research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-benzyl­­idene-4-oxo­penta­noic acid

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, bMedical and Clinical Biology Department Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 April 2022; accepted 4 May 2022; online 13 May 2022)

The asymmetric unit of the title mol­ecule, C12H12O3, contains two independent mol­ecules having opposite conformations and each forming self-dimers through complementary O—H⋯O hydrogen bonds. These dimers are linked by weak C—H⋯π inter­actions and C—H⋯O hydrogen bonds into a three-dimensional structure in which one can discern layers parallel to the bc plane. A Hirshfeld surface analysis of the inter­molecular inter­actions is included.

1. Chemical context

Levulinic acid has various derivatives, some of which have a wide range of pharmacological activities. Photodynamic therapy in gastroenterology (Mordon et al., 2005[Mordon, S., Maunoury, V., Bulois, P., Ducrotté, P., Rochon, P. & Boyer, J. (2005). Gastroenterol. Clin. Biol. 29, 949-954.]) and cancer treatment for the detection of tumor tissue (Manzo, 2012[Manzo, N. (2012). Neurochirurgie, 58, 435.]) are some of the pharmacological applications. These derivatives are also the main compounds used in the synthesis of some pyridazinone derivatives (Boukharsa et al., 2016a[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. T., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016a). Med. Chem. Res. 25, 494-500.],b[Boukharsa, Y., Touré, H. A., Taoufik, J., Benzeid, H. & Ansar, M. (2016b). IUCRData, 1, x162003.]; Zaoui et al., 2019[Zaoui, Y., Ramli, Y., Taoufik, J., Mague, J. T., Jotani, M. M., Tiekink, E. R. T. & Ansar, M. (2019). Acta Cryst. E75, 392-396.], 2021[Zaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177.]). In our research, great attention has been given to the development of diversely functionalized heterocycles (Guerrab et al., 2020[Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630.], 2021[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. pp. 1-18.]; Abad et al. 2021[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.]; Missioui et al., 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.], 2022a[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab. J. Chem. 15, 103595.],b[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.]). Given the wide range of therapeutic applications for such compounds, and in continuation of our research efforts, we report the synthesis, mol­ecular and crystal structure and a Hirshfeld surface analysis of the title compound (see Scheme[link]).

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules (Fig. 1[link]) having opposite configurations, as shown in Fig. 2[link], where inverting the mol­ecule containing atom O4 allows almost complete overlap between the two independent portions of the asymmetric unit [r.m.s. deviations = 1.204 (no inversion) and 0.163 Å (inversion)]. They also differ in the dihedral angle between their planar parts. Thus, the C2—C1—C7—C8 torsion angle is −143.15 (14)°, while the C14—C13—C19—C20 torsion angle is 139.55 (15)°. The dihedral angle between the mean plane of the C1–C6 phenyl ring and that defined by atoms C7–C9/C11 is 36.54 (5)° in one mol­ecule, while that between the C13–C18 ring and the plane defined by atoms C19–C21/C23 in the other mol­ecule is 41.67 (6)°. In the first mol­ecule, the dihedral angle between the best planes through C7–C9/C11 and C9/C10/O1/O2 is 81.96 (5)°, while that between the C19–C21/C23 and C21/C22/O4/O5 planes in the second mol­ecule is 75.53 (6)°. Finally, the dihedral angle between the mean C8/C11/C12/O3 and C7–C9/C11 planes in the first mol­ecule is 2.88 (12)°, while that between the mean C20/C23/C24/O6 and C19–C21/C23 planes in the second mol­ecule is 5.22 (3)°. All bond lengths and angles are as expected.

[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids. The C—H⋯π inter­action is depicted by a dashed line.
[Figure 2]
Figure 2
Overlay of the two independent mol­ecules as found (left) and with the second one inverted (right).

3. Supra­molecular features

In the crystal, each independent mol­ecule forms a centrosymmetric self-dimer with the dimers connected by a C—H⋯π inter­action between C21—H21A and the C7=C8 olefinic bond [H21ACg = 2.60 Å, C21⋯Cg = 3.547 (2) Å and C21—H21ACg = 161°; Cg is the centroid of C7=C8; see Table 1[link] and Fig. 3[link]]. The unit shown in Fig. 3[link] is linked to others through weak C19—H19⋯O6 hydrogen bonds (Table 1[link]) to form a three-dimensional network structure. Although these inter­molecular inter­actions propagate in three dimensions, one can discern layers constructed by the hydrogen-bond inter­actions which are connected by the C—H⋯π inter­actions. These layers are parallel to the bc plane (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 (1) 1.78 (1) 2.6226 (13) 178 (2)
O5—H5A⋯O4ii 0.86 (1) 1.74 (1) 2.6000 (13) 176 (2)
C19—H19⋯O6iii 0.95 2.60 3.447 (1) 148
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Detail of the inter­actions between hydrogen-bonded dimers viewed along the b-axis direction. The O—H⋯O hydrogen bonds and the C—H⋯π inter­actions are depicted, respectively, by red and green dashed lines. Non-inter­acting H atoms have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z + 1; (iii) −x, −y + 1, −z.]
[Figure 4]
Figure 4
Packing viewed along the c-axis direction with O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines. The C—H⋯π inter­actions are depicted by green dashed lines and non-inter­acting H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database updated to November 2021 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with a search fragment consisting of the title mol­ecule with H2A and H7, as well as all H atoms on the phenyl ring deleted, found mainly bicyclic mol­ecules not closely related to the title mol­ecule. Using the above search fragment but with H7 now present, one hit, namely, 3-(4-methyl­benzyl­idene)-4-oxo­penta­noic acid (CSD refcode UCOXOC; Boukharsa et al., 2016a[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. T., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016a). Med. Chem. Res. 25, 494-500.],b[Boukharsa, Y., Touré, H. A., Taoufik, J., Benzeid, H. & Ansar, M. (2016b). IUCRData, 1, x162003.]) was obtained (also found in the previous search). This structure also contains two independent mol­ecules (A and B) which form A–A and B–B hydrogen-bonded inversion dimers, as seen in the present structure. The packing in UCOXOC appears to generate also a layer structure, but no mention is made of additional inter­molecular inter­actions.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed with CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]); the details of the pictorial output are described in a recent publication (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 5[link] shows two views of the dnorm surfaces for the two components of the asymmetric unit plotted over the limits from −0.1211 to 1.4747 a.u. The O—H⋯O hydrogen bonds with which each mol­ecule forms its self-dimer are indicated by the bright red spots in Figs. 5[link](a) and 5(b), respectively. The weak inter­molecular C—H⋯π inter­action with the olefinic double bond appears in Fig. 5[link](c) as the lighter red spot in the centre of the left side of the drawing, showing the acceptor site, and in a similar location in Fig. 5[link](d), showing the donor site. Fig. 6[link] presents the two-dimensional fingerprint plots involving all inter­molecular inter­actions [Fig. 6[link](a)] and delineated into O⋯H/H⋯O [Fig. 6[link](b)] and C⋯H/H⋯C [Fig. 6[link](c)] inter­actions. Figs. 6[link](d) and 6(e) show the fractions of the overall surface corresponding, respectively, to the two above inter­actions (28.8% for the fomer and 18.2% for the latter). For completeness, the H⋯H inter­actions constitute 48.4% of the surface.

[Figure 5]
Figure 5
The Hirshfeld surface plots for the title mol­ecule: (a) dnorm for the O1-containing mol­ecule (front side); (b) dnorm for the O4-containing mol­ecule (front side); (c) dnorm for the O1-containing mol­ecule (back side); (d) dnorm for the O4-containing mol­ecule (back side).
[Figure 6]
Figure 6
Fingerprint plots for the title mol­ecule: (a) all inter­actions; (b) O⋯H/H⋯O; (c) C⋯H/H⋯C; (d) fragment of the surface involved in O⋯H/H⋯O inter­actions; (e) fragment of the surface involved in C⋯H/H⋯C inter­actions.

6. Synthesis and crystallization

A mixture of benzaldehyde (0.01 mol) and levulinic acid (0.02 mol) in a solution of acetic acid (50 ml) was saturated with dry hydrogen chloride gas for 2 h. The mixture was stirred at room temperature for 24 h. The resulting product was extracted and washed with chloro­form. The crude compound was crystallized from acetone to give small colourless crystals (yield: 59%; m.p 398–400 K). IR (KBr, ν (cm−1)): 1692 (C=O ketone), 1755 (C=O acid); 1H NMR [300 MHz DMSO-d6, δ(ppm)]: δ 2.42 (s, 3H, CH3), 3.74 (s, 2H, CH2), 7.27–7.75 (m, 5H, phen­yl), 7.98 (s, 1H, CH=C), 12.21 (s, 1H, OH); 13C NMR [300 MHz DMSO-d6, δ(ppm)]: δ 26.10, 32.83, 128.01, 131,09, 131.52, 133.79, 137.32, 137.43, 171.78, 192.72; MS (ESI+): m/z = 205.88 [M + H]+

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in idealized positions and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. H atoms attached to oxygen were placed in locations derived from a difference map and refined with a DFIX 0.84 0.01 instruction.

Table 2
Experimental details

Crystal data
Chemical formula C12H12O3
Mr 204.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 15.5987 (3), 13.0782 (3), 11.0396 (2)
β (°) 109.063 (1)
V3) 2128.60 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.35 × 0.18 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 36991, 3894, 3477
Rint 0.042
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.04
No. of reflections 3894
No. of parameters 281
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.16
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX3, SAINT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2021[Bruker (2021). APEX3, SAINT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2021).

(E)-3-Benzylidene-4-oxopentanoic acid top
Crystal data top
C12H12O3F(000) = 864
Mr = 204.22Dx = 1.274 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 15.5987 (3) ÅCell parameters from 9897 reflections
b = 13.0782 (3) Åθ = 3.0–68.3°
c = 11.0396 (2) ŵ = 0.75 mm1
β = 109.063 (1)°T = 125 K
V = 2128.60 (8) Å3Plate, colourless
Z = 80.35 × 0.18 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
3894 independent reflections
Radiation source: INCOATEC IµS micro-focus source3477 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 7.3910 pixels mm-1θmax = 68.3°, θmin = 3.0°
ω and φ scansh = 1818
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.85, Tmax = 0.95l = 1313
36991 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.7261P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.15 e Å3
Special details top

Experimental. The diffraction data were obtained from 13 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time varied between 4 and 10 sec/frame, increasing with increasing θ.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to oxygen were placed in locations derived from a difference map and refined with a DFIX 0.84 0.01 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01466 (6)0.43636 (7)0.13158 (8)0.0335 (2)
O20.11775 (6)0.53207 (7)0.08370 (9)0.0330 (2)
H2A0.0747 (10)0.5405 (15)0.0145 (12)0.059 (6)*
O30.15617 (8)0.23912 (8)0.24312 (9)0.0428 (3)
C10.11190 (8)0.51281 (10)0.51675 (12)0.0287 (3)
C20.13778 (9)0.52531 (10)0.64944 (13)0.0319 (3)
H20.1496250.4667670.7033420.038*
C30.14645 (10)0.62214 (11)0.70370 (14)0.0381 (3)
H30.1657830.6296900.7942200.046*
C40.12690 (10)0.70747 (11)0.62572 (16)0.0425 (4)
H40.1340960.7738420.6626640.051*
C50.09682 (11)0.69635 (11)0.49382 (16)0.0425 (4)
H50.0813910.7550160.4403220.051*
C60.08917 (9)0.59974 (11)0.43962 (14)0.0352 (3)
H60.0682350.5926580.3490080.042*
C70.11215 (9)0.40800 (10)0.46866 (12)0.0283 (3)
H70.0934280.3560280.5146950.034*
C80.13551 (8)0.37633 (10)0.36773 (11)0.0277 (3)
C90.16595 (9)0.44565 (10)0.28089 (12)0.0296 (3)
H9A0.1892250.5101330.3268570.036*
H9B0.2164390.4125470.2599550.036*
C100.09137 (9)0.47015 (9)0.15870 (11)0.0263 (3)
C110.13621 (9)0.26565 (10)0.33666 (12)0.0308 (3)
C120.11327 (11)0.18699 (11)0.42061 (14)0.0390 (3)
H12A0.0513750.1985200.4213740.059*
H12B0.1559080.1927070.5080580.059*
H12C0.1175940.1184740.3871170.059*
O40.49089 (6)0.43991 (8)0.62632 (9)0.0363 (2)
O50.38438 (7)0.52938 (8)0.47860 (9)0.0362 (2)
H5A0.4271 (11)0.5378 (16)0.4462 (19)0.068 (6)*
O60.35094 (8)0.24526 (8)0.60897 (9)0.0465 (3)
C130.37323 (9)0.51643 (11)0.91953 (12)0.0321 (3)
C140.33171 (10)0.52973 (12)1.01313 (14)0.0390 (3)
H140.3124930.4716741.0491680.047*
C150.31836 (11)0.62700 (13)1.05381 (16)0.0465 (4)
H150.2892840.6351791.1165820.056*
C160.34705 (11)0.71187 (12)1.00363 (16)0.0484 (4)
H160.3363860.7784151.0301290.058*
C170.39153 (11)0.69983 (12)0.91436 (15)0.0446 (4)
H170.4126340.7581120.8811680.053*
C180.40518 (10)0.60291 (11)0.87360 (14)0.0376 (3)
H180.4366860.5951570.8136350.045*
C190.38059 (9)0.41173 (10)0.87494 (13)0.0313 (3)
H190.3958550.3598230.9386300.038*
C200.36805 (9)0.38144 (10)0.75365 (12)0.0302 (3)
C210.34049 (9)0.45106 (11)0.63929 (12)0.0314 (3)
H21A0.2880720.4202380.5725710.038*
H21B0.3201090.5168980.6647750.038*
C220.41342 (9)0.47210 (10)0.58225 (12)0.0287 (3)
C230.37236 (9)0.27147 (11)0.72132 (13)0.0339 (3)
C240.40272 (11)0.19335 (11)0.82582 (15)0.0418 (3)
H24A0.3999880.1251630.7879390.063*
H24B0.3628700.1956630.8784280.063*
H24C0.4651780.2081090.8795000.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0347 (5)0.0383 (5)0.0257 (5)0.0049 (4)0.0075 (4)0.0069 (4)
O20.0388 (5)0.0329 (5)0.0257 (5)0.0063 (4)0.0082 (4)0.0062 (4)
O30.0669 (7)0.0353 (5)0.0304 (5)0.0014 (5)0.0219 (5)0.0038 (4)
C10.0276 (6)0.0284 (7)0.0310 (6)0.0001 (5)0.0108 (5)0.0006 (5)
C20.0347 (7)0.0313 (7)0.0319 (7)0.0028 (5)0.0139 (5)0.0011 (5)
C30.0397 (8)0.0382 (8)0.0382 (7)0.0013 (6)0.0154 (6)0.0083 (6)
C40.0470 (8)0.0284 (7)0.0564 (9)0.0016 (6)0.0229 (7)0.0088 (7)
C50.0514 (9)0.0283 (7)0.0521 (9)0.0054 (6)0.0226 (7)0.0065 (7)
C60.0395 (7)0.0314 (7)0.0348 (7)0.0039 (6)0.0123 (6)0.0036 (6)
C70.0311 (6)0.0269 (6)0.0253 (6)0.0004 (5)0.0070 (5)0.0034 (5)
C80.0299 (6)0.0280 (6)0.0220 (6)0.0003 (5)0.0040 (5)0.0031 (5)
C90.0328 (7)0.0298 (7)0.0257 (6)0.0010 (5)0.0088 (5)0.0023 (5)
C100.0359 (7)0.0216 (6)0.0231 (6)0.0003 (5)0.0120 (5)0.0004 (5)
C110.0375 (7)0.0303 (7)0.0224 (6)0.0000 (5)0.0067 (5)0.0002 (5)
C120.0595 (9)0.0266 (7)0.0334 (7)0.0015 (6)0.0185 (7)0.0001 (6)
O40.0337 (5)0.0428 (6)0.0339 (5)0.0038 (4)0.0131 (4)0.0084 (4)
O50.0373 (5)0.0402 (6)0.0340 (5)0.0066 (4)0.0155 (4)0.0103 (4)
O60.0692 (7)0.0404 (6)0.0334 (5)0.0001 (5)0.0218 (5)0.0070 (5)
C130.0336 (7)0.0330 (7)0.0278 (6)0.0023 (5)0.0074 (5)0.0018 (5)
C140.0483 (8)0.0373 (8)0.0347 (7)0.0060 (6)0.0183 (6)0.0047 (6)
C150.0520 (9)0.0456 (9)0.0470 (9)0.0059 (7)0.0232 (7)0.0146 (7)
C160.0508 (9)0.0358 (8)0.0566 (10)0.0040 (7)0.0149 (8)0.0151 (7)
C170.0501 (9)0.0326 (8)0.0489 (9)0.0104 (6)0.0133 (7)0.0038 (7)
C180.0409 (8)0.0372 (8)0.0359 (7)0.0069 (6)0.0141 (6)0.0040 (6)
C190.0346 (7)0.0309 (7)0.0301 (7)0.0015 (5)0.0128 (5)0.0023 (5)
C200.0313 (7)0.0310 (7)0.0312 (7)0.0024 (5)0.0141 (5)0.0003 (5)
C210.0320 (7)0.0342 (7)0.0285 (6)0.0003 (5)0.0104 (5)0.0010 (5)
C220.0363 (7)0.0249 (6)0.0248 (6)0.0014 (5)0.0098 (5)0.0016 (5)
C230.0377 (7)0.0345 (7)0.0334 (7)0.0033 (6)0.0168 (6)0.0026 (6)
C240.0533 (9)0.0314 (7)0.0414 (8)0.0001 (6)0.0164 (7)0.0000 (6)
Geometric parameters (Å, º) top
O1—C101.2177 (15)O4—C221.2207 (16)
O2—C101.3165 (15)O5—C221.3180 (16)
O2—H2A0.843 (9)O5—H5A0.860 (9)
O3—C111.2221 (16)O6—C231.2234 (17)
C1—C61.3950 (19)C13—C181.396 (2)
C1—C21.3961 (18)C13—C141.3981 (19)
C1—C71.4704 (18)C13—C191.4722 (19)
C2—C31.3885 (19)C14—C151.387 (2)
C2—H20.9500C14—H140.9500
C3—C41.381 (2)C15—C161.379 (2)
C3—H30.9500C15—H150.9500
C4—C51.384 (2)C16—C171.387 (2)
C4—H40.9500C16—H160.9500
C5—C61.386 (2)C17—C181.385 (2)
C5—H50.9500C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.3458 (18)C19—C201.3479 (18)
C7—H70.9500C19—H190.9500
C8—C111.4885 (18)C20—C231.4887 (19)
C8—C91.5046 (17)C20—C211.5011 (18)
C9—C101.5002 (17)C21—C221.4949 (18)
C9—H9A0.9900C21—H21A0.9900
C9—H9B0.9900C21—H21B0.9900
C11—C121.5040 (18)C23—C241.497 (2)
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
C10—O2—H2A109.3 (13)C22—O5—H5A109.9 (14)
C6—C1—C2118.28 (12)C18—C13—C14118.30 (13)
C6—C1—C7124.71 (12)C18—C13—C19123.78 (12)
C2—C1—C7117.00 (11)C14—C13—C19117.92 (12)
C3—C2—C1120.89 (13)C15—C14—C13120.54 (14)
C3—C2—H2119.6C15—C14—H14119.7
C1—C2—H2119.6C13—C14—H14119.7
C4—C3—C2119.83 (13)C16—C15—C14120.35 (14)
C4—C3—H3120.1C16—C15—H15119.8
C2—C3—H3120.1C14—C15—H15119.8
C3—C4—C5120.05 (13)C15—C16—C17119.83 (14)
C3—C4—H4120.0C15—C16—H16120.1
C5—C4—H4120.0C17—C16—H16120.1
C4—C5—C6120.11 (14)C18—C17—C16120.04 (14)
C4—C5—H5119.9C18—C17—H17120.0
C6—C5—H5119.9C16—C17—H17120.0
C5—C6—C1120.69 (13)C17—C18—C13120.83 (13)
C5—C6—H6119.7C17—C18—H18119.6
C1—C6—H6119.7C13—C18—H18119.6
C8—C7—C1128.26 (12)C20—C19—C13127.13 (13)
C8—C7—H7115.9C20—C19—H19116.4
C1—C7—H7115.9C13—C19—H19116.4
C7—C8—C11120.96 (12)C19—C20—C23121.25 (12)
C7—C8—C9124.70 (12)C19—C20—C21124.47 (12)
C11—C8—C9114.30 (11)C23—C20—C21114.03 (11)
C10—C9—C8112.85 (10)C22—C21—C20114.69 (11)
C10—C9—H9A109.0C22—C21—H21A108.6
C8—C9—H9A109.0C20—C21—H21A108.6
C10—C9—H9B109.0C22—C21—H21B108.6
C8—C9—H9B109.0C20—C21—H21B108.6
H9A—C9—H9B107.8H21A—C21—H21B107.6
O1—C10—O2123.54 (11)O4—C22—O5123.84 (12)
O1—C10—C9123.69 (11)O4—C22—C21124.00 (12)
O2—C10—C9112.77 (11)O5—C22—C21112.16 (11)
O3—C11—C8119.59 (12)O6—C23—C20119.67 (13)
O3—C11—C12120.27 (12)O6—C23—C24120.19 (13)
C8—C11—C12120.14 (11)C20—C23—C24120.14 (12)
C11—C12—H12A109.5C23—C24—H24A109.5
C11—C12—H12B109.5C23—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C11—C12—H12C109.5C23—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
C6—C1—C2—C34.16 (19)C18—C13—C14—C153.5 (2)
C7—C1—C2—C3174.86 (12)C19—C13—C14—C15176.45 (14)
C1—C2—C3—C41.8 (2)C13—C14—C15—C160.9 (2)
C2—C3—C4—C51.4 (2)C14—C15—C16—C171.6 (3)
C3—C4—C5—C62.2 (2)C15—C16—C17—C181.5 (2)
C4—C5—C6—C10.3 (2)C16—C17—C18—C131.2 (2)
C2—C1—C6—C53.4 (2)C14—C13—C18—C173.6 (2)
C7—C1—C6—C5175.55 (13)C19—C13—C18—C17176.32 (14)
C6—C1—C7—C835.8 (2)C18—C13—C19—C2040.4 (2)
C2—C1—C7—C8143.15 (14)C14—C13—C19—C20139.55 (15)
C1—C7—C8—C11176.80 (12)C13—C19—C20—C23176.30 (12)
C1—C7—C8—C90.8 (2)C13—C19—C20—C212.2 (2)
C7—C8—C9—C1098.93 (15)C19—C20—C21—C22109.04 (15)
C11—C8—C9—C1083.34 (14)C23—C20—C21—C2276.51 (14)
C8—C9—C10—O11.06 (18)C20—C21—C22—O43.04 (19)
C8—C9—C10—O2179.02 (11)C20—C21—C22—O5176.86 (11)
C7—C8—C11—O3178.72 (13)C19—C20—C23—O6171.99 (13)
C9—C8—C11—O33.45 (18)C21—C20—C23—O62.65 (18)
C7—C8—C11—C121.81 (19)C19—C20—C23—C248.0 (2)
C9—C8—C11—C12176.02 (12)C21—C20—C23—C24177.38 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.84 (1)1.78 (1)2.6226 (13)178 (2)
O5—H5A···O4ii0.86 (1)1.74 (1)2.6000 (13)176 (2)
C19—H19···O6iii0.952.603.447 (1)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The support of an NSF–MRI grant for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. Authors' contributions are as follows. Conceptualization, HA; methodology, HA and YZ; investigation, SEG and IAEH; theoretical calculations, JTM; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, MA and YR; supervision, MA and JT; crystal-structure determination and validation, JTM.

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (grant No. 1228232).

References

First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.  Web of Science CSD CrossRef Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. T., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016a). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationBoukharsa, Y., Touré, H. A., Taoufik, J., Benzeid, H. & Ansar, M. (2016b). IUCRData, 1, x162003.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX3, SAINT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. pp. 1–18.  Web of Science CSD CrossRef Google Scholar
First citationGuerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationManzo, N. (2012). Neurochirurgie, 58, 435.  CrossRef Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab. J. Chem. 15, 103595.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationMordon, S., Maunoury, V., Bulois, P., Ducrotté, P., Rochon, P. & Boyer, J. (2005). Gastroenterol. Clin. Biol. 29, 949–954.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177.  Web of Science CSD CrossRef Google Scholar
First citationZaoui, Y., Ramli, Y., Taoufik, J., Mague, J. T., Jotani, M. M., Tiekink, E. R. T. & Ansar, M. (2019). Acta Cryst. E75, 392–396.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds