research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of bis­­(4,5-di­hydro­furan-2-yl)di­methyl­silane and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane

crossmark logo

aTechnische Universität Dortmund, Fakultät für Chemie und chemische Biologie, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 November 2021; accepted 25 November 2021; online 1 January 2022)

The title compounds, C10H16O2Si (1) and C17H18OSi (2), are classified as di­hydro­furylsilanes, which show great potential as building blocks for various functionalized silanes. They both crystallize in the space group P[\overline{1}] in the triclinic crystal system. Analyses of the Hirshfeld surfaces show packing-determining inter­actions for both compounds, resulting in a polymeric chain along the [011] for silane 1 and a layered-inter­connected structure along the b-axis direction for silane 2.

1. Chemical context

Di­hydro­furylsilanes are inter­esting starting materials for tailor-made silicon compounds. First presented in the 1980s by Lukevics (Lukevics et al., 1985[Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163-171.]), they turned out to be versatile building blocks for multiple silicon compound classes. Tetra­substituted silicon compounds are obtainable as a result of the excellent nature of the di­hydro­furyl (DHF) substituent as a leaving group in various nucleophilic substitutions at the silicon atom. Si—C(DHF) bond cleavages under substitution of the di­hydro­furyl group was observed for the reactions with C-nucleophiles (e.g. organolithium compounds) (Gevorgyan et al., 1992[Gevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381-387.]), H-nucleophiles (e.g. LiAlH4, NaH, NaBH4) (Gevorgyan et al., 1989[Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19-21.], 1990[Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57-67.]), O-nucleophiles (e.g. t-butanol) and N-nucleophiles [e.g. LiN(Et)2] (Lukevics et al., 1997[Lukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161-163.]). By means of this efficient pathway, a noteworthy approach to penta­coordinated organyl silatranes has been made (Gevorgyan et al., 1997[Gevorgyan, V., Borisova, L. & Lukevics, E. (1997). J. Organomet. Chem. 527, 295-296.]), as well as for (α-amino­meth­yl)silanes (Labrecque et al., 1994[Labrecque, D., Nwe, K. T. & Chan, T. H. (1994). Organometallics, 13, 332-335.]). Along with their easy preparation and hydrolytical and chromatographical stability (Gevorgyan et al., 1997[Gevorgyan, V., Borisova, L. & Lukevics, E. (1997). J. Organomet. Chem. 527, 295-296.]), di­hydro­furylsilanes offer the potential to be useful reagents as protecting groups for the synthesis of amino­methyl­silaza­nes (Colquhoun et al., 2011[Colquhoun, V. P., Abele, B. C. & Strohmann, C. (2011). Organometallics, 30, 5408-5414.]; Colquhoun & Strohmann, 2012[Colquhoun, V. P. & Strohmann, C. (2012). Dalton Trans. 41, 1897-1902.]).

[Scheme 1]

Herein, we report the structures of two further di­hydro­furylsilanes, bis­(4,5-di­hydro­furan-2-yl)di­methyl­silane (1) and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (2) and their structural analysis, supplemented by a Hirshfeld surface analysis.

2. Structural commentary

The mol­ecular structure of 1 is given in Fig. 1[link] and selected bond lengths and angles are given in Table 1[link]. Compound 1 shows C2 mol­ecular symmetry. The lengths of the Si—C(DHF) bonds are similar but slightly longer than the lengths of the Si—C(Me) bonds. However, all bonds have characteristic dimensions (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1-19.]). Furthermore, the length of the C=C double bond corresponds well with literature values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1-19.]) and is clearly shortened in comparison to the C—C single bonds in the di­hydro­furanyl substituent. The silicon atom is tetra­hedrally surrounded by its substituents, however slightly distorted as evident from the slight deviations from the ideal angle of 109.47°. These deviations are congruent with a former publication on di­hydro­furylsilanes (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]). Both DHF planes display planarity while the C1–C4/O1 ring has an r.m.s. deviation of 0.0197 Å from an ideal least-squares plane with atom C4 showing the largest deviation of −0.0269 (2) Å. The C5–C8/O2 ring deviates more strongly from an ideal least-square plane with an r.m.s. deviation of 0.0608 Å, with the C8 atom deviating the most by 0.0838 (2) Å. The angle between the normals of the least-squares planes through the DHF rings is 78.943 (15)°.

Table 1
Selected geometric parameters for compound 1 (Å, °)

Si1—C1 1.8742 (3) C1—Si1—C5 108.189 (12)
Si1—C5 1.8693 (3) C1—Si1—C9 106.801 (14)
Si1—C9 1.8631 (3) C1—Si1—C10 109.191 (13)
Si1—C10 1.8579 (3) C5—Si1—C9 110.770 (15)
    C5—Si1—C10 108.128 (13)
C1—C2 1.3370 (4) C9—Si1—C10 113.628 (16)
C3—C4 1.5331 (5)    
C5—C6 1.3409 (4)    
C7—C8 1.5298 (5)    
[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of 2 is given in Fig. 2[link] and selected bond lengths and angles are given in Table 2[link]. The length of the Si—C(DHF) bond is in the range of the lengths of the Si—C(Ph) bonds, which are again slightly longer than the Si—C(Me) bond. The bond lengths of the di­hydro­furan ring are consistent with those of structure 1. Again, a slightly distorted tetra­hedral environment at the silicon atom is observed. The DHF ring is less planar than the phenyl rings, with an r.m.s. deviation from the least-squares plane of 0.0426 Å with the C4 atom having the largest deviation of −0.0582 (7) Å. The phenyl rings show r.m.s. deviations of 0.0066 and 0.0047 Å. The angle between the normals of the least-squares planes of the DHF ring and the C5–C10 phenyl ring is 87.68 (4)° and the angle between the normals of the least-squares planes of the phenyl rings is 60.03 (4)°.

Table 2
Selected geometric parameters for compound 2 (Å, °)

Si1—C1 1.8742 (10) C1—Si1—C5 108.44 (4)
Si1—C5 1.8721 (9) C1—Si1—C11 105.51 (4)
Si1—C11 1.8713 (10) C1—Si1—C17 109.26 (5)
Si1—C17 1.8591 (11) C5—Si1—C11 113.08 (4)
    C5—Si1—C17 110.49 (5)
C1—C2 1.3356 (14) C11—Si1—C17 109.88 (59
C3—C4 1.5416 (17)    
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of compound 1 is defined by C10—H10A⋯C2i van der Waals inter­actions as can be seen in Fig. 3[link]. The inter­actions show relatively large distances [C10⋯C2i = 3.6208 (5) Å, H10A⋯C2i = 2.752 (10) Å and C10—H10A⋯C2i = 148.4 (8)°; symmetry code: (i) −x + 1, −y + 2, −z]. As a result of the inter­actions between carbon atom C2 and hydrogen atom H10A, a polymeric chain structure along the [011] direction is formed (Fig. 4[link]). The inter­actions can be displayed by a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), here indicated by the red spots (Fig. 5[link]). The Hirshfeld surface mapped over dnorm is in the range from −0.0783 to 1.0981 a.u. The contributions of the different types of inter­molecular inter­actions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 6[link]. The contribution of the H⋯ H inter­actions, with a value of 76.4%, has the largest share of the crystal packing of 1. The O⋯H/H⋯O inter­actions have a smaller share with a 15% contribution and the C⋯H/H⋯C inter­actions with a 8.6% contribution. Both heteronuclear inter­actions appear as spikes.

[Figure 3]
Figure 3
The crystal packing of compound 1. C—H⋯C van der Waals inter­actions are shown as dashed lines.
[Figure 4]
Figure 4
The crystal packing of compound 1 with the (011) plane shaded in blue. C—H⋯C van der Waals inter­actions are shown as dashed lines.
[Figure 5]
Figure 5
Hirshfeld surface analysis of 1 showing close contacts in the crystal. The van der Waals inter­action between carbon atom C2 and the H10A hydrogen atom is labeled. [Symmetry code: (i) −x + 1, −y + 2, −z].
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for compound 1, showing (a) all contributions, and (b)–(d) delineated showing the contributions of atoms within specific inter­acting pairs (blue areas).

The structure of compound 2 is more strongly defined by C—H⋯O hydrogen bonds (Fig. 7[link], Table 3[link]). Two different layers are formed along the b-axis direction and inter­connected by hydrogen bonds between the O1 atom and the H17C atom. An additional inter­action in each of the layers is observed by C—H⋯O hydrogen bonds between the O1 atom and the H15 atom. The C17—H17C⋯O1ii hydrogen bond can be described by the R22(10) graph-set motif and the C15—H15⋯O1i hydrogen bond by the C11(7) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Both C—H⋯O hydrogen bonds can be identified as weak inter­actions according to Desiraju & Steiner (2001[Desiraju, G. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford University Press.]). A Hirshfeld analysis, carried out analogously as for structure 1, was used to further study the crystal packing. In Fig. 8[link], the nearest contacts are shown in red. The Hirshfeld surface mapped over dnorm is in the range from −0.0717 to 1.0768 a.u. By analysis of the two-dimensional fingerprint plots (Fig. 9[link]), again, the biggest contribution to the crystal packing can be assigned to H⋯H inter­actions (66%). Although the closest contacts were identified as C—H⋯O hydrogen bonds, O⋯H/H⋯O inter­actions contribute only 6.4% to the crystal packing, while C⋯H/H⋯C inter­actions have a larger share of 27%.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.969 (16) 2.640 (16) 3.3422 (13) 129.6 (12)
C17—H17C⋯O1ii 0.992 (19) 2.584 (19) 3.5168 (14) 156.5 (15)
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, -y+1, -z+1].
[Figure 7]
Figure 7
The crystal packing of compound 2. C—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 8]
Figure 8
Hirshfeld surface analysis of 2 showing close contacts in the crystal. The weak hydrogen bond between oxygen atom O1 and the H15 hydrogen atom, as well as the weak hydrogen bonds between the oxygen atom O1 and the H17C hydrogen atom are labeled. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 2, −y + 1, −z + 1].
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for compound 2, showing (a) all contributions, and (b)–(d) delineated showing the contributions of atoms within specific inter­acting pairs (blue areas).

4. Database survey

A search of the Cambridge Crystallographic Database (WebCSD, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-(4,5-di­hydro­fur­yl)silanes revealed solely the structures of tris­(4,5-di­hydro­furan-2-yl)methyl­silane and tris­(4,5-di­hydro­furan-2-yl)phenyl­silane published by our group previously (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]). A more extended search for 3-(4,5-di­hydro­fur­yl)silane gave some structures with substituted di­hydro­furan rings, such as [4-(4-fluoro­phen­yl)-5-(4-nitro­phen­yl)-4,5-di­hydro­furan-3-yl](trimeth­yl)silane (JIVLIM; Li & Zhang, 2018[Li, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439-17443.]), rac-5-phenyl-4-(t-butyl­diphenyl­sil­yl)-2,3-di­hydro­furan-2-carb­oxy­lic acid ethyl ester (PUXCAM; Evans et al., 2001[Evans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095-12096.]) and (1′S,2R)-5-methyl-4-(t-butyl­diphenyl­sil­yl)-2,3-di­hydro­furan-2-carb­oxy­lic acid (1′-phenyl­eth­yl)amide (PUXCEQ; Evans et al., 2001[Evans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095-12096.]). Contrary to the here and previously presented 2-(4,5-di­hydro­fur­yl)silanes (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]), the published 3-(4,5-di­hydro­fur­yl)silanes do not show an elongated Si—C(DHF) bond in comparison to the other substituents at the silicon atom. This can be attributed to the changed connection on the DHF ring. The slightly distorted tetra­hedral silicon atom can be observed in all structures as well as the shortened C=C double bond in the DHF ring.

5. Synthesis and crystallization

Bis(4,5-di­hydro­furan-2-yl)di­methyl­silane (1) as already described by Lukevics and co-workers (Lukevics et al., 1985[Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163-171.]) was synthesized by adding tBuLi (1.9 M in pentane, 8.16 mL, 15.5 mmol, 2.0 eq.) to a solution of 2,3-di­hydro­furan (1.09 g, 15.5 mmol, 2.0 eq.) in diethyl ether at 243 K and subsequent stirring for an hour. Di­chloro­dimethyl­silane (1.00 g, 7.75 mmol, 1.0 eq.) was added at 243 K and warmed to room temperature under stirring for 2 h. All solids were filtered off inertly and all volatile components were removed in vacuo. After cleaning by Kugelrohr distillation (temperature: 373 K, pressure: 2.1 × 10−1 mbar), bis­(4,5-di­hydro­furan-2-yl)di­methyl­silane (1) (1.50 g, 7.65 mmol, 99%) was obtained as a colorless oil. By crystallization from diethyl ether at 193 K, colorless blocks were obtained.

1H NMR (400.25 MHz, C6D6): δ = 0.39 [s, 6H; Si(CH3)2], 2.27 [dt, 3JHH = 2.57 Hz, 3JHH = 9.78 Hz, 4H; Si(CCHCH2)2], 4.07 [t, 3JHH = 9.78 Hz, 4H; Si(COCH2)2], 5.31 [t, 3JHH = 2.57 Hz, 2H; Si(CCH)2] ppm.

{1H}13C NMR (100.6 MHz, C6D6): δ = −3.8 [2C; (SiCH3)2], 31.6 [2C; Si(CCHCH2)2)], 71.8 [2C; Si(COCH2)2], 113.4 [2C; Si(COCH2)2], 160.0 [2C; Si(CO)2] ppm.

{1H}29Si NMR (79.52 MHz, C6D6): δ = −22.29 [1Si; Si(DHF)2] ppm.

GC/EI–MS: tR = 3.94 min [353 K (1 min) – 40 K min−1 – 543 K (5.5 min)]; m/z (%): 196 (94) [M+], 181 (2) [(M − Me)+], 167 (14) [(M − CHO)+], 153 (40) [(M − C2H3O)+], 97 (100) [(SiDHF)+].

(4,5-Di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (2), already described by Tsai and co-workers (Tsai et al., 1992[Tsai, Y.-M., Nieh, H.-C. & Cherng, C.-D. (1992). J. Org. Chem. 57, 7010-7012.]) by cycliz­ation of a halo­acyl­silane, was synthesized analogously to 1. tBuLi (1.90 M in pentane, 21.5 mmol, 11.3 mL, 1.00 eq.) was slowly added dropwise to a solution of 2,3-di­hydro­furan (1.51 g, 21.5 mmol, 1.00 eq.) in diethyl ether (80 mL) at 243 K and the reaction solution was stirred for 1h at this temperature. Methyl­diphenyl­chloro­silane (5.00 g, 21.5 mmol, 1.00 eq.) was then added at 243 K and the reaction solution was stirred at room temperature overnight. All solids were separated by inert filtration and the solvent was removed in vacuo. The residue was purified by Kugelrohr distillation (temperature: 453 K, pressure: 2.0 × 10−1 mbar) and the product 2 (5.11 g, 19.2 mmol, 89%) was obtained as a colorless liquid. By crystallization from pentane at 193 K, colorless platelets were obtained.

1H NMR (400.25 MHz, C6D6): δ = 0.69 (s, 3H; SiCH3), 2.24 (dt, 3JHH = 2.57Hz, 3JHH = 9.66 Hz, 2H; SiCCHCH2), 4.07 (t, 3JHH = 9.66 Hz, 2H; SiCOCH2), 5.20 (t, 3JHH = 2.57 Hz, 1H; SiCCH), 7.18–7.21 (m, 6H; CHortho,para), 7.71–7.73 (m, 4H; CHmeta) ppm.

{1H}13C NMR (100.65 MHz, C6D6): δ = −3.9 (1C; SiCH3), 31.3 (1C; SiCCHCH2), 71.1 (1C; SiCOCH2), 115.5 (1C; SiCCH), 128.5 (2C, Cortho), 130.2 (1C, Cpara), 135.8 (2C, Cmeta), 135.8 (1C, Cipso), 160.2 (1C, SiCO) ppm.

{1H}29Si NMR (79.52 MHz, C6D6): δ = −19.51 (s, 1Si; SiDHF) ppm.

GC/EI–MS: tR = 5.97 min [353 K (1 min) – 40 K min−1 – 543 K (5.5 min)]; m/z (%): 266 (100) [M+], 251 (33) [(M − Me)+], 238 (27) [(M − C2H4)+], 222 (20) [(M − C2H4O)+], 197 (75) [(M − DHF)+], 105 (52) [(SiPh)+], 77 (6) [(Ph)+].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. Hydrogen atoms H2 and H6 for compound 1 and H2, H15 and H17C for compound 2 were refined independently.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula C10H16O2Si C17H18OSi
Mr 196.32 266.40
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.2422 (3), 8.3075 (4), 8.2940 (4) 8.7737 (4), 9.1715 (4), 9.8130 (4)
α, β, γ (°) 94.149 (2), 103.012 (1), 104.909 (1) 102.219 (2), 90.613 (2), 110.280 (2)
V3) 529.55 (4) 720.85 (6)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.15
Crystal size (mm) 0.72 × 0.66 × 0.59 0.51 × 0.19 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.519, 0.576 0.713, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 256332, 11412, 10306 20409, 5826, 4937
Rint 0.032 0.030
(sin θ/λ)max−1) 1.089 0.787
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.089, 1.06 0.040, 0.105, 1.06
No. of reflections 11412 5826
No. of parameters 182 244
H-atom treatment H atoms treated by a mixture of independent and constrained refinement. H atoms treated by a mixture of independent and constrained refinement.
Δρmax, Δρmin (e Å−3) 0.68, −0.32 0.48, −0.27
Computer programs: APEX2 (Bruker, 2018[Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), CrystalExplorer21 (Spackman et al., 2021), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020).

Bis(4,5-dihydrofuran-2-yl)dimethylsilane (1) top
Crystal data top
C10H16O2SiZ = 2
Mr = 196.32F(000) = 212
Triclinic, P1Dx = 1.231 Mg m3
a = 8.2422 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3075 (4) ÅCell parameters from 8689 reflections
c = 8.2940 (4) Åθ = 2.5–20.9°
α = 94.149 (2)°µ = 0.19 mm1
β = 103.012 (1)°T = 100 K
γ = 104.909 (1)°Block, colourless
V = 529.55 (4) Å30.72 × 0.66 × 0.59 mm
Data collection top
Bruker D8 Venture
diffractometer
11412 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs10306 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.032
Detector resolution: 7.9 pixels mm-1θmax = 50.7°, θmin = 2.6°
ω and φ scansh = 1617
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.519, Tmax = 0.576l = 1818
256332 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H_atoms_treated_by_a_mixture_of_independent_and_constrained_refinement.
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0207P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
11412 reflectionsΔρmax = 0.68 e Å3
182 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.64185 (2)0.82439 (2)0.20897 (2)0.01354 (2)
O10.28272 (3)0.68623 (3)0.09023 (4)0.02227 (4)
O20.70145 (4)0.71875 (3)0.52219 (3)0.02213 (4)
C10.41042 (3)0.81964 (3)0.19462 (3)0.01504 (3)
C20.34535 (4)0.92843 (4)0.26763 (4)0.01740 (4)
C30.14995 (4)0.87390 (4)0.21112 (4)0.02057 (4)
H3A0.0906 (12)0.8525 (12)0.3024 (12)0.033 (2)*
H3B0.1063 (12)0.9549 (11)0.1543 (11)0.032 (2)*
C40.11591 (4)0.70688 (5)0.10008 (5)0.02242 (5)
H4A0.0538 (11)0.6100 (11)0.1453 (11)0.032 (2)*
H4B0.0486 (12)0.6963 (12)0.0129 (12)0.037 (2)*
C50.70144 (3)0.67768 (3)0.35736 (3)0.01419 (3)
C60.73403 (4)0.52967 (3)0.32841 (3)0.01609 (4)
C70.75301 (4)0.44890 (4)0.48628 (4)0.01889 (4)
H7A0.8533 (11)0.4108 (11)0.5151 (11)0.0284 (18)*
H7B0.6498 (10)0.3515 (11)0.4771 (10)0.0251 (17)*
C80.75865 (6)0.59310 (5)0.61494 (4)0.02397 (6)
H8A0.6831 (12)0.5602 (11)0.6876 (12)0.033 (2)*
H8B0.8762 (14)0.6488 (14)0.6853 (14)0.048 (3)*
C90.77560 (4)1.04490 (4)0.28985 (5)0.02162 (5)
H9A0.7566 (12)1.0847 (12)0.3964 (12)0.037 (2)*
H9B0.9008 (14)1.0571 (13)0.3185 (14)0.048 (3)*
H9C0.7555 (14)1.1226 (14)0.2124 (13)0.047 (3)*
C100.66177 (4)0.74698 (4)0.00048 (4)0.01893 (4)
H10A0.6108 (13)0.8064 (13)0.0859 (13)0.040 (2)*
H10B0.6006 (14)0.6296 (14)0.0355 (13)0.045 (3)*
H10C0.7765 (13)0.7669 (12)0.0041 (12)0.036 (2)*
H60.7325 (10)0.4798 (10)0.2272 (10)0.0225 (16)*
H20.4137 (12)1.0273 (11)0.3403 (11)0.033 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01424 (3)0.01281 (3)0.01491 (3)0.00527 (2)0.00450 (2)0.00244 (2)
O10.01651 (7)0.02070 (9)0.02720 (10)0.00574 (6)0.00287 (7)0.00545 (7)
O20.03579 (12)0.02135 (9)0.01466 (7)0.01572 (9)0.00835 (7)0.00268 (6)
C10.01497 (7)0.01501 (7)0.01637 (8)0.00611 (6)0.00417 (6)0.00253 (6)
C20.01676 (8)0.01709 (8)0.01982 (9)0.00723 (7)0.00523 (7)0.00100 (7)
C30.01692 (9)0.02220 (11)0.02551 (12)0.00930 (8)0.00669 (8)0.00381 (9)
C40.01543 (9)0.02642 (13)0.02320 (11)0.00544 (8)0.00243 (8)0.00117 (9)
C50.01579 (7)0.01407 (7)0.01381 (7)0.00590 (6)0.00406 (6)0.00171 (5)
C60.01916 (9)0.01436 (8)0.01617 (8)0.00689 (6)0.00502 (7)0.00142 (6)
C70.02225 (10)0.01595 (8)0.02068 (10)0.00752 (7)0.00644 (8)0.00561 (7)
C80.03680 (17)0.02108 (11)0.01494 (9)0.01061 (11)0.00498 (9)0.00432 (8)
C90.02043 (10)0.01447 (9)0.02932 (13)0.00399 (7)0.00669 (9)0.00107 (8)
C100.02063 (10)0.02226 (10)0.01611 (9)0.00769 (8)0.00686 (7)0.00360 (7)
Geometric parameters (Å, º) top
Si1—C11.8742 (3)C4—H4B0.961 (10)
Si1—C51.8693 (3)C5—C61.3409 (4)
Si1—C91.8631 (3)C6—C71.5093 (4)
Si1—C101.8579 (3)C6—H60.904 (8)
O1—C11.3915 (4)C7—H7A0.947 (9)
O1—C41.4479 (4)C7—H7B0.996 (8)
O2—C51.3849 (3)C7—C81.5298 (5)
O2—C81.4525 (4)C8—H8A0.965 (9)
C1—C21.3370 (4)C8—H8B0.984 (11)
C2—C31.5075 (4)C9—H9A0.980 (10)
C2—H20.945 (9)C9—H9B0.982 (11)
C3—H3A0.992 (9)C9—H9C0.961 (11)
C3—H3B0.948 (9)C10—H10A0.978 (10)
C3—C41.5331 (5)C10—H10B0.965 (11)
C4—H4A0.984 (9)C10—H10C0.927 (10)
C5—Si1—C1108.189 (12)C6—C5—O2113.03 (2)
C9—Si1—C1106.801 (14)C5—C6—C7109.72 (2)
C9—Si1—C5110.770 (15)C5—C6—H6125.3 (5)
C10—Si1—C1109.191 (13)C7—C6—H6124.7 (5)
C10—Si1—C5108.128 (13)C6—C7—H7A114.8 (5)
C10—Si1—C9113.628 (16)C6—C7—H7B110.3 (5)
C1—O1—C4107.60 (2)C6—C7—C8101.18 (2)
C5—O2—C8107.15 (2)H7A—C7—H7B107.9 (7)
O1—C1—Si1117.093 (19)C8—C7—H7A111.6 (5)
C2—C1—Si1129.94 (2)C8—C7—H7B110.9 (5)
C2—C1—O1112.95 (2)O2—C8—C7106.95 (2)
C1—C2—C3110.20 (3)O2—C8—H8A107.7 (6)
C1—C2—H2124.1 (5)O2—C8—H8B106.9 (6)
C3—C2—H2125.7 (5)C7—C8—H8A113.7 (6)
C2—C3—H3A114.7 (5)C7—C8—H8B113.2 (6)
C2—C3—H3B111.8 (5)H8A—C8—H8B108.0 (8)
C2—C3—C4101.57 (2)Si1—C9—H9A111.7 (5)
H3A—C3—H3B106.4 (7)Si1—C9—H9B113.1 (6)
C4—C3—H3A108.8 (5)Si1—C9—H9C113.1 (6)
C4—C3—H3B113.8 (5)H9A—C9—H9B102.7 (8)
O1—C4—C3107.47 (3)H9A—C9—H9C108.8 (8)
O1—C4—H4A108.9 (5)H9B—C9—H9C106.8 (9)
O1—C4—H4B106.6 (6)Si1—C10—H10A111.1 (6)
C3—C4—H4A112.4 (5)Si1—C10—H10B112.9 (6)
C3—C4—H4B116.7 (6)Si1—C10—H10C112.3 (6)
H4A—C4—H4B104.5 (8)H10A—C10—H10B105.1 (8)
O2—C5—Si1116.686 (18)H10A—C10—H10C104.8 (8)
C6—C5—Si1130.12 (2)H10B—C10—H10C110.1 (8)
Si1—C1—C2—C3177.42 (2)C5—O2—C8—C713.01 (4)
Si1—C5—C6—C7172.51 (2)C5—C6—C7—C810.06 (3)
O1—C1—C2—C31.01 (4)C6—C7—C8—O213.68 (4)
O2—C5—C6—C72.56 (4)C8—O2—C5—Si1177.44 (2)
C1—Si1—C5—O264.48 (2)C8—O2—C5—C66.78 (4)
C1—Si1—C5—C6110.44 (3)C9—Si1—C1—O1160.08 (2)
C1—O1—C4—C34.15 (4)C9—Si1—C1—C218.30 (3)
C1—C2—C3—C43.38 (4)C9—Si1—C5—O252.26 (3)
C2—C3—C4—O14.46 (4)C9—Si1—C5—C6132.81 (3)
C4—O1—C1—Si1179.30 (2)C10—Si1—C1—O136.82 (3)
C4—O1—C1—C22.04 (4)C10—Si1—C1—C2141.56 (3)
C5—Si1—C1—O180.64 (2)C10—Si1—C5—O2177.38 (2)
C5—Si1—C1—C2100.98 (3)C10—Si1—C5—C67.70 (3)
(4,5-Dihydrofuran-2-yl)(methyl)diphenylsilane (2) top
Crystal data top
C17H18OSiZ = 2
Mr = 266.40F(000) = 284
Triclinic, P1Dx = 1.227 Mg m3
a = 8.7737 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1715 (4) ÅCell parameters from 8775 reflections
c = 9.8130 (4) Åθ = 2.5–36.3°
α = 102.219 (2)°µ = 0.15 mm1
β = 90.613 (2)°T = 100 K
γ = 110.280 (2)°Plate, colourless
V = 720.85 (6) Å30.51 × 0.19 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
5826 independent reflections
Radiation source: microfocus sealed X-ray tube, INCOATEC microfocus sealed tube, Iys 3.04937 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 34.0°, θmin = 2.8°
φ and ω scansh = 1113
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.713, Tmax = 0.747l = 1515
20409 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H_atoms_treated_by_a_mixture_of_independent_and_constrained_refinement.
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2951P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5826 reflectionsΔρmax = 0.48 e Å3
244 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.69854 (3)0.37535 (3)0.34297 (3)0.01325 (7)
O10.92417 (10)0.22237 (9)0.28540 (9)0.02194 (16)
C10.86366 (11)0.32897 (11)0.24356 (10)0.01447 (16)
C20.93945 (12)0.38813 (13)0.13924 (11)0.01886 (18)
C31.07424 (14)0.32450 (15)0.10108 (13)0.0250 (2)
H3A1.182 (2)0.410 (2)0.1241 (18)0.035 (4)*
H3B1.068 (2)0.282 (2)0.0052 (19)0.037 (4)*
C41.04574 (14)0.20014 (14)0.19082 (13)0.0241 (2)
H4A1.003 (2)0.091 (2)0.1329 (18)0.037 (4)*
H4B1.143 (2)0.213 (2)0.2498 (17)0.034 (4)*
C50.50711 (11)0.19477 (11)0.29840 (10)0.01461 (16)
C60.44747 (12)0.11776 (12)0.15886 (10)0.01701 (17)
H60.4976 (18)0.1611 (17)0.0857 (15)0.021 (3)*
C70.31274 (12)0.02389 (13)0.12562 (11)0.01983 (19)
H70.276 (2)0.0716 (19)0.0290 (17)0.030 (4)*
C80.23486 (13)0.09184 (13)0.23187 (13)0.0221 (2)
H80.1407 (19)0.1954 (19)0.2088 (16)0.028 (4)*
C90.28960 (13)0.01617 (13)0.37054 (12)0.0235 (2)
H90.232 (2)0.063 (2)0.4496 (17)0.034 (4)*
C100.42448 (12)0.12571 (13)0.40346 (11)0.01958 (18)
H100.4595 (19)0.1741 (18)0.5007 (16)0.025 (4)*
C110.68003 (11)0.55198 (11)0.28740 (10)0.01557 (16)
C120.54668 (13)0.54371 (13)0.20270 (11)0.01901 (18)
H120.4588 (18)0.4466 (18)0.1690 (15)0.021 (3)*
C130.53731 (15)0.67991 (14)0.16669 (12)0.0236 (2)
H130.447 (2)0.6702 (19)0.1106 (17)0.029 (4)*
C140.66219 (15)0.82626 (14)0.21337 (12)0.0239 (2)
H140.6560 (19)0.9203 (19)0.1908 (17)0.029 (4)*
C150.79733 (14)0.83698 (13)0.29579 (13)0.0234 (2)
C160.80543 (13)0.70145 (12)0.33290 (12)0.02067 (19)
H160.902 (2)0.7112 (19)0.3922 (17)0.029 (4)*
C170.76169 (14)0.42855 (14)0.53383 (11)0.02152 (19)
H17A0.779 (2)0.341 (2)0.5607 (19)0.042 (5)*
H17B0.678 (2)0.459 (2)0.5845 (19)0.041 (5)*
H150.886 (2)0.9381 (19)0.3294 (16)0.028 (4)*
H17C0.863 (2)0.524 (2)0.5574 (19)0.045 (5)*
H20.9161 (19)0.4673 (19)0.1014 (16)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01095 (11)0.01317 (12)0.01416 (12)0.00328 (9)0.00118 (8)0.00181 (9)
O10.0202 (3)0.0199 (3)0.0313 (4)0.0113 (3)0.0083 (3)0.0103 (3)
C10.0112 (3)0.0134 (4)0.0177 (4)0.0040 (3)0.0002 (3)0.0020 (3)
C20.0156 (4)0.0227 (5)0.0198 (4)0.0084 (3)0.0040 (3)0.0054 (4)
C30.0176 (4)0.0309 (6)0.0272 (5)0.0104 (4)0.0078 (4)0.0051 (4)
C40.0194 (4)0.0225 (5)0.0318 (6)0.0116 (4)0.0051 (4)0.0019 (4)
C50.0114 (3)0.0150 (4)0.0170 (4)0.0042 (3)0.0020 (3)0.0036 (3)
C60.0144 (4)0.0176 (4)0.0169 (4)0.0044 (3)0.0023 (3)0.0015 (3)
C70.0150 (4)0.0186 (4)0.0217 (4)0.0044 (3)0.0004 (3)0.0014 (3)
C80.0158 (4)0.0165 (4)0.0307 (5)0.0030 (3)0.0023 (4)0.0036 (4)
C90.0198 (4)0.0210 (5)0.0270 (5)0.0019 (4)0.0052 (4)0.0088 (4)
C100.0171 (4)0.0197 (4)0.0192 (4)0.0026 (3)0.0025 (3)0.0056 (4)
C110.0138 (4)0.0149 (4)0.0178 (4)0.0055 (3)0.0038 (3)0.0024 (3)
C120.0176 (4)0.0185 (4)0.0214 (4)0.0071 (3)0.0017 (3)0.0046 (3)
C130.0252 (5)0.0249 (5)0.0249 (5)0.0127 (4)0.0020 (4)0.0084 (4)
C140.0303 (5)0.0206 (5)0.0265 (5)0.0133 (4)0.0083 (4)0.0100 (4)
C150.0243 (5)0.0159 (4)0.0292 (5)0.0058 (4)0.0070 (4)0.0055 (4)
C160.0169 (4)0.0169 (4)0.0265 (5)0.0043 (3)0.0019 (4)0.0042 (4)
C170.0205 (4)0.0237 (5)0.0161 (4)0.0040 (4)0.0001 (3)0.0025 (4)
Geometric parameters (Å, º) top
Si1—C11.8743 (10)C8—H80.998 (16)
Si1—C51.8720 (9)C8—C91.3854 (17)
Si1—C111.8715 (10)C9—H91.023 (16)
Si1—C171.8591 (11)C9—C101.3944 (15)
O1—C11.3897 (12)C10—H100.960 (15)
O1—C41.4603 (13)C11—C121.3988 (14)
C1—C21.3356 (14)C11—C161.4050 (14)
C2—C31.5082 (15)C12—H120.944 (15)
C2—H20.961 (16)C12—C131.3962 (15)
C3—H3A0.981 (17)C13—H130.928 (16)
C3—H3B0.933 (18)C13—C141.3861 (17)
C3—C41.5398 (18)C14—H140.953 (16)
C4—H4A0.982 (17)C14—C151.3909 (17)
C4—H4B0.987 (17)C15—C161.3911 (15)
C5—C61.4023 (14)C15—H150.969 (16)
C5—C101.4014 (13)C16—H160.990 (16)
C6—H60.934 (15)C17—H17A0.950 (18)
C6—C71.3926 (14)C17—H17B0.975 (19)
C7—H70.956 (16)C17—H17C0.992 (19)
C7—C81.3919 (16)
C5—Si1—C1108.44 (4)C7—C8—H8120.4 (9)
C11—Si1—C1105.50 (4)C9—C8—C7119.76 (10)
C11—Si1—C5113.08 (4)C9—C8—H8119.8 (9)
C17—Si1—C1109.26 (5)C8—C9—H9120.5 (9)
C17—Si1—C5110.48 (5)C8—C9—C10120.10 (10)
C17—Si1—C11109.89 (5)C10—C9—H9119.4 (9)
C1—O1—C4107.48 (8)C5—C10—H10121.0 (9)
O1—C1—Si1117.13 (7)C9—C10—C5121.24 (10)
C2—C1—Si1129.71 (8)C9—C10—H10117.7 (9)
C2—C1—O1113.10 (9)C12—C11—Si1123.40 (7)
C1—C2—C3110.25 (9)C12—C11—C16117.71 (9)
C1—C2—H2123.6 (9)C16—C11—Si1118.89 (8)
C3—C2—H2126.0 (9)C11—C12—H12121.5 (9)
C2—C3—H3A111.2 (10)C13—C12—C11121.09 (10)
C2—C3—H3B112.3 (11)C13—C12—H12117.4 (9)
C2—C3—C4101.51 (9)C12—C13—H13118.8 (10)
H3A—C3—H3B105.5 (14)C14—C13—C12120.16 (10)
C4—C3—H3A112.9 (10)C14—C13—H13121.0 (10)
C4—C3—H3B113.7 (11)C13—C14—H14120.8 (10)
O1—C4—C3106.70 (8)C13—C14—C15119.80 (10)
O1—C4—H4A108.8 (10)C15—C14—H14119.4 (10)
O1—C4—H4B107.0 (10)C14—C15—C16119.92 (10)
C3—C4—H4A111.5 (10)C14—C15—H15121.1 (9)
C3—C4—H4B114.2 (10)C16—C15—H15119.0 (9)
H4A—C4—H4B108.4 (14)C11—C16—H16119.7 (9)
C6—C5—Si1121.29 (7)C15—C16—C11121.32 (10)
C10—C5—Si1120.94 (7)C15—C16—H16118.9 (9)
C10—C5—C6117.64 (9)Si1—C17—H17A109.9 (11)
C5—C6—H6120.3 (9)Si1—C17—H17B108.7 (11)
C7—C6—C5121.26 (9)Si1—C17—H17C110.5 (11)
C7—C6—H6118.4 (9)H17A—C17—H17B112.2 (15)
C6—C7—H7118.2 (10)H17A—C17—H17C109.4 (15)
C8—C7—C6119.98 (10)H17B—C17—H17C106.1 (15)
C8—C7—H7121.8 (10)
Si1—C1—C2—C3175.12 (8)C6—C7—C8—C91.46 (16)
Si1—C5—C6—C7174.69 (8)C7—C8—C9—C101.42 (17)
Si1—C5—C10—C9174.66 (9)C8—C9—C10—C50.07 (17)
Si1—C11—C12—C13178.63 (8)C10—C5—C6—C71.15 (15)
Si1—C11—C16—C15179.42 (8)C11—Si1—C1—O1167.77 (7)
O1—C1—C2—C32.00 (12)C11—Si1—C1—C29.26 (11)
C1—Si1—C5—C651.23 (9)C11—Si1—C5—C665.41 (9)
C1—Si1—C5—C10124.48 (8)C11—Si1—C5—C10118.88 (9)
C1—Si1—C11—C12109.11 (9)C11—C12—C13—C140.82 (17)
C1—Si1—C11—C1671.17 (9)C12—C11—C16—C150.31 (15)
C1—O1—C4—C38.95 (11)C12—C13—C14—C150.27 (17)
C1—C2—C3—C47.17 (12)C13—C14—C15—C161.03 (17)
C2—C3—C4—O19.52 (11)C14—C15—C16—C110.74 (17)
C4—O1—C1—Si1177.92 (7)C16—C11—C12—C131.09 (15)
C4—O1—C1—C24.57 (12)C17—Si1—C1—O149.68 (8)
C5—Si1—C1—O170.80 (8)C17—Si1—C1—C2127.35 (10)
C5—Si1—C1—C2112.17 (10)C17—Si1—C5—C6170.95 (8)
C5—Si1—C11—C129.26 (10)C17—Si1—C5—C104.76 (10)
C5—Si1—C11—C16170.46 (8)C17—Si1—C11—C12133.23 (9)
C5—C6—C7—C80.15 (16)C17—Si1—C11—C1646.49 (9)
C6—C5—C10—C91.20 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.969 (16)2.640 (16)3.3422 (13)129.6 (12)
C17—H17C···O1ii0.992 (19)2.584 (19)3.5168 (14)156.5 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
Selected geometric parameters for compound 1 (Å, °) top
Si1—C11.8742 (3)C1—Si1—C5108.189 (12)
Si1—C51.8693 (3)C1—Si1—C9106.801 (14)
Si1—C91.8631 (3)C1—Si1—C10109.191 (13)
Si1—C101.8579 (3)C5—Si1—C9110.770 (15)
C5—Si1—C10108.128 (13)
C1—C21.3370 (4)C9—Si1—C10113.628 (16)
C3—C41.5331 (5)
C5—C61.3409 (4)
C7—C81.5298 (5)
Selected geometric parameters for compound 2 (Å, °) top
Si1—C11.8742 (10)C1—Si1—C5108.44 (4)
Si1—C51.8721 (9)C1—Si1—C11105.51 (4)
Si1—C111.8713 (10)C1—Si1—C17109.26 (5)
Si1—C171.8591 (11)C5—Si1—C11113.08 (4)
C5—Si1—C17110.49 (5)
C1—C21.3356 (14)C11—Si1—C17109.88 (59
C3—C41.5416 (17)
Selected geometric parameters for compound 1 (Å ,°) top
Si1—C11.8742 (3)C1—Si1—C5108.189 (12)
Si1—C51.8693 (3)C1—Si1—C9106.801 (14)
Si1—C91.8631 (3)C1—Si1—C10109.191 (13)
Si1—C101.8579 (3)C5—Si1—C9110.770 (15)
C5—Si1—C10108.128 (13)
C1—C21.3370 (4)C9—Si1—C10113.628 (16)
C3—C41.5331 (5)
C5—C61.3409 (4)
C7—C81.5298 (5)

Funding information

Funding for this research was provided by: Fonds der Chemischen Industrie (scholarship to ERB).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1–19.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColquhoun, V. P., Abele, B. C. & Strohmann, C. (2011). Organometallics, 30, 5408–5414.  Web of Science CSD CrossRef CAS Google Scholar
First citationColquhoun, V. P. & Strohmann, C. (2012). Dalton Trans. 41, 1897–1902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095–12096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21.  CrossRef CAS Web of Science Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57–67.  CrossRef CAS Web of Science Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381–387.  CrossRef CAS Web of Science Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1997). J. Organomet. Chem. 527, 295–296.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514–1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLabrecque, D., Nwe, K. T. & Chan, T. H. (1994). Organometallics, 13, 332–335.  CrossRef CAS Web of Science Google Scholar
First citationLi, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439–17443.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161–163.  CrossRef CAS Google Scholar
First citationLukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163–171.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, Y.-M., Nieh, H.-C. & Cherng, C.-D. (1992). J. Org. Chem. 57, 7010–7012.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds