Download citation
Download citation
link to html
An accurate method for synthesizing the instrumental line profile of high-resolution synchrotron powder diffraction instruments is presented. It is shown that the instrumental profile can be modelled by the convolution of four physical aberration functions: the equatorial intensity distribution, the monochromator and analyser transfer functions, and the axial divergence aberration function. Moreover, each equatorial aberration is related to an angle-independent function by a scale transform factor. The principles of the instrument line-profile calculation are general. They are applied in the case of the angle-dispersive powder X-ray diffraction beamline BM16 at the ESRF. The effects of each optical element on the overall instrument profile are discussed and the importance of the quality of the different optical elements of the instrument is emphasized. Finally, it is shown that the high resolution combined with the precise modelling of the instrument profile shape give access to a particle size as large as 3 µm.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds