Download citation
Download citation
link to html
The Ru-N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2':6',2''-ter­pyridine and azpy is 2-(phenyl­azo)­pyridine], are Ru-Npy 2.063 (4), Ru-Nazo 2.036 (4), Ru-Nnitro 2.066 (3) Å, and Ru-Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and [pi]-­backbonding [d[pi](Ru) \rightarrow [pi]*(azo)] is decreased.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101007715/vj1141sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101007715/vj1141Isup2.hkl
Contains datablock I

CCDC reference: 170164

Comment top

Complexes of ruthenium(II) with polypyridine ligands such as 2,2',6',2''-terpyridine (tpy) and bidentate ligands have been extensively studied. One reason for this is that they could lead to high-valence ruthenium oxo complexes, which act as catalysts in the oxidation of carbohydrates. Thorp and co-workers have demonstrated that the oxoruthenium(IV) complex [RuIV(tpy)(bpy)O2+] (bpy is 2,2'-bipyridine) is an efficient DNA cleavage reagent (Grover et al., 1992). The interesting properties of the class [Ru(tpy)(bpy)X]n+, where X is monodentate, led us to synthesize ruthenium complexes with other bidentate ligands which are better π-acceptors than bpy, such as 2-(phenylazo)pyridine (azpy; Krause & Krause, 1980), in order to extend the variety of such compounds and to probe the nature of bonding in such complexes. In this report, we describe the synthesis and the crystal and molecular structure of the title complex, [Ru(tpy)(azpy)(NO2)](BF4), (I). The aim of studying this compound is to explore how the co-ligand, NO2-, affects the bonding in the complex molecule. \sch

The coordination geometry around Ru in (I) is distorted octahedral. The equatorial positions are occupied by three pyridine N atoms from the tpy ligand and one pyridine N atom from the azpy molecule. In this complex, the nitrite ligand is bound to Ru through the N atom, which is trans to the azo nitrogen from azpy.

As expected, the Ru—N bond to the central pyridyl ring of the terpyridine ligand [Ru1—N5 1.982 (3) Å] is the shortest such bond, whereas the terminal Ru1—N3 [2.082 (4) Å] and Ru1—N4 [2.074 (4) Å] bonds are lengthened to relieve strain and retain a typical terpyridine bite angle of 79°. This situation is similar to that found in other ruthenium complexes containing terpyridine ligands (Leizing et al., 1990; Gerli et al., 1995; Gulyas et al., 1996). The Ru1—N1 (pyridine in azpy) distance of 2.063 (4) Å is longer than the Ru1—N2 (azo) distance of 2.036 (4) Å. This indicates that there is considerable interaction between Ru and Nazo as π-backbonding. Meanwhile, the azo N2 trans to N6 from the nitro group gives rise to an interesting result. The Ru1—N6 (nitro) bond distance of 2.066 (3) Å found in (I) is significantly shorter than those reported for other (nitro)ruthenium(II) complexes, for example, 2.074 (6) Å in trans-[Ru(tpy)(NO2)(PMe3)2](ClO4) (Leizing et al., 1990). This could be due to some Ru—Nnitro multiple bonding in (I). On the other hand, the Ru1—N2 (azo) bond [2.036 (4) Å] is longer than the values found in other ruthenium azpy complexes, such as 1.977 (4) and 1.984 (4) Å in [Ru(azpy)2Cl2] (Seal & Ray, 1984), and 1.971 (7) Å in [Ru(tpy)(azpy)(CH3CN)]2+ (Pramanik et al., 1998).

In addition, the observed variation of the NN bond lengths is indicative of π-backbonding between Ru and the Nazo atom. In the complex ion of (I), the NN bond distance is 1.265 (5) Å, which is longer than the values observed in other complexes (Seal & Ray, 1984; Pramanik et al., 1998) and close to the value found in the uncoordinated azpy ligand [1.248 (4) Å; Panneerselvam et al., 2000]. The lengthening of the Ru1—N2 (azo) distance suggests less Ru—N π interaction at this centre, possibly due to a greater Ru—NO2 π interaction. This confirms that the nitro group also has considerable π interactions with the Ru centre, as seen clearly from this complex. Therefore, the NN bond length can be a useful probe for the relative strength of the Ru—N (azo) bond.

Related literature top

For related literature, see: Campbell et al. (1953); Gerli et al. (1995); Grover et al. (1992); Gulyas et al. (1996); Krause & Krause (1980); Leising et al. (1990); Panneerselvam et al. (2000); Pramanik et al. (1998); Seal & Ray (1984); Sullivan et al. (1980); Takeuchi et al. (1984).

Experimental top

Commercial ruthenium trichloride was purchased from Aldrich and 2,2',6'2''-terpyridine was obtained from Fluka. [Ru(tpy)Cl3] and 2-(phenylazo)pyridine were synthesized using the methods of Sullivan et al. (1980) and Campbell et al. (1953). [Ru(tpy)(azpy)Cl]Cl was synthesized using a modification of the procedure published by Takeuchi et al. (1984). The synthesis of [Ru(tpy)(azpy)(NO2)]BF4, (I), was as follows. [Ru(tpy)(azpy)Cl]Cl (52 mg) and silver nitrate (30 mg) were heated at reflux in acetone and water solution (12 ml; 3:1 v/v). The silver chloride was filtered off, the filtrate was heated for 15 min and NaNO2 (40 mg) was added. The reaction mixture was heated for a further 1 h and then NH4BF4 (45 mg) was added. After standing for 5 d, the solid was filtered off and washed with cool water and diethyl ether (yield 88%). Crystals of (I) suitable for X-ray analysis were recrystallized in a mixture of methanol and acetone (1:1 v/v).

Refinement top

H atoms were found from geometrical constraints (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Query.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1999); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
(Nitro-κN)[2-(phenyldiazenyl-κN2)pyridine-κN] (2,2',6',2''-terpyridine-κ3N)ruthenium(II) tetrafluoroborate top
Crystal data top
[Ru(C11H9N3)(C15H11N3)(NO2)]BF4F(000) = 652
Mr = 650.37Dx = 1.665 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 9.2347 (13) ÅCell parameters from 8214 reflections
b = 9.6814 (13) Åθ = 2.1–28.3°
c = 14.588 (2) ŵ = 0.67 mm1
β = 95.948 (2)°T = 296 K
V = 1297.2 (3) Å3Needle, black
Z = 20.3 × 0.3 × 0.2 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4727 independent reflections
Radiation source: fine-focus sealed tube4484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
oscillation scansθmax = 28.3°, θmin = 2.1°
Absorption correction: ψ-scan
(North et al., 1968)
h = 1012
Tmin = 0.788, Tmax = 0.916k = 1212
7966 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4727 reflectionsΔρmax = 0.42 e Å3
370 parametersΔρmin = 0.34 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Crystal data top
[Ru(C11H9N3)(C15H11N3)(NO2)]BF4V = 1297.2 (3) Å3
Mr = 650.37Z = 2
Monoclinic, PcMo Kα radiation
a = 9.2347 (13) ŵ = 0.67 mm1
b = 9.6814 (13) ÅT = 296 K
c = 14.588 (2) Å0.3 × 0.3 × 0.2 mm
β = 95.948 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4727 independent reflections
Absorption correction: ψ-scan
(North et al., 1968)
4484 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.916Rint = 0.036
7966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.42 e Å3
S = 1.01Δρmin = 0.34 e Å3
4727 reflectionsAbsolute structure: Flack (1983)
370 parametersAbsolute structure parameter: 0.06 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.02115 (3)0.229855 (18)0.24439 (2)0.02981 (7)
O10.0425 (3)0.0073 (3)0.3683 (2)0.0558 (7)
O20.2348 (3)0.1164 (3)0.38310 (18)0.0515 (6)
N10.0789 (4)0.4090 (4)0.3156 (2)0.0366 (8)
N20.0605 (4)0.3840 (4)0.1593 (2)0.0329 (7)
N30.1833 (4)0.1809 (4)0.2834 (2)0.0400 (8)
N40.2102 (4)0.2081 (3)0.1803 (2)0.0338 (8)
N50.0254 (3)0.0611 (3)0.1702 (2)0.0339 (7)
N60.1103 (4)0.0950 (3)0.3446 (2)0.0371 (7)
N70.0417 (4)0.5092 (3)0.1824 (2)0.0421 (7)
C110.0418 (4)0.5248 (3)0.2675 (2)0.0359 (8)
C120.1595 (4)0.4253 (4)0.3987 (3)0.0467 (9)
H120.18560.34780.43430.056*
C130.0834 (5)0.6575 (4)0.2971 (3)0.0536 (9)
H130.05530.73470.26160.064*
C140.2031 (5)0.5545 (4)0.4310 (3)0.0546 (10)
H140.25780.56280.48790.065*
C150.1665 (5)0.6706 (4)0.3798 (3)0.0582 (10)
H150.19780.75720.40120.070*
C210.2709 (4)0.4573 (4)0.0545 (3)0.0456 (8)
H210.29100.52590.09590.055*
C220.1528 (3)0.3681 (4)0.0732 (2)0.0362 (7)
C230.1210 (5)0.2697 (4)0.0107 (3)0.0485 (9)
H230.04120.21180.02390.058*
C240.2084 (6)0.2567 (4)0.0727 (3)0.0613 (12)
H240.18690.19100.11580.074*
C250.3581 (4)0.4392 (5)0.0294 (3)0.0610 (11)
H250.43910.49540.04310.073*
C260.3262 (5)0.3416 (5)0.0905 (3)0.0646 (12)
H260.38560.33210.14570.078*
C310.2396 (4)0.0627 (3)0.2438 (2)0.0418 (7)
C320.2569 (5)0.2445 (4)0.3458 (4)0.0527 (10)
H320.21950.32580.37260.063*
C330.3858 (5)0.1938 (7)0.3717 (4)0.0668 (14)
H330.43440.24010.41510.080*
C340.3697 (4)0.0080 (4)0.2673 (3)0.0542 (10)
H340.40770.07220.23920.065*
C350.4414 (5)0.0735 (5)0.3323 (4)0.0681 (13)
H350.52750.03680.34980.082*
C410.2092 (4)0.0958 (3)0.1235 (2)0.0386 (7)
C420.3260 (4)0.2922 (4)0.1862 (3)0.0447 (8)
H420.32710.36800.22540.054*
C430.4422 (5)0.1595 (6)0.0794 (3)0.0584 (11)
H430.52010.14410.04510.070*
C440.3242 (4)0.0690 (4)0.0725 (2)0.0498 (9)
H440.32280.00800.03430.060*
C450.4424 (5)0.2717 (5)0.1374 (4)0.0552 (10)
H450.52070.33260.14320.066*
C510.0779 (4)0.0094 (4)0.1209 (2)0.0383 (7)
C520.1514 (4)0.0052 (3)0.1787 (2)0.0392 (7)
C530.1805 (5)0.1288 (4)0.1307 (3)0.0519 (9)
H530.26830.17460.13410.062*
C540.0794 (5)0.1811 (4)0.0792 (3)0.0560 (10)
H540.09910.26280.04670.067*
C550.0535 (5)0.1148 (3)0.0739 (2)0.0487 (9)
H550.12370.15250.04000.058*
B0.4085 (5)0.6845 (5)0.1502 (4)0.0559 (11)
F10.3722 (4)0.7939 (3)0.2018 (3)0.0994 (11)
F20.2876 (4)0.6162 (4)0.1174 (3)0.1087 (11)
F30.4995 (5)0.5994 (5)0.1996 (3)0.1446 (19)
F40.4752 (8)0.7317 (5)0.0769 (5)0.163 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03495 (11)0.02717 (10)0.02741 (10)0.00108 (19)0.00373 (7)0.00075 (18)
O10.074 (2)0.0389 (14)0.0526 (17)0.0086 (14)0.0000 (15)0.0143 (12)
O20.0419 (14)0.0626 (16)0.0490 (14)0.0085 (11)0.0005 (11)0.0147 (12)
N10.0424 (18)0.0343 (18)0.0329 (17)0.0026 (13)0.0037 (13)0.0010 (13)
N20.0358 (17)0.0314 (15)0.0313 (16)0.0016 (12)0.0026 (12)0.0001 (12)
N30.0361 (16)0.0446 (19)0.0396 (18)0.0065 (15)0.0057 (13)0.0049 (16)
N40.0380 (17)0.0335 (16)0.0304 (16)0.0021 (12)0.0056 (13)0.0034 (12)
N50.0411 (17)0.0301 (16)0.0303 (15)0.0011 (12)0.0028 (12)0.0001 (12)
N60.0442 (19)0.0358 (16)0.0323 (16)0.0073 (13)0.0091 (13)0.0012 (12)
N70.0466 (17)0.0362 (16)0.0411 (17)0.0016 (13)0.0074 (13)0.0024 (13)
C110.038 (2)0.0296 (15)0.039 (2)0.0024 (13)0.0005 (15)0.0019 (12)
C120.061 (2)0.042 (2)0.0354 (18)0.0025 (17)0.0034 (16)0.0041 (15)
C130.075 (3)0.0280 (17)0.055 (2)0.0021 (15)0.0077 (18)0.0014 (14)
C140.071 (3)0.048 (2)0.042 (2)0.0011 (18)0.0076 (18)0.0087 (15)
C150.081 (3)0.0380 (18)0.054 (2)0.0033 (18)0.003 (2)0.0156 (16)
C210.0392 (17)0.0463 (18)0.050 (2)0.0028 (14)0.0005 (15)0.0088 (15)
C220.0367 (17)0.0385 (17)0.0325 (16)0.0036 (13)0.0011 (13)0.0087 (13)
C230.056 (2)0.052 (2)0.0362 (19)0.0025 (16)0.0034 (16)0.0025 (15)
C240.080 (3)0.065 (3)0.036 (2)0.006 (2)0.007 (2)0.0038 (16)
C250.042 (2)0.072 (3)0.064 (3)0.0025 (18)0.0134 (19)0.025 (2)
C260.067 (3)0.082 (3)0.041 (2)0.019 (2)0.013 (2)0.009 (2)
C310.0361 (16)0.0449 (18)0.0434 (18)0.0009 (13)0.0010 (14)0.0092 (14)
C320.050 (2)0.057 (2)0.053 (3)0.0132 (17)0.012 (2)0.0014 (18)
C330.052 (3)0.084 (4)0.069 (3)0.021 (3)0.027 (2)0.012 (3)
C340.0349 (18)0.062 (2)0.065 (3)0.0020 (15)0.0000 (17)0.0179 (19)
C350.039 (2)0.079 (3)0.088 (3)0.0040 (19)0.018 (2)0.026 (3)
C410.0489 (18)0.0373 (15)0.0299 (15)0.0073 (13)0.0047 (13)0.0042 (12)
C420.043 (2)0.0416 (19)0.049 (2)0.0017 (15)0.0059 (17)0.0080 (16)
C430.049 (2)0.076 (3)0.053 (3)0.008 (2)0.0181 (19)0.013 (2)
C440.056 (2)0.057 (2)0.0378 (18)0.0131 (17)0.0102 (16)0.0011 (15)
C450.047 (2)0.061 (3)0.058 (3)0.0053 (19)0.010 (2)0.015 (2)
C510.052 (2)0.0335 (16)0.0296 (16)0.0063 (15)0.0029 (14)0.0022 (12)
C520.0408 (17)0.0343 (15)0.0406 (17)0.0060 (12)0.0045 (14)0.0058 (12)
C530.062 (2)0.0407 (18)0.050 (2)0.0151 (16)0.0067 (18)0.0009 (15)
C540.088 (3)0.0387 (17)0.0396 (19)0.0097 (19)0.0008 (19)0.0065 (15)
C550.076 (3)0.0370 (17)0.0333 (17)0.0046 (16)0.0066 (16)0.0034 (13)
B0.052 (2)0.051 (2)0.062 (3)0.006 (2)0.003 (2)0.005 (2)
F10.111 (3)0.0641 (18)0.123 (3)0.0080 (17)0.011 (2)0.0313 (18)
F20.092 (2)0.107 (3)0.123 (3)0.0235 (19)0.010 (2)0.035 (2)
F30.161 (4)0.141 (4)0.115 (3)0.072 (3)0.065 (3)0.029 (2)
F40.194 (6)0.152 (4)0.163 (6)0.002 (4)0.112 (5)0.030 (3)
Geometric parameters (Å, º) top
Ru1—N51.982 (3)C24—H240.9300
Ru1—N22.036 (4)C25—C261.352 (7)
Ru1—N12.063 (4)C25—H250.9300
Ru1—N62.066 (3)C26—H260.9300
Ru1—N42.074 (4)C31—C341.388 (5)
Ru1—N32.082 (4)C31—C521.468 (5)
O1—N61.239 (4)C32—C331.376 (7)
O2—N61.244 (4)C32—H320.9300
N1—C111.348 (5)C33—C351.374 (8)
N1—C121.364 (5)C33—H330.9300
N2—N71.265 (5)C34—C351.367 (7)
N2—C221.451 (5)C34—H340.9300
N3—C321.341 (6)C35—H350.9300
N3—C311.361 (5)C41—C441.382 (5)
N4—C421.340 (5)C41—C511.471 (5)
N4—C411.367 (5)C42—C451.364 (6)
N5—C521.346 (5)C42—H420.9300
N5—C511.350 (5)C43—C451.377 (7)
N7—C111.400 (5)C43—C441.393 (6)
C11—C131.396 (5)C43—H430.9300
C12—C141.382 (5)C44—H440.9300
C12—H120.9300C45—H450.9300
C13—C151.367 (5)C51—C551.390 (5)
C13—H130.9300C52—C531.398 (5)
C14—C151.372 (6)C53—C541.356 (6)
C14—H140.9300C53—H530.9300
C15—H150.9300C54—C551.394 (6)
C21—C221.395 (5)C54—H540.9300
C21—C251.404 (5)C55—H550.9300
C21—H210.9300B—F31.334 (6)
C22—C231.372 (5)B—F21.342 (5)
C23—C241.395 (6)B—F11.362 (6)
C23—H230.9300B—F41.367 (8)
C24—C261.367 (7)
N5—Ru1—N2103.04 (13)C26—C24—H24120.4
N5—Ru1—N1176.31 (17)C23—C24—H24120.4
N2—Ru1—N175.57 (13)C26—C25—C21121.2 (4)
N5—Ru1—N685.04 (15)C26—C25—H25119.4
N2—Ru1—N6171.88 (14)C21—C25—H25119.4
N1—Ru1—N696.40 (13)C25—C26—C24121.2 (4)
N5—Ru1—N479.38 (14)C25—C26—H26119.4
N2—Ru1—N494.32 (13)C24—C26—H26119.4
N1—Ru1—N497.26 (15)N3—C31—C34121.2 (4)
N6—Ru1—N487.86 (12)N3—C31—C52115.9 (3)
N5—Ru1—N379.03 (15)C34—C31—C52122.8 (3)
N2—Ru1—N392.53 (14)N3—C32—C33122.4 (5)
N1—Ru1—N3104.37 (15)N3—C32—H32118.8
N6—Ru1—N388.24 (14)C33—C32—H32118.8
N4—Ru1—N3158.31 (11)C35—C33—C32119.0 (5)
C11—N1—C12116.9 (3)C35—C33—H33120.5
C11—N1—Ru1113.5 (2)C32—C33—H33120.5
C12—N1—Ru1129.3 (3)C35—C34—C31119.2 (4)
N7—N2—C22112.6 (3)C35—C34—H34120.4
N7—N2—Ru1120.5 (3)C31—C34—H34120.4
C22—N2—Ru1126.7 (3)C34—C35—C33119.7 (4)
C32—N3—C31118.4 (4)C34—C35—H35120.1
C32—N3—Ru1128.2 (3)C33—C35—H35120.1
C31—N3—Ru1113.1 (3)N4—C41—C44121.3 (3)
C42—N4—C41118.5 (4)N4—C41—C51114.9 (3)
C42—N4—Ru1127.8 (3)C44—C41—C51123.8 (3)
C41—N4—Ru1113.7 (3)N4—C42—C45123.1 (4)
C52—N5—C51122.5 (3)N4—C42—H42118.5
C52—N5—Ru1118.9 (3)C45—C42—H42118.5
C51—N5—Ru1118.1 (2)C45—C43—C44119.5 (4)
O1—N6—O2118.5 (3)C45—C43—H43120.3
O1—N6—Ru1121.7 (3)C44—C43—H43120.3
O2—N6—Ru1119.7 (2)C41—C44—C43118.8 (4)
N2—N7—C11112.8 (3)C41—C44—H44120.6
N1—C11—C13123.9 (3)C43—C44—H44120.6
N1—C11—N7117.3 (3)C42—C45—C43118.9 (4)
C13—C11—N7118.8 (3)C42—C45—H45120.5
N1—C12—C14121.4 (4)C43—C45—H45120.5
N1—C12—H12119.3N5—C51—C55119.8 (3)
C14—C12—H12119.3N5—C51—C41113.7 (3)
C15—C13—C11118.0 (3)C55—C51—C41126.6 (3)
C15—C13—H13121.0N5—C52—C53119.0 (4)
C11—C13—H13121.0N5—C52—C31112.9 (3)
C15—C14—C12120.7 (4)C53—C52—C31128.0 (3)
C15—C14—H14119.7C54—C53—C52119.3 (4)
C12—C14—H14119.7C54—C53—H53120.4
C13—C15—C14119.2 (3)C52—C53—H53120.4
C13—C15—H15120.4C53—C54—C55121.3 (3)
C14—C15—H15120.4C53—C54—H54119.4
C22—C21—C25117.4 (4)C55—C54—H54119.4
C22—C21—H21121.3C51—C55—C54118.0 (4)
C25—C21—H21121.3C51—C55—H55121.0
C23—C22—C21121.1 (3)C54—C55—H55121.0
C23—C22—N2120.1 (3)F3—B—F2110.0 (5)
C21—C22—N2118.7 (3)F3—B—F1111.0 (4)
C22—C23—C24119.9 (4)F2—B—F1109.7 (4)
C22—C23—H23120.1F3—B—F4108.6 (6)
C24—C23—H23120.1F2—B—F4108.2 (5)
C26—C24—C23119.3 (4)F1—B—F4109.2 (5)
C22—N2—N7—C11177.3 (3)C31—C34—C35—C331.5 (6)
Ru1—N2—N7—C112.0 (5)C32—C33—C35—C341.1 (7)
C12—N1—C11—C131.3 (6)C42—N4—C41—C440.4 (5)
Ru1—N1—C11—C13172.7 (3)Ru1—N4—C41—C44177.4 (2)
C12—N1—C11—N7179.6 (4)C42—N4—C41—C51179.8 (3)
Ru1—N1—C11—N76.4 (4)Ru1—N4—C41—C512.0 (3)
N2—N7—C11—N15.5 (5)C41—N4—C42—C450.7 (5)
N2—N7—C11—C13173.6 (4)Ru1—N4—C42—C45176.7 (3)
C11—N1—C12—C141.2 (6)N4—C41—C44—C430.4 (5)
Ru1—N1—C12—C14171.8 (3)C51—C41—C44—C43179.0 (3)
N1—C11—C13—C150.1 (6)C45—C43—C44—C410.8 (6)
N7—C11—C13—C15179.2 (4)N4—C42—C45—C430.2 (6)
N1—C12—C14—C150.1 (7)C44—C43—C45—C420.5 (7)
C11—C13—C15—C141.3 (7)C52—N5—C51—C552.2 (5)
C12—C14—C15—C131.4 (7)Ru1—N5—C51—C55174.9 (2)
C25—C21—C22—C231.9 (5)C52—N5—C51—C41177.8 (3)
C25—C21—C22—N2180.0 (3)Ru1—N5—C51—C415.2 (4)
N7—N2—C22—C23140.6 (4)N4—C41—C51—N54.6 (4)
Ru1—N2—C22—C2344.5 (5)C44—C41—C51—N5174.8 (3)
N7—N2—C22—C2137.5 (5)N4—C41—C51—C55175.5 (3)
Ru1—N2—C22—C21137.5 (3)C44—C41—C51—C555.1 (5)
C21—C22—C23—C240.7 (6)C51—N5—C52—C533.6 (5)
N2—C22—C23—C24178.8 (4)Ru1—N5—C52—C53176.2 (2)
C22—C23—C24—C260.8 (7)C51—N5—C52—C31173.5 (3)
C22—C21—C25—C261.7 (6)Ru1—N5—C52—C310.9 (4)
C21—C25—C26—C240.3 (7)N3—C31—C52—N51.3 (4)
C23—C24—C26—C251.0 (7)C34—C31—C52—N5176.2 (3)
C32—N3—C31—C340.2 (5)N3—C31—C52—C53178.0 (3)
Ru1—N3—C31—C34174.8 (3)C34—C31—C52—C530.5 (5)
C32—N3—C31—C52177.7 (3)N5—C52—C53—C542.0 (5)
Ru1—N3—C31—C522.6 (4)C31—C52—C53—C54174.5 (3)
C31—N3—C32—C330.6 (7)C52—C53—C54—C550.7 (6)
Ru1—N3—C32—C33173.6 (4)N5—C51—C55—C540.5 (5)
N3—C32—C33—C350.0 (8)C41—C51—C55—C54179.4 (3)
N3—C31—C34—C350.9 (5)C53—C54—C55—C512.0 (5)
C52—C31—C34—C35176.4 (3)

Experimental details

Crystal data
Chemical formula[Ru(C11H9N3)(C15H11N3)(NO2)]BF4
Mr650.37
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)9.2347 (13), 9.6814 (13), 14.588 (2)
β (°) 95.948 (2)
V3)1297.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.788, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
7966, 4727, 4484
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.01
No. of reflections4727
No. of parameters370
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34
Absolute structureFlack (1983)
Absolute structure parameter0.06 (2)

Computer programs: SMART (Bruker, 1999), SMART, SHELXTL (Bruker, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
Ru1—N51.982 (3)Ru1—N32.082 (4)
Ru1—N22.036 (4)B—F31.334 (6)
Ru1—N12.063 (4)B—F21.342 (5)
Ru1—N62.066 (3)B—F11.362 (6)
Ru1—N42.074 (4)B—F41.367 (8)
N5—Ru1—N2103.04 (13)N1—Ru1—N497.26 (15)
N5—Ru1—N1176.31 (17)N6—Ru1—N487.86 (12)
N2—Ru1—N175.57 (13)N5—Ru1—N379.03 (15)
N5—Ru1—N685.04 (15)N2—Ru1—N392.53 (14)
N2—Ru1—N6171.88 (14)N1—Ru1—N3104.37 (15)
N1—Ru1—N696.40 (13)N6—Ru1—N388.24 (14)
N5—Ru1—N479.38 (14)N4—Ru1—N3158.31 (11)
N2—Ru1—N494.32 (13)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds