberg, Institut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 October 2022; accepted 1 November 2022; online 8 November 2022)

The crystal structure and in vitro anti­mycobacterial properties of N-(2-fluoro­eth­yl)-1-[(6-meth­oxy-5-methyl­pyrimidin-4-yl)meth­yl]-1H-benzo[d]imidazole-4-carboxamide (C17H18FN5O2, 1), a previously reported benzimidazole analogue of the 1,4-aza­indole-based antituberculosis drug candidate TBA-7371, are reported. The structure determination was achieved using Hirshfeld atom refinement. Compound 1 crystallizes in the triclinic system (space group P[\overline{1}]) with two mol­ecules in the asymmetric unit (Z′ = 2). The two crystallographically distinct mol­ecules exhibit a similar conformation with the amide groups in a Z conformation, forming an intra­molecular Namide—H⋯Nbenzimidazole hydrogen bond. The most significant supra­molecular feature in the solid-state is a relatively short Cbenzimidazole—H⋯Npyrimidine hydrogen bond. Anti­mycobacterial testing confirmed in vitro activity against Mycobacterium smegmatis, but no growth inhibtion of Mycobacterium abscessus was found.

1. Chemical context

TBA-7371 (Fig. 1[link]) is a 1,4-aza­indole-based drug candidate for the treatment of tuberculosis, which has advanced to a Phase 2a clinical study (ClinicalTrials.gov identifier: NCT04176250). The compound is a non-covalent inhibitor of the mycobacterial enzyme deca­prenyl­phosphoryl-β-D-ribose-2′-epim­erase (DprE1), which is essential for cell-wall synthesis in Mycobacterium tuberculosis, the causative agent of tuberculosis (Shirude et al., 2013[Shirude, P. S., Shandil, R., Sadler, C., Naik, M., Hosagrahara, V., Hameed, S., Shinde, V., Bathula, C., Humnabadkar, V., Kumar, N., Reddy, J., Panduga, V., Sharma, S., Ambady, A., Hegde, N., Whiteaker, J., McLaughlin, R. E., Gardner, H., Madhavapeddi, P., Ramachandran, V., Kaur, P., Narayan, A., Guptha, S., Awasthy, D., Narayan, C., Mahadevaswamy, J., Vishwas, K. G., Ahuja, V., Srivastava, A., Prabhakar, K. R., Bharath, S., Kale, R., Ramaiah, M., Choudhury, N. R., Sambandamurthy, V. K., Solapure, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2013). J. Med. Chem. 56, 9701-9708.], 2014[Shirude, P. S., Shandil, R. K., Manjunatha, M. R., Sadler, C., Panda, M., Panduga, V., Reddy, J., Saralaya, R., Nanduri, R., Ambady, A., Ravishankar, S., Sambandamurthy, V. K., Humnabadkar, V., Jena, L. K., Suresh, R. S., Srivastava, A., Prabhakar, K. R., Whiteaker, J., McLaughlin, R. E., Sharma, S., Cooper, C. B., Mdluli, K., Butler, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2014). J. Med. Chem. 57, 5728-5737.]; Chikhale et al., 2018[Chikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2018). J. Med. Chem. 61, 8563-8593.]). As shown in Fig. 1[link], scaffold morphing, a medicinal chemistry approach to the design of new ligands for the same target with a different core, led to the identification of N-(2-fluoro­eth­yl)-1-[(6-meth­oxy-5-methyl­pyrimidin-4-yl)meth­yl]-1H-benzo[d]imidazole-4-carboxamide (1) (Manjunatha et al., 2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]). In 1, the 1,4-aza­indole core has been replaced by a benzimidazole core, while the 6-meth­oxy-5-methyl­pyrimidine-4-yl group and the amide side chain were maintained. Compound 1 exhibits potent DprE1 inhibition and anti­mycobacterial activity (vide infra).

[Scheme 1]
[Figure 1]
Figure 1
Scaffold morphing of 1,4-aza­indole in TBA-7371 to benzimidazole in 1 (Manjunatha et al., 2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]).

Late steps in the synthesis of 1, following the previously published route (Manjunatha et al., 2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]), are sketched in Fig. 2[link]. Benzimidazole derivative A was reacted with 4-(chloro­­meth­yl)-6-meth­oxy-5-methyl­pyrimidine to give B. It is worth mentioning that N-alkyl­ation in part occurred at position 3 of the benzimidazole scaffold, affording side product C. Regio­isomers B and C were separated by flash chromatography, resulting in an approximate 3.75:1 ratio. Compound C was identified by 1H and 13C NMR spectroscopy and APCI mass spectrometry (see Supporting Information). Hydrolysis of B followed by amide coupling with 2-fluoro­ethanamine gave the target compound 1. X-ray crystallography unambiguously confirmed the structure.

[Figure 2]
Figure 2
Synthesis of 1, following the published procedure (Manjunatha et al., 2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]). Reagents and solvents: (a) 4-(chloro­meth­yl)-6-meth­oxy-5-methyl­pyrimidine, Cs2CO3, NaI, DMF; (b) LiOH, MeOH; (c) HATU, 2-fluoro­ethanamine, NMP.

2. Structural commentary

Compound 1 crystallizes in the triclinic space group P[\overline{1}] with two crystallographically distinct mol­ecules (Fig. 3[link]). In both mol­ecules, the tilt of the 6-meth­oxy-5-methyl­pyrimidin-4-yl group of the plane out of the central benzimidazole moiety renders the conformers axially chiral. The C2—N1—C11—C12 torsion angle is 101.9 (1)° in mol­ecule 1 and 79.0 (1)° in mol­ecule 2. The enanti­omeric conformers in the chosen asymmetric unit thus exhibit the same handedness, but the corresponding oppositely handed conformers are present in the centrosymmetric crystal structure. The most marked structural difference between the two unique mol­ecules is the orientation of the 2-fluoro­ethyl group about the C9—C10 bond with N2—C9—C10—F1 = 68.1 (1)° for mol­ecule 1 and −61.8 (1)° for mol­ecule 2.

[Figure 3]
Figure 3
Asymmetric unit of 1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radius. Dashed lines represent hydrogen bonds. The number after the underscore indicates unique mol­ecule 1 or 2.

The plane of the amide group and the mean plane of the benzimidazole moiety are nearly co-planar in mol­ecules 1 and 2. The angle between the two planes is 8.8 (1)° in mol­ecule 1 and 7.7 (1)° in mol­ecule 2. The amide group adopts a Z conformation in both mol­ecules and forms an intra­molecular N—H⋯H hydrogen bond to atom N3 of the benzimidazole system (Table 1[link]), resulting in a six-membered hydrogen-bonded ring with an S(6) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This is in line with Etter's second hydrogen-bond rule for organic compounds, which states that intra­molecular six-membered hydrogen-bonded rings form in preference to inter­molecular hydrogen bonds (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2_1—H2_1⋯O1_2i 1.054 (12) 2.353 (12) 3.2907 (14) 147.5 (9)
C7_1—H7_1⋯O1_2ii 1.031 (12) 2.245 (13) 3.2211 (14) 157.4 (10)
N2_1—H2a_1⋯N3_1 1.002 (14) 2.035 (14) 2.8581 (14) 137.9 (10)
C2_2—H2_2⋯N5_1 1.060 (13) 2.240 (13) 3.2922 (15) 171.4 (9)
C7_2—H7_2⋯O1_1iii 1.059 (12) 2.394 (12) 3.0915 (14) 122.3 (8)
C11_2—H11b_2⋯F1_1iv 1.092 (12) 2.186 (12) 3.1839 (13) 150.7 (10)
C16_2—H16c_2⋯F1_2i 1.047 (17) 2.403 (17) 3.2827 (15) 140.9 (12)
N2_2—H2a_2⋯N3_2 1.002 (14) 1.942 (14) 2.7823 (13) 139.6 (10)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+2, -y+1, -z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1].

3. Supra­molecular features

The most significant supra­molecular feature of the title compound's solid-state structure is a short C—H⋯N contact between the amidine C2—H2 group of the benzimidazole moiety in mol­ecule 2 and N5 of the pyrimidine ring in mol­ecule 1 (Fig. 3[link]), which provides structural evidence for a C—H⋯N weak hydrogen bond (Table 1[link]). The amidine C2—H2 group in mol­ecule 1 forms a short C—H⋯O contact to the amide carbonyl group of mol­ecule 2. The geometric parameters including a D—H⋯A angle >140° (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]) are characteristic of a weak hydrogen bond (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]). F⋯F inter­actions are not encountered in the crystal structure, but parallel arrangements between the pyrimidine ring of mol­ecule 1 and the benzimidazole moiety of a neighbouring mol­ecule 2 (Fig. 4[link]) and between the benzimidazole moieties of two mol­ecules 1 about a center of symmetry are notable features (Fig. 5[link]). The latter and the stacking of these units with the pyrimidine rings of mol­ecule 2 in the b*-axis direction no doubt contribute to the 040 reflection having by far the strongest intensity in the diffraction data set. A packing index of 71.9% (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.]), as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), suggests that the solid-state structure appears to be mainly governed by close packing.

[Figure 4]
Figure 4
Section of the crystal structure of 1, showing ππ stacking between the 6-meth­oxy-5-methyl­pyrimidin-4-yl moiety and the benzimidazole system in adjacent mol­ecules. The distance between the centroids of the two six-membered rings (thin dashed line) is 3.6164 (11) Å. Thick dashed lines represent hydrogen bonds. Carbon-bound H atoms have been omitted for clarity. Symmetry code: (i) −x + 1, −y + 1, −z.
[Figure 5]
Figure 5
View of the triclinic unit cell of 1, showing the stacking of benzimidazole and 6-meth­oxy-5-methyl­pyrimidin moieties in an AABB fashion in the b*-axis direction. Dashed lines represent hydrogen bonds. H atoms have been omitted for clarity, except for amide and amidine H atoms.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for acyclic 1-alkyl benzimidazole-4-carboxamides via WebCSD (accessed on 21 October 2022; CCDC, 2017[CCDC (2017). CSD web interface - intuitive, cross-platform, web-based access to CSD data. Cambridge Crystallographic Data Centre, Cambridge, England.]) yielded the structure of 1-(2,6-di­fluoro­benz­yl)-2-(2,6-di­fluoro­phen­yl)-1H-benzimidazole-4-carboxamide (Ziółkowska et al., 2010[Ziółkowska, N. E., Michejda, C. J. & Bujacz, G. D. (2010). J. Mol. Struct. 966, 53-58.]; CSD refcode: PUMXAX). In PUMXAX, the amide group likewise forms an intra­molecular N—H⋯N hydrogen bond to N3 of the benzimidazole system with an S(6) motif, and the 2,6-di­fluoro­benzyl group and the benzimidazole moiety adopt an orientation to one another similar to that of the 6-meth­oxy-5-methyl­pyrimidin-4-yl group and the benzimidazole system in 1.

A survey of crystal structures of the target enzyme DprE1 in the Protein Data Bank (PDB; Burley et al., 2019[Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., DiCostanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., Lowe, R., Namkoong, H., Peisach, E., Periskova, I., Prlić, A., Randle, C., Rose, A., Rose, P., Sala, R., Sekharan, M., Shao, C., Tan, L., Tao, Y.-P., Valasatava, Y., Voigt, M., Westbrook, J., Woo, J., Yang, H., Young, J., Zhuravleva, M. & Zardecki, C. (2019). Nucleic Acids Res. 47, D464-D474.]), revealed that the conformation of the benzamide part of both mol­ecules in 1 is similar to that of CT319, which is (R)-3-nitro-N-(1-phenyl­eth­yl)-5-(tri­fluoro­meth­yl)benzamide, in the crystal structure of its non-covalent complex with M. tuberculosis DprE1 (PDB code: 4FDO; Batt et al., 2012[Batt, S. M., Jabeen, T., Bhowruth, V., Quill, L., Lund, P. A., Eggeling, L., Alderwick, L. J., Fütterer, K. & Besra, G. S. (2012). Proc. Natl Acad. Sci. USA, 109, 11354-11359.]), as shown in Fig. 6[link].

[Figure 6]
Figure 6
Structure overlay of the benzene rings of the two unique mol­ecules of 1 (mol­ecule 1: green; mol­ecule 2: orange) and the benzene ring of CT319 in the crystal structure of its non-covalent complex with M. tuberculosis DprE1 (pink; PDB code: 4FDO; resolution: 2.4 Å), showing the similar conformations of the benzamide moieties.

5. Anti­mycobacterial evaluation

Manjunatha et al. (2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]) reported an in vitro minimal inhibitory concentration (MIC) of 1.56–3.12 µM for 1 against M. tuberculosis H37Rv and MIC 0.78–1.56 µM against Mycobacterium smegmatis. Potent inhibition of the M. tuberculosis DprE1 and mol­ecular docking suggested a mode of action similar to TBA-7371. We re-evaluated the in vitro activity of 1 against M. smegmatis mc2 155, using broth microdilution assays (for the assay protocols, see supporting information and Richter et al., 2018[Richter, A., Strauch, A., Chao, J., Ko, M. & Av-Gay, Y. (2018). Antimicrob. Agents Chemother. 62, e00828-18.]). We determined a MIC90 of 12.5 µM in Middlebrook 7H9 medium supplemented with 10% ADS (albumin-dextrose-saline) and 0.05% polysorbate 80, and 6.25 µM in Mueller Hinton II Broth with 0.05% polysorbate 80.

The non-tuberculous Mycobacterium abscessus is an opportunistic pathogen, which can cause difficult-to-treat skin, soft tissue and pulmonary infections, in particular in patients with structural lung diseases such as cystic fibrosis (Boudehen & Kremer, 2021[Boudehen, Y. M. & Kremer, L. (2021). Trends Microbiol. 29, 951-952.]). Screening of anti­tubercular agents for activity against M. abscessus has been proposed (Ganapathy & Dick, 2022[Ganapathy, U. S. & Dick, T. (2022). Molecules, 27, 6948.]). Mechanism-based covalent DprE1 inhibitors with potent activity against M. tuberculosis and other mycobacteria like M. smegmatis form covalent adducts with the thiol group of Cys387 on the FAD substrate binding domain (Shetye et al., 2020[Shetye, G. S., Franzblau, S. G. & Cho, S. (2020). Transl. Res. 220, 68-97.]). These compounds are usually inactive against M. abscessus, since the M. abscessus DprE1 has an alanine residue in the corresponding amino-acid position, which prevents covalent linkage. Testing of non-covalent DprE1 inhibitors against M. abscessus, however, could be a promising approach to identifying potential lead structures. Therefore, we also tested 1 against M. abscessus ATCC19977 in vitro. In both Middlebrook 7H9 medium supplemented with 10% ADS and 0.05% polysorbate 80 and Mueller Hinton II Broth with 0.05% polysorbate 80, however, no growth inhibition could be detected (MIC90 > 100 µM). While this work was in progress, the same observation was reported for the parent 1,4-aza­indole TBA-7371 (Sarathy et al., 2022[Sarathy, J. P., Zimmerman, M. D., Gengenbacher, M., Dartois, V. & Thomas Dick, T. (2022). bioRxiv 2022.09.14.508059; doi: 10.1101/2022.09.14.508059.]). It is worth noting, however, that Sarathy et al. (2022[Sarathy, J. P., Zimmerman, M. D., Gengenbacher, M., Dartois, V. & Thomas Dick, T. (2022). bioRxiv 2022.09.14.508059; doi: 10.1101/2022.09.14.508059.]) found moderate in vitro activity against several M. abscessus strains and clinical isolates for the 3,4-di­hydro­carbostyril-based non-covalent DprE1 inhibitor and Phase 2b/c clinical antituberculosis drug candidate OPC-167832.

6. Synthesis and crystallization

Compound 1 was synthesized as described by Manjunatha et al. (2019[Manjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480-1485.]). Analytical data for A, B, C and 1 can be found in the supporting information. Crystals of 1 suitable for X-ray diffraction were grown from a solution in ethyl acetate/n-heptane (1:1) by slow evaporation of the solvents at room temperature.

7. Refinement

Initially, the structure was refined to convergence using independent atom model refinement with SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The final structure refinement was carried out by Hirshfeld atom refinement with aspherical scattering factors using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]; Midgley et al., 2021[Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519-533.]) partitioning in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) based on electron density from iterative single-determinant SCF single-point DFT calculations using ORCA (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]) with a B3LYP functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]) and a def2-TZVPP basis set. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H18FN5O2
Mr 343.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.6940 (19), 15.013 (4), 15.281 (4)
α, β, γ (°) 71.040 (4), 77.874 (5), 87.780 (4)
V3) 1631.3 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.10 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.994, 0.999
No. of measured, independent and observed [I ≥ 2u(I)] reflections 58016, 8147, 6141
Rint 0.048
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.07
No. of reflections 8147
No. of parameters 595
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.32
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: DIAMOND (Brandenburg, 2018) and Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

N-(2-Fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1,3-benzodiazole-4-carboxamide top
Crystal data top
C17H18FN5O2Z = 4
Mr = 343.36F(000) = 720
Triclinic, P1Dx = 1.398 Mg m3
a = 7.6940 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.013 (4) ÅCell parameters from 9963 reflections
c = 15.281 (4) Åθ = 2.7–28.2°
α = 71.040 (4)°µ = 0.10 mm1
β = 77.874 (5)°T = 100 K
γ = 87.780 (4)°Plate, colourless
V = 1631.3 (7) Å30.10 × 0.05 × 0.02 mm
Data collection top
Bruker AXS Kappa Mach3 APEX II
diffractometer
8147 independent reflections
Radiation source: Incoatec IµS6141 reflections with I 2u(I)
Incoatec Helios mirrors monochromatorRint = 0.048
Detector resolution: 66.67 pixels mm-1θmax = 28.5°, θmin = 1.4°
φ– and ω–scansh = 1010
Absorption correction: gaussian
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.994, Tmax = 0.999l = 2019
58016 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.1357P]
where P = (Fo2 + 2Fc2)/3
8147 reflections(Δ/σ)max = 0.001
595 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Special details top

Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2_10.24678 (14)0.11875 (7)0.50249 (7)0.0171 (2)
H2_10.1399 (16)0.1169 (8)0.4698 (8)0.033 (3)*
C3A_10.40214 (12)0.12795 (6)0.60043 (7)0.01224 (19)
C4_10.46666 (13)0.12885 (6)0.67969 (7)0.0138 (2)
C5_10.64993 (14)0.12841 (7)0.67153 (8)0.0188 (2)
H5_10.7017 (16)0.1288 (9)0.7320 (9)0.037 (3)*
C6_10.76757 (14)0.12644 (8)0.58895 (8)0.0223 (2)
H6_10.9064 (17)0.1261 (8)0.5876 (9)0.040 (3)*
C7_10.70606 (13)0.12396 (7)0.51032 (8)0.0187 (2)
H7_10.7946 (16)0.1207 (8)0.4507 (9)0.038 (3)*
C7A_10.52267 (12)0.12461 (6)0.51864 (7)0.0131 (2)
C8_10.35297 (14)0.12221 (7)0.77376 (7)0.0175 (2)
C9_10.05871 (17)0.09121 (8)0.87354 (8)0.0265 (3)
H9a_10.1274 (19)0.0422 (11)0.9242 (10)0.057 (4)*
H9b_10.0673 (19)0.0628 (10)0.8694 (10)0.050 (4)*
C10_10.01296 (17)0.17191 (8)0.91114 (8)0.0258 (3)
H10a_10.0661 (19)0.1461 (10)0.9831 (11)0.057 (4)*
H10b_10.1311 (18)0.2145 (9)0.9030 (9)0.047 (4)*
C11_10.48068 (16)0.10678 (7)0.36547 (7)0.0188 (2)
H11a_10.3719 (18)0.0773 (9)0.3485 (9)0.044 (4)*
H11b_10.5883 (18)0.0590 (9)0.3682 (9)0.048 (4)*
C12_10.54232 (13)0.19816 (6)0.28726 (7)0.01278 (19)
C13_10.66938 (12)0.19801 (6)0.20828 (7)0.01218 (19)
C14_10.70948 (12)0.28746 (6)0.13868 (6)0.01223 (19)
C15_10.51185 (13)0.35548 (7)0.22720 (7)0.0151 (2)
H15_10.4475 (15)0.4202 (8)0.2342 (8)0.031 (3)*
C16_10.75853 (15)0.11175 (7)0.19506 (8)0.0172 (2)
H16a_10.8798 (19)0.1290 (10)0.1421 (10)0.054 (4)*
H16b_10.8024 (18)0.0689 (10)0.2556 (10)0.052 (4)*
H16c_10.677 (2)0.0719 (11)0.1756 (10)0.061 (4)*
C17_10.88043 (14)0.38333 (7)0.00710 (7)0.0181 (2)
H17a_10.9829 (17)0.3724 (8)0.0611 (9)0.040 (3)*
H17b_10.7668 (16)0.4161 (8)0.0362 (8)0.033 (3)*
H17c_10.9341 (16)0.4290 (9)0.0248 (9)0.037 (3)*
N1_10.41820 (11)0.11800 (5)0.45741 (5)0.01466 (17)
N2_10.17564 (12)0.11793 (6)0.78099 (6)0.0202 (2)
H2a_10.1293 (17)0.1211 (9)0.7235 (10)0.036 (4)*
N3_10.22925 (10)0.12443 (6)0.58814 (6)0.01580 (18)
N4_10.46198 (11)0.27632 (6)0.29767 (6)0.01515 (18)
N5_10.63354 (10)0.36553 (5)0.14786 (6)0.01407 (17)
O1_10.41907 (11)0.11614 (5)0.84196 (5)0.02732 (19)
O2_10.83091 (9)0.29152 (5)0.06084 (5)0.01625 (15)
F1_10.09275 (9)0.23342 (5)0.85713 (5)0.0407 (2)
C2_20.63497 (13)0.58977 (7)0.02129 (7)0.0161 (2)
H2_20.6202 (16)0.5177 (9)0.0635 (9)0.038 (3)*
C3A_20.71862 (12)0.72002 (6)0.08890 (7)0.01256 (19)
C4_20.79584 (12)0.79156 (7)0.17228 (7)0.0130 (2)
C5_20.75312 (13)0.88396 (7)0.17785 (7)0.0161 (2)
H5_20.8156 (16)0.9408 (9)0.2421 (9)0.035 (3)*
C6_20.63746 (14)0.90545 (7)0.10381 (7)0.0188 (2)
H6_20.6057 (16)0.9770 (9)0.1100 (8)0.036 (3)*
C7_20.55929 (14)0.83519 (7)0.02112 (7)0.0171 (2)
H7_20.4735 (16)0.8528 (8)0.0344 (8)0.034 (3)*
C7A_20.60227 (12)0.74284 (7)0.01578 (7)0.0140 (2)
C8_20.91827 (12)0.77332 (7)0.25397 (7)0.0138 (2)
C9_21.08197 (14)0.65409 (8)0.31197 (8)0.0188 (2)
H9a_21.1513 (16)0.5933 (9)0.2806 (9)0.039 (3)*
H9b_21.1762 (16)0.7109 (9)0.3576 (9)0.035 (3)*
C10_20.97648 (16)0.62865 (9)0.37364 (8)0.0269 (3)
H10a_20.8958 (17)0.6864 (9)0.4029 (9)0.044 (3)*
H10b_21.0606 (18)0.6044 (9)0.4256 (10)0.054 (4)*
C11_20.43832 (14)0.64282 (8)0.14634 (7)0.0192 (2)
H11a_20.3521 (16)0.5797 (9)0.1648 (9)0.039 (3)*
H11b_20.3542 (16)0.7039 (9)0.1409 (9)0.038 (3)*
C12_20.54170 (13)0.63169 (7)0.22336 (7)0.0154 (2)
C13_20.45344 (13)0.63352 (7)0.31175 (7)0.0161 (2)
C14_20.56317 (15)0.62089 (7)0.37788 (7)0.0201 (2)
C15_20.80399 (15)0.60741 (8)0.27110 (8)0.0257 (3)
H15_20.9430 (17)0.5958 (9)0.2557 (9)0.043 (3)*
C16_20.25762 (15)0.64610 (8)0.33854 (8)0.0215 (2)
H16a_20.2278 (19)0.6794 (10)0.3907 (11)0.061 (4)*
H16b_20.2055 (19)0.6939 (11)0.2826 (11)0.063 (4)*
H16c_20.187 (2)0.5814 (12)0.3640 (11)0.075 (5)*
C17_20.5973 (2)0.61725 (10)0.52889 (10)0.0379 (3)
H17a_20.513 (2)0.6183 (12)0.5923 (13)0.078 (5)*
H17b_20.6689 (18)0.5546 (10)0.5403 (10)0.053 (4)*
H17c_20.691 (2)0.6769 (12)0.5007 (11)0.063 (4)*
N1_20.54919 (11)0.65749 (6)0.05356 (6)0.01600 (18)
N2_20.97000 (11)0.68391 (6)0.23867 (6)0.01570 (18)
H2a_20.9130 (17)0.6344 (9)0.1783 (10)0.034 (3)*
N3_20.73649 (10)0.62313 (5)0.06356 (6)0.01434 (17)
N4_20.71695 (11)0.61835 (6)0.20201 (6)0.0216 (2)
N5_20.73631 (12)0.60823 (6)0.35843 (6)0.0252 (2)
O1_20.96957 (9)0.83717 (5)0.32943 (5)0.01908 (16)
O2_20.48417 (11)0.62231 (5)0.46393 (5)0.02792 (19)
F1_20.85963 (9)0.55284 (5)0.31786 (5)0.03320 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2_10.0170 (5)0.0220 (5)0.0124 (5)0.0007 (4)0.0054 (4)0.0044 (4)
C3A_10.0134 (5)0.0129 (4)0.0095 (5)0.0004 (4)0.0016 (4)0.0029 (4)
C4_10.0163 (5)0.0139 (5)0.0113 (5)0.0005 (4)0.0031 (4)0.0041 (4)
C5_10.0171 (5)0.0217 (5)0.0184 (6)0.0004 (4)0.0067 (4)0.0057 (4)
C6_10.0120 (5)0.0290 (6)0.0242 (6)0.0018 (4)0.0022 (4)0.0071 (5)
C7_10.0138 (5)0.0211 (5)0.0174 (5)0.0009 (4)0.0025 (4)0.0045 (4)
C7A_10.0140 (5)0.0130 (4)0.0100 (5)0.0002 (4)0.0005 (4)0.0024 (4)
C8_10.0251 (6)0.0171 (5)0.0112 (5)0.0044 (4)0.0043 (4)0.0059 (4)
C9_10.0330 (7)0.0225 (6)0.0184 (6)0.0017 (5)0.0070 (5)0.0068 (5)
C10_10.0307 (7)0.0269 (6)0.0178 (6)0.0104 (5)0.0001 (5)0.0088 (5)
C11_10.0304 (6)0.0133 (5)0.0103 (5)0.0028 (4)0.0001 (4)0.0030 (4)
C12_10.0182 (5)0.0107 (4)0.0090 (5)0.0004 (4)0.0029 (4)0.0026 (4)
C13_10.0141 (5)0.0120 (5)0.0104 (5)0.0004 (4)0.0017 (4)0.0039 (4)
C14_10.0141 (4)0.0127 (5)0.0097 (5)0.0003 (4)0.0026 (4)0.0032 (4)
C15_10.0187 (5)0.0126 (5)0.0122 (5)0.0021 (4)0.0008 (4)0.0031 (4)
C16_10.0198 (5)0.0142 (5)0.0180 (6)0.0025 (4)0.0038 (5)0.0061 (4)
C17_10.0174 (5)0.0197 (5)0.0137 (5)0.0031 (4)0.0004 (4)0.0025 (4)
N1_10.0194 (4)0.0146 (4)0.0086 (4)0.0007 (3)0.0010 (3)0.0029 (3)
N2_10.0228 (5)0.0221 (5)0.0142 (5)0.0016 (4)0.0011 (4)0.0071 (4)
N3_10.0128 (4)0.0217 (4)0.0125 (4)0.0016 (3)0.0019 (3)0.0055 (3)
N4_10.0195 (4)0.0130 (4)0.0116 (4)0.0009 (3)0.0005 (3)0.0039 (3)
N5_10.0169 (4)0.0126 (4)0.0112 (4)0.0009 (3)0.0016 (3)0.0027 (3)
O1_10.0369 (5)0.0343 (4)0.0155 (4)0.0107 (4)0.0107 (3)0.0123 (3)
O2_10.0177 (3)0.0157 (3)0.0132 (3)0.0011 (3)0.0013 (3)0.0044 (3)
F1_10.0328 (4)0.0471 (5)0.0366 (4)0.0222 (3)0.0055 (3)0.0094 (3)
C2_20.0188 (5)0.0155 (5)0.0119 (5)0.0025 (4)0.0030 (4)0.0017 (4)
C3A_20.0144 (5)0.0129 (5)0.0102 (5)0.0018 (4)0.0036 (4)0.0031 (4)
C4_20.0147 (5)0.0132 (5)0.0113 (5)0.0015 (4)0.0034 (4)0.0038 (4)
C5_20.0201 (5)0.0125 (5)0.0166 (5)0.0007 (4)0.0058 (4)0.0048 (4)
C6_20.0226 (5)0.0157 (5)0.0211 (6)0.0041 (4)0.0074 (4)0.0089 (4)
C7_20.0196 (5)0.0204 (5)0.0156 (5)0.0057 (4)0.0063 (4)0.0105 (4)
C7A_20.0161 (5)0.0168 (5)0.0106 (5)0.0041 (4)0.0046 (4)0.0059 (4)
C8_20.0150 (5)0.0150 (5)0.0111 (5)0.0010 (4)0.0027 (4)0.0035 (4)
C9_20.0164 (5)0.0215 (6)0.0190 (5)0.0007 (4)0.0011 (4)0.0089 (5)
C10_20.0316 (6)0.0330 (7)0.0236 (6)0.0063 (5)0.0092 (5)0.0176 (5)
C11_20.0171 (5)0.0295 (6)0.0107 (5)0.0041 (5)0.0047 (4)0.0053 (4)
C12_20.0172 (5)0.0181 (5)0.0111 (5)0.0019 (4)0.0051 (4)0.0035 (4)
C13_20.0224 (5)0.0151 (5)0.0116 (5)0.0004 (4)0.0055 (4)0.0041 (4)
C14_20.0316 (6)0.0174 (5)0.0135 (5)0.0012 (4)0.0111 (5)0.0040 (4)
C15_20.0198 (6)0.0324 (6)0.0247 (6)0.0021 (5)0.0115 (5)0.0050 (5)
C16_20.0244 (6)0.0236 (6)0.0171 (6)0.0016 (5)0.0027 (5)0.0085 (5)
C17_20.0664 (10)0.0319 (7)0.0231 (7)0.0034 (7)0.0245 (7)0.0101 (6)
N1_20.0165 (4)0.0205 (4)0.0096 (4)0.0041 (3)0.0026 (3)0.0036 (3)
N2_20.0163 (4)0.0163 (4)0.0142 (4)0.0008 (3)0.0020 (3)0.0053 (4)
N3_20.0164 (4)0.0147 (4)0.0110 (4)0.0031 (3)0.0026 (3)0.0033 (3)
N4_20.0181 (4)0.0288 (5)0.0173 (5)0.0040 (4)0.0067 (4)0.0052 (4)
N5_20.0304 (5)0.0259 (5)0.0212 (5)0.0013 (4)0.0160 (4)0.0034 (4)
O1_20.0218 (4)0.0182 (4)0.0131 (4)0.0015 (3)0.0001 (3)0.0015 (3)
O2_20.0457 (5)0.0272 (4)0.0147 (4)0.0009 (4)0.0124 (4)0.0081 (3)
F1_20.0271 (4)0.0315 (4)0.0516 (5)0.0002 (3)0.0106 (3)0.0262 (3)
Geometric parameters (Å, º) top
C2_1—H2_11.054 (12)C2_2—H2_21.060 (13)
C2_1—N1_11.3551 (13)C2_2—N1_21.3599 (13)
C2_1—N3_11.3175 (13)C2_2—N3_21.3133 (13)
C3A_1—C4_11.4063 (14)C3A_2—C4_21.4043 (13)
C3A_1—C7A_11.4051 (13)C3A_2—C7A_21.4042 (13)
C3A_1—N3_11.3871 (13)C3A_2—N3_21.3877 (12)
C4_1—C5_11.3892 (14)C4_2—C5_21.3926 (14)
C4_1—C8_11.4922 (14)C4_2—C8_21.4929 (14)
C5_1—H5_11.082 (13)C5_2—H5_21.101 (12)
C5_1—C6_11.3982 (15)C5_2—C6_21.4029 (14)
C6_1—H6_11.064 (13)C6_2—H6_21.070 (12)
C6_1—C7_11.3923 (16)C6_2—C7_21.3910 (15)
C7_1—H7_11.031 (12)C7_2—H7_21.059 (12)
C7_1—C7A_11.3898 (14)C7_2—C7A_21.3932 (14)
C7A_1—N1_11.3834 (13)C7A_2—N1_21.3812 (13)
C8_1—N2_11.3479 (14)C8_2—N2_21.3448 (13)
C8_1—O1_11.2289 (12)C8_2—O1_21.2346 (11)
C9_1—H9a_11.092 (15)C9_2—H9a_21.064 (12)
C9_1—H9b_11.096 (14)C9_2—H9b_21.090 (13)
C9_1—C10_11.5021 (16)C9_2—C10_21.5073 (16)
C9_1—N2_11.4475 (14)C9_2—N2_21.4450 (13)
C10_1—H10a_11.091 (15)C10_2—H10a_21.078 (13)
C10_1—H10b_11.094 (14)C10_2—H10b_21.066 (14)
C10_1—F1_11.3871 (13)C10_2—F1_21.3989 (14)
C11_1—H11a_11.076 (14)C11_2—H11a_21.102 (13)
C11_1—H11b_11.073 (13)C11_2—H11b_21.092 (12)
C11_1—C12_11.5107 (14)C11_2—C12_21.5169 (14)
C11_1—N1_11.4481 (13)C11_2—N1_21.4456 (13)
C12_1—C13_11.3849 (13)C12_2—C13_21.3869 (14)
C12_1—N4_11.3447 (12)C12_2—N4_21.3422 (13)
C13_1—C14_11.4129 (13)C13_2—C14_21.4111 (14)
C13_1—C16_11.4938 (14)C13_2—C16_21.4974 (15)
C14_1—N5_11.3244 (12)C14_2—N5_21.3228 (14)
C14_1—O2_11.3349 (11)C14_2—O2_21.3344 (13)
C15_1—H15_11.100 (11)C15_2—H15_21.066 (13)
C15_1—N4_11.3227 (13)C15_2—N4_21.3289 (14)
C15_1—N5_11.3358 (13)C15_2—N5_21.3305 (15)
C16_1—H16a_11.076 (14)C16_2—H16a_21.055 (16)
C16_1—H16b_11.055 (14)C16_2—H16b_21.063 (16)
C16_1—H16c_11.032 (16)C16_2—H16c_21.047 (17)
C17_1—H17a_11.065 (13)C17_2—H17a_21.051 (17)
C17_1—H17b_11.092 (12)C17_2—H17b_21.055 (14)
C17_1—H17c_11.096 (13)C17_2—H17c_21.083 (16)
C17_1—O2_11.4378 (12)C17_2—O2_21.4341 (15)
N2_1—H2a_11.002 (14)N2_2—H2a_21.002 (14)
N1_1—C2_1—H2_1121.8 (6)N1_2—C2_2—H2_2121.1 (7)
N3_1—C2_1—H2_1124.5 (6)N3_2—C2_2—H2_2125.3 (7)
N3_1—C2_1—N1_1113.70 (9)N3_2—C2_2—N1_2113.60 (9)
C7A_1—C3A_1—C4_1119.54 (8)C7A_2—C3A_2—C4_2120.12 (8)
N3_1—C3A_1—C4_1130.61 (9)N3_2—C3A_2—C4_2130.02 (9)
N3_1—C3A_1—C7A_1109.75 (8)N3_2—C3A_2—C7A_2109.86 (8)
C5_1—C4_1—C3A_1117.17 (9)C5_2—C4_2—C3A_2117.23 (9)
C8_1—C4_1—C3A_1124.80 (9)C8_2—C4_2—C3A_2123.55 (8)
C8_1—C4_1—C5_1117.82 (9)C8_2—C4_2—C5_2119.22 (9)
H5_1—C5_1—C4_1118.1 (6)H5_2—C5_2—C4_2117.9 (6)
C6_1—C5_1—C4_1122.32 (10)C6_2—C5_2—C4_2121.84 (9)
C6_1—C5_1—H5_1119.6 (6)C6_2—C5_2—H5_2120.2 (6)
H6_1—C6_1—C5_1118.4 (7)H6_2—C6_2—C5_2120.5 (6)
C7_1—C6_1—C5_1121.32 (10)C7_2—C6_2—C5_2121.47 (9)
C7_1—C6_1—H6_1120.3 (7)C7_2—C6_2—H6_2118.0 (6)
H7_1—C7_1—C6_1120.2 (7)H7_2—C7_2—C6_2120.4 (6)
C7A_1—C7_1—C6_1116.21 (10)C7A_2—C7_2—C6_2116.54 (9)
C7A_1—C7_1—H7_1123.5 (7)C7A_2—C7_2—H7_2123.1 (6)
C7_1—C7A_1—C3A_1123.43 (9)C7_2—C7A_2—C3A_2122.79 (9)
N1_1—C7A_1—C3A_1105.24 (8)N1_2—C7A_2—C3A_2105.16 (8)
N1_1—C7A_1—C7_1131.26 (9)N1_2—C7A_2—C7_2132.05 (9)
N2_1—C8_1—C4_1116.58 (9)N2_2—C8_2—C4_2115.46 (8)
O1_1—C8_1—C4_1121.17 (9)O1_2—C8_2—C4_2121.45 (8)
O1_1—C8_1—N2_1122.15 (10)O1_2—C8_2—N2_2123.08 (9)
H9b_1—C9_1—H9a_1114.0 (11)H9b_2—C9_2—H9a_2110.2 (9)
C10_1—C9_1—H9a_1105.0 (8)C10_2—C9_2—H9a_2107.5 (7)
C10_1—C9_1—H9b_1106.5 (7)C10_2—C9_2—H9b_2107.5 (6)
N2_1—C9_1—H9a_1108.6 (7)N2_2—C9_2—H9a_2109.5 (7)
N2_1—C9_1—H9b_1109.1 (7)N2_2—C9_2—H9b_2109.8 (6)
N2_1—C9_1—C10_1113.74 (10)N2_2—C9_2—C10_2112.27 (9)
H10a_1—C10_1—C9_1109.9 (7)H10a_2—C10_2—C9_2110.4 (7)
H10b_1—C10_1—C9_1111.7 (7)H10b_2—C10_2—C9_2111.2 (7)
H10b_1—C10_1—H10a_1114.6 (10)H10b_2—C10_2—H10a_2113.6 (10)
F1_1—C10_1—C9_1109.35 (10)F1_2—C10_2—C9_2108.97 (9)
F1_1—C10_1—H10a_1106.5 (7)F1_2—C10_2—H10a_2106.7 (7)
F1_1—C10_1—H10b_1104.4 (7)F1_2—C10_2—H10b_2105.6 (7)
H11b_1—C11_1—H11a_1109.0 (10)H11b_2—C11_2—H11a_2108.4 (9)
C12_1—C11_1—H11a_1108.2 (7)C12_2—C11_2—H11a_2109.4 (6)
C12_1—C11_1—H11b_1108.6 (7)C12_2—C11_2—H11b_2109.5 (7)
N1_1—C11_1—H11a_1107.6 (7)N1_2—C11_2—H11a_2108.5 (6)
N1_1—C11_1—H11b_1109.8 (7)N1_2—C11_2—H11b_2106.9 (6)
N1_1—C11_1—C12_1113.63 (8)N1_2—C11_2—C12_2113.96 (8)
C13_1—C12_1—C11_1120.19 (8)C13_2—C12_2—C11_2119.79 (9)
N4_1—C12_1—C11_1116.34 (8)N4_2—C12_2—C11_2117.08 (9)
N4_1—C12_1—C13_1123.40 (8)N4_2—C12_2—C13_2123.11 (9)
C14_1—C13_1—C12_1114.47 (8)C14_2—C13_2—C12_2114.56 (9)
C16_1—C13_1—C12_1124.13 (9)C16_2—C13_2—C12_2124.46 (9)
C16_1—C13_1—C14_1121.40 (9)C16_2—C13_2—C14_2120.97 (9)
N5_1—C14_1—C13_1123.18 (9)N5_2—C14_2—C13_2123.50 (10)
O2_1—C14_1—C13_1117.08 (8)O2_2—C14_2—C13_2116.73 (10)
O2_1—C14_1—N5_1119.74 (8)O2_2—C14_2—N5_2119.77 (9)
N4_1—C15_1—H15_1117.2 (6)N4_2—C15_2—H15_2117.0 (7)
N5_1—C15_1—H15_1116.0 (6)N5_2—C15_2—H15_2115.9 (7)
N5_1—C15_1—N4_1126.82 (9)N5_2—C15_2—N4_2127.12 (10)
H16a_1—C16_1—C13_1111.8 (7)H16a_2—C16_2—C13_2111.5 (8)
H16b_1—C16_1—C13_1113.0 (7)H16b_2—C16_2—C13_2113.1 (8)
H16b_1—C16_1—H16a_1102.7 (10)H16b_2—C16_2—H16a_2101.5 (11)
H16c_1—C16_1—C13_1111.6 (8)H16c_2—C16_2—C13_2111.4 (9)
H16c_1—C16_1—H16a_1108.3 (11)H16c_2—C16_2—H16a_2108.5 (12)
H16c_1—C16_1—H16b_1109.1 (11)H16c_2—C16_2—H16b_2110.3 (12)
H17b_1—C17_1—H17a_1110.8 (9)H17b_2—C17_2—H17a_2110.4 (12)
H17c_1—C17_1—H17a_1108.6 (9)H17c_2—C17_2—H17a_2111.0 (12)
H17c_1—C17_1—H17b_1109.7 (9)H17c_2—C17_2—H17b_2108.9 (11)
O2_1—C17_1—H17a_1105.9 (6)O2_2—C17_2—H17a_2106.2 (9)
O2_1—C17_1—H17b_1110.8 (6)O2_2—C17_2—H17b_2110.5 (7)
O2_1—C17_1—H17c_1111.0 (6)O2_2—C17_2—H17c_2109.9 (8)
C7A_1—N1_1—C2_1106.63 (8)C7A_2—N1_2—C2_2106.66 (8)
C11_1—N1_1—C2_1126.92 (9)C11_2—N1_2—C2_2126.10 (9)
C11_1—N1_1—C7A_1126.35 (8)C11_2—N1_2—C7A_2126.98 (9)
C9_1—N2_1—C8_1119.57 (10)C9_2—N2_2—C8_2122.13 (9)
H2a_1—N2_1—C8_1118.7 (8)H2a_2—N2_2—C8_2118.6 (7)
H2a_1—N2_1—C9_1120.7 (8)H2a_2—N2_2—C9_2118.4 (7)
C3A_1—N3_1—C2_1104.67 (8)C3A_2—N3_2—C2_2104.70 (8)
C15_1—N4_1—C12_1115.96 (8)C15_2—N4_2—C12_2115.91 (9)
C15_1—N5_1—C14_1116.15 (8)C15_2—N5_2—C14_2115.79 (9)
C17_1—O2_1—C14_1117.07 (8)C17_2—O2_2—C14_2116.88 (10)
C2_1—N1_1—C7A_1—C3A_10.69 (8)C2_2—N1_2—C7A_2—C3A_21.07 (8)
C2_1—N1_1—C7A_1—C7_1177.71 (8)C2_2—N1_2—C7A_2—C7_2179.36 (8)
C2_1—N1_1—C11_1—C12_1101.85 (10)C2_2—N1_2—C11_2—C12_278.97 (10)
C2_1—N3_1—C3A_1—C4_1175.83 (7)C2_2—N3_2—C3A_2—C4_2179.62 (7)
C2_1—N3_1—C3A_1—C7A_10.29 (8)C2_2—N3_2—C3A_2—C7A_20.08 (8)
C3A_1—C4_1—C5_1—C6_10.47 (11)C3A_2—C4_2—C5_2—C6_20.20 (11)
C3A_1—C4_1—C8_1—N2_12.07 (10)C3A_2—C4_2—C8_2—N2_28.31 (10)
C3A_1—C4_1—C8_1—O1_1174.32 (10)C3A_2—C4_2—C8_2—O1_2172.85 (9)
C3A_1—C7A_1—C7_1—C6_10.27 (11)C3A_2—C7A_2—C7_2—C6_20.26 (11)
C3A_1—C7A_1—N1_1—C11_1175.96 (7)C3A_2—C7A_2—N1_2—C11_2175.46 (7)
C4_1—C5_1—C6_1—C7_10.58 (12)C4_2—C5_2—C6_2—C7_20.19 (12)
C4_1—C8_1—N2_1—C9_1166.74 (9)C4_2—C8_2—N2_2—C9_2177.21 (8)
C5_1—C6_1—C7_1—C7A_10.67 (12)C5_2—C6_2—C7_2—C7A_20.16 (11)
C6_1—C7_1—C7A_1—N1_1176.29 (8)C6_2—C7_2—C7A_2—N1_2179.25 (8)
C7_1—C7A_1—N1_1—C11_11.06 (13)C7_2—C7A_2—N1_2—C11_24.97 (14)
C7A_1—N1_1—C11_1—C12_182.17 (10)C7A_2—N1_2—C11_2—C12_294.36 (10)
C8_1—N2_1—C9_1—C10_184.98 (10)C8_2—N2_2—C9_2—C10_284.96 (10)
C11_1—C12_1—C13_1—C14_1177.37 (9)C11_2—C12_2—C13_2—C14_2178.99 (10)
C11_1—C12_1—C13_1—C16_12.24 (12)C11_2—C12_2—C13_2—C16_20.06 (12)
C11_1—C12_1—N4_1—C15_1177.50 (9)C11_2—C12_2—N4_2—C15_2179.04 (10)
C12_1—C13_1—C14_1—N5_10.49 (10)C12_2—C13_2—C14_2—N5_20.01 (11)
C12_1—C13_1—C14_1—O2_1179.87 (8)C12_2—C13_2—C14_2—O2_2179.87 (9)
C12_1—N4_1—C15_1—N5_10.46 (10)C12_2—N4_2—C15_2—N5_20.03 (11)
C13_1—C14_1—N5_1—C15_11.16 (11)C13_2—C14_2—N5_2—C15_20.37 (12)
C13_1—C14_1—O2_1—C17_1175.94 (9)C13_2—C14_2—O2_2—C17_2175.04 (10)
C14_1—N5_1—C15_1—N4_11.18 (10)C14_2—N5_2—C15_2—N4_20.38 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2_1—H2_1···O1_2i1.054 (12)2.353 (12)3.2907 (14)147.5 (9)
C7_1—H7_1···O1_2ii1.031 (12)2.245 (13)3.2211 (14)157.4 (10)
N2_1—H2a_1···N3_11.002 (14)2.035 (14)2.8581 (14)137.9 (10)
C2_2—H2_2···N5_11.060 (13)2.240 (13)3.2922 (15)171.4 (9)
C7_2—H7_2···O1_1iii1.059 (12)2.394 (12)3.0915 (14)122.3 (8)
C11_2—H11b_2···F1_1iv1.092 (12)2.186 (12)3.1839 (13)150.7 (10)
C16_2—H16c_2···F1_2i1.047 (17)2.403 (17)3.2827 (15)140.9 (12)
N2_2—H2a_2···N3_21.002 (14)1.942 (14)2.7823 (13)139.6 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

We are grateful to Professor Christian W. Lehmann for providing access to the X-ray diffraction facility at the Max-Planck-Institut für Kohlenforschung (Mülheim an der Ruhr, Germany) and Dr Nadine Taudte and Dr Jens-Ulrich Rahfeld for providing and maintaining the biosafety level 2 facility.

Funding information

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) − 432291016, and supported by a financial grant from Mukoviszidose Institut gGmbH (Bonn, Germany), the research and development arm of the German Cystic Fibrosis Association Mukoviszidose e.V. We acknowledge the financial support within the funding programme Open Access Publishing by the DFG.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBatt, S. M., Jabeen, T., Bhowruth, V., Quill, L., Lund, P. A., Eggeling, L., Alderwick, L. J., Fütterer, K. & Besra, G. S. (2012). Proc. Natl Acad. Sci. USA, 109, 11354–11359.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoudehen, Y. M. & Kremer, L. (2021). Trends Microbiol. 29, 951–952.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., DiCostanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., Lowe, R., Namkoong, H., Peisach, E., Periskova, I., Prlić, A., Randle, C., Rose, A., Rose, P., Sala, R., Sekharan, M., Shao, C., Tan, L., Tao, Y.-P., Valasatava, Y., Voigt, M., Westbrook, J., Woo, J., Yang, H., Young, J., Zhuravleva, M. & Zardecki, C. (2019). Nucleic Acids Res. 47, D464–D474.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCCDC (2017). CSD web interface – intuitive, cross-platform, web-based access to CSD data. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationChikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2018). J. Med. Chem. 61, 8563–8593.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGanapathy, U. S. & Dick, T. (2022). Molecules, 27, 6948.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.  Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManjunatha, M. R., Radha Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., Iyer, P. S., Narayanan, S., Chatterji, M. & Shirude, P. S. (2019). ACS Med. Chem. Lett. 10, 1480–1485.  Web of Science PubMed Google Scholar
First citationMidgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.  Web of Science CrossRef PubMed Google Scholar
First citationRichter, A., Strauch, A., Chao, J., Ko, M. & Av-Gay, Y. (2018). Antimicrob. Agents Chemother. 62, e00828–18.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSarathy, J. P., Zimmerman, M. D., Gengenbacher, M., Dartois, V. & Thomas Dick, T. (2022). bioRxiv 2022.09.14.508059; doi: 10.1101/2022.09.14.508059.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetye, G. S., Franzblau, S. G. & Cho, S. (2020). Transl. Res. 220, 68–97.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShirude, P. S., Shandil, R., Sadler, C., Naik, M., Hosagrahara, V., Hameed, S., Shinde, V., Bathula, C., Humnabadkar, V., Kumar, N., Reddy, J., Panduga, V., Sharma, S., Ambady, A., Hegde, N., Whiteaker, J., McLaughlin, R. E., Gardner, H., Madhavapeddi, P., Ramachandran, V., Kaur, P., Narayan, A., Guptha, S., Awasthy, D., Narayan, C., Mahadevaswamy, J., Vishwas, K. G., Ahuja, V., Srivastava, A., Prabhakar, K. R., Bharath, S., Kale, R., Ramaiah, M., Choudhury, N. R., Sambandamurthy, V. K., Solapure, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2013). J. Med. Chem. 56, 9701–9708.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShirude, P. S., Shandil, R. K., Manjunatha, M. R., Sadler, C., Panda, M., Panduga, V., Reddy, J., Saralaya, R., Nanduri, R., Ambady, A., Ravishankar, S., Sambandamurthy, V. K., Humnabadkar, V., Jena, L. K., Suresh, R. S., Srivastava, A., Prabhakar, K. R., Whiteaker, J., McLaughlin, R. E., Sharma, S., Cooper, C. B., Mdluli, K., Butler, S., Iyer, P. S., Narayanan, S. & Chatterji, M. (2014). J. Med. Chem. 57, 5728–5737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationZiółkowska, N. E., Michejda, C. J. & Bujacz, G. D. (2010). J. Mol. Struct. 966, 53–58.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds