Download citation
Download citation
link to html
Two new ZnII coordination polymers, namely, catena-poly[[dibromidozinc(II)]-[mu]-[3,6-bis­(pyridin-4-yl)phenanthrene-9,10-dione-[kappa]2N:N']], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido­[[mu]3-10-hy­droxy-3,6-bis­(pyridin-4-yl)phenanthren-9-olato-[kappa]3N:N':O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydro­thermal reaction of ZnBr2 and a 60° angular phenanthrene­dione-based linker, i.e. 3,6-bis­(pyridin-4-yl)phenanthrene-9,10-di­one, in dif­ferent solvent systems. Single-crystal analysis reveals that polymer (1) features one-dimensional zigzag chains connected by weak C-H...[pi] and [pi]-[pi] inter­actions to form a two-dimensional network. The two-dimensional networks are further stacked in an ABAB fashion along the a axis through C-H...O hydrogen bonds. Layers A and B comprise left- and right-handed helical chains, respectively. Coordination polymer (2) displays a wave-like two-dimensional layered structure with helical chains. In this compound, there are two opposite helical -Zn-HL- chains [HL is 10-hy­droxy-3,6-bis­(pyridin-4-yl)phenanthren-9-olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O-H...Br and O-H...O hydrogen-bond inter­actions to form a three-dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615022159/uk3122sup1.cif
Contains datablocks 130609dm, 121217f

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615022159/uk31221sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615022159/uk31222sup3.hkl
Contains datablock 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615022159/uk3122sup4.pdf
Supplementary material

CCDC references: 970463; 970462

Introduction top

\ The design and construction of metal–organic frameworks (MOFs) is still a highly active research area because of the intriguing architectures and topologies of these compounds, as well as their potential applications in molecular magnetism (Clérac et al., 2002; Lloret et al., 1998; Humphrey & Wood, 2004; Galet et al., 2006), catalysis (Fujita et al.,1994; Lee et al., 2002; Merlau et al., 2001), gas sorption (Lin et al., 2007; Mueller et al., 2006; Koh et al., 2008), optical devices (Evans et al., 2002; Binnemans et al., 2009; Allendorf et al., 2009; Henry et al., 2011), and so on (Harbuzaru et al., 2008). In order to synthesize new MOFs with inter­esting compositions and topologies, judicious selection of suitable organic ligands has been one of the key factors (Stang & Olenyuk, 2007; Kim et al., 2007; Ono et al., 2009). Among various organic ligands, bi­pyridine and its bridging derivatives have been the most useful and efficient linkers to generate discrete supra­molecules or coordination polymers (Barnett & Champness, 2003; Kitagawa et al., 2004). Compared with previously reported linear and bent bi­pyridyl ligands, phenanthrene-9,10-dione (PQ) bridged bi­pyridine has its distinguishing features because it contains two neighbouring carbonyl units in an keto–enol tautomeric equilibrium. Thus, this ligand incorporates both pyridyl and hy­droxy as donor groups [see (a) in Scheme 1]. Additionally, this new type of organic ligand contains a rigid conjugated bridging linker phenanthrene, which provides two nitro­gen donors disposed at a 60° angle [see (b) in Scheme 1]. As we know, 60° angular organic ligand provides necessary components for construction of triangular assemblies with linear metal centres. A limited number of such species have been reported (Romero et al., 1996; Kryschenko et al., 2003). To the best of our knowledge, the coordination chemistry of phenanthrene­dione-bridged bi­pyridine has been almost unexplored to date.

We report here the synthesis of such a rigid mutidentate ligand. We have initially explored the coordination chemistry of this new ligand by examining its reactions with ZnBr2 and synthesized two ZnII coordination polymers based on 3,6-bis­(pyridin-4-yl)phenanthrene-9,10-dione (L) in different solvent systems. These compounds are catena-poly[zinc(II)-µ-[3,6-bis­(pyridin-4-yl)phenanthrene-9,10-dione]\ -κ2N:N'], [ZnBr2(L)]n, (1), and poly[[bromido[µ3-10-hy­droxy-3,6-bis­(pyridin-4-yl)phenanthren-9-olato-\ κ3N:N':O9]zinc(II)] hemihydrate], {[ZnBr(HL)].0.5H2O}n, (2). The coordination polymers show a one-dimensional helical chain in (1) and a two-dimensional wave-like net structure in (2), in which the ligand adopts bi- and tridentate coordination modes, respectively (see Scheme 2). Furthermore, weak C—H···π inter­actions and X—H···O (X = C, Br or O) hydrogen bonds play an important role in the construction of polymers (1) and (2).

Experimental top

IR samples were prepared as KBr pellets and the spectra were obtained in the 400–4000 cm-1 range using a PerkinElmer 1600 FT–IR spectrometer. Elemental analyses were performed on a PerkinElmer model 2400 analyzer. 1H NMR data were collected using an AV-300 spectrometer. Chemical shifts are reported in δ relative to tetra­methyl­silane (TMS). Thermogravimetric analyses were carried out using a PerkinElmer TA Instrument under flowing nitro­gen at a heating rate of 10 K min-1.

Synthesis and crystallization top

Preparation of 3,6-bis­(pyridin-4-yl)phenanthrene-9,10-dione (L) top

The precursor 3,6-di­bromo-9,10-di­meth­oxy­phenanthrene was synthesized according to the literature procedure of Boden et al. (2006). The key inter­mediate compound 3,6-bis­(pyridin-4-yl)-9,10-di­meth­oxy­phenanthrene (S) was synthesized by the classic Suzuki coupling reaction from the precursor. IR (KBr pellet, cm-1): 3031 (w), 2933 (w), 2838 (w), 1594 (s), 1447 (m), 1318 (s), 1241 (m), 1121 (m), 1075 (s), 1044 (m), 988 (m), 812 (s). 1H NMR (300 MHz, DMSO-d6, 298 K, TMS): δ 9.38 (s, 2H, Ar—H), 8.74 (d, 4H, Py—Hα), 8.33 (d, 2H, Ar—H), 8.14 (d, 2H, Ar—H), 8.04 (d, 4H, Py—Hβ), 4.08 (s, 6H, CH3).

Upon oxidation with cerium (IV) ammonium nitrate (CAN), the meth­oxy groups in (S) were cleaved and 3,6-bis­(pyridin-4-yl)phenanthrene-9,10-quinone (L) were obtained. IR (KBr pellet, cm-1): 3023 (w), 1667 (s), 1594 (s), 1385 (m), 1311 (m), 819 (s). 1H NMR (300 MHz, DMSO-d6, 298 K, TMS): δ 8.84 (s, 2H, Ar—H), 8.77 (d, 4H, Py—Hα), 8.19 (d, 2H, Ar—H), 7.98 (n, 6H, Ar—H + Py—Hβ).

Preparation of (1) top

A mixture of ZnBr2 (8 mg, 0.035 mmol), L (2 mg, 0.005 mmol) and water/MeOH (3 ml, 20:1 v/v) was sealed in a 1 cm diameter glass tube. The mixture was heated at 423 K for 3 d and then cooled to room temperature at a rate of 5 K h-1. Yellow block-shaped crystals were obtained in 55% yield (based on L). IR (KBr pellet, cm-1): 3023 (w), 1678 (s), 1602 (vs), 1384 (m), 832 (s). Analysis calculated for C24H14Br2N2O2Zn: C 49.06, H 2.40 N 4.77%; found: C 49.22, H 2.01, N 4.64%.

Preparation of (2) top

A mixture of ZnBr2 (8 mg, 0.035 mmol), L (2 mg, 0.005 mmol) and water/EtOH (3 ml, 20:1 v/v) was sealed in a 1 cm diameter glass tube. The mixture was heated at 423 K for 3 d and then cooled to room temperature at a rate of 5 K h-1. A very small amount of deep-red crystals of (2) were observed. IR (KBr pellet, cm-1): 3023 (w), 1062 (s), 1579 (s), 1411 (vs), 1384 (vs), 1126 (m), 1031 (s), 814 (s). No other characterization was made for (2) due to the low yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Suitable single crystals of (1) and (3) were selected and mounted in air onto thin glass fibers. [Please provide details of H-atom refinement for the title compounds.]

IR analysis top

The IR spectra of L, (1) and (2) are similar (see Figs. S1ac in the Supporting information). The absorption bands in the region 3600–3200 cm-1 indicate the presence of –OH groups and/or lattice water molecules. The bands at around 3050 and 3020 cm-1 can be ascribed to C—H stretching vibrations of the pyridine and benzene ring. The feature at around 1600 and 1580 cm-1 is associated with the presence of pyridine ring and benzene ring. For L and (1), the bands at 1667 and 1678 cm-1 indicate the presence of carbonyl groups. For (2), the characteristic peaks for carbonyl stretch disappeared, and the new peaks at 1031 cm-1 can be ascribed to C—O stretching vibrations, which further indicate the presence of –OH. These findings are consistent with the crystal structures. The bands at around 810 cm-1 can be ascribed to the stretching vibrations of para-substituted benzene.

Results and discussion top

Structure analysis of (1) top

The X-ray single-crystal analysis revealed that compound (1) crystallizes in the monoclinic P2/n space group. As illustrated in Fig. 1, the Zn1 atom is just on the twofold axis of rotation. The ZnII centres in (1) adopt tetra­hedral coordination geometry. Each ZnII centre coordinates to two Br atoms and two pyridyl N atoms from two ligands (Table 2). Here, the original o-quinone unit is remained as evidenced by the crystallographic data. The C12—C12ii bond length (Table 2) indicates a C—C single bond (1.54 Å; reference?), and the C12—O2 bond length indicates a classic CO double bond (1.215 Å; reference?). The two benzene rings of the phenanthrene­dione units are not coplanar, with a dihedral angle between their planes of 20.55 (2)°. The dihedral angle between the planes of the N1-containing pyridyl ring and the adjacent C6-containing benzene ring is 45.09 (2)°.

In (1), L acts as a V-shaped bidentate ligand to bind ZnII ions into a neutral one-dimensional zigzag chain and these chains are arranged in parallel along the b axis (Fig. 2). There are a series of weak C—H ···π [C8—H8···Cg3 = 3.738 (1) Å; Table 2] inter­actions between adjacent chains. C—H ···π inter­actions, together with weak ππ inter­actions between N1-containing pyridyl rings [the angle between the ring planes is 69° and the distance between the ring centroids is 4.734 (3) Å] link the parallel chains to form two-dimensional network. All ZnII atoms are located on a linear line. The shortest distance between ZnII atoms on the same chain is 13.81 (8) Å. Two adjacent two-dimensional networks are further connected by two sets of C2—H2···O2 and C11—H11···O2 hydrogen bonds to form a three-dimensional framework (Fig. 3 and Table 3).

As a further insight into the structure, two adjacent layers comprise two opposite types of helical chains, left-handed chains in layer A and right-handed chains in layer B, respectively (Fig. 4). The whole structure of coordination polymer (1) displays an ABAB stacking motif along the a axis (Fig. 5).

Structure analysis of (2) top

Coordination polymer (2) crystallizes in the monoclinic P21/c space group. The ZnII centres adopt tetra­hedral coordination geometries. Each ZnII centre coordinates to one Br atom, two pyridyl N atoms from two 10-hy­droxy-3,6-bis­(pyridin-4-yl)phenanthren-9-olate (HL) ligands and one O atom from a third HL ligand (Fig. 6). The Zn—O and Zn—N bond lengths (Table 4) are consistent with those in reported four-coordinated ZnII complexes with O- and N-atom donors (Chen et al. 2010). In (2), HL acts as a tridentate ligand. Here, the original o-quinone unit is transformed to o-di­hydroxy which is clearly evidenced by the crystallographic data. For example, the C12—C13 and C36—C37 bond lengths fall into the range of CC double bonds (1.33 Å; reference?), whereas the C12—O2/C13—O4 and C36—O1/C37—O3 bond lengths are significantly longer than the classic CO bond length (1.215 Å; reference?). Furthermore, the phenanthrene unit is nearly coplanar: the dihedral angle between adjacent rings are 4.53 (19) (for C6–C11 and C9–C15) and 8.08 (18)° (for C12–C15 and C14–C19) for one unit, and 2.99 (18) (for C30–C35 and C36–C39) and 6.86 (18)° (for C33–C39 and C38–C43) for the other, compared with the phenanthrene­dione unit in polymer (1). The N4-containing pyridyl ring is not coplanar with the phenanthrene unit, exhibiting a dihedral angle of 29.49 (9)°, while the N3-containing pyridyl ring is nearly coplanar with the phenanthrene unit, with a dihedral angle of 4.9 (2)°.

As a further insight into the structure of (2), two 60° angular ligands are connected by ZnII to form a one-dimensional helical –Zn–HL– chain running along the b axis (Figs. 7a and 7b). Adjacent helical chains are further connected by Zn—O bonds to form two-dimensional networks along the crystallographic ab plane (Figs. 7c and 7d). In this compound, there are two opposite helical chains in adjacent layers. Layer A is composed of right-handed helical –Zn–HL– chains and the adjacent layer B is composed of left-handed helical –Zn–HL– chains. The undulating layers are packed along the [001] direction in the sequence ABAB. All the ZnII atoms are located at the wave crest and trough. It is noteworthy that there are guest water molecules in the lattice and the wave-like nets are further connected through numerous inter­layer hydrogen-bonding inter­actions between lattice H2O and coordinated Br atoms, forming a three-dimensional structure (Fig. 7e and Table 5). Besides the O—H···Br hydrogen bonds, there are also O—H···O hydrogen bonds in the structure of (2) (Fig. 8 and Table 5).

Powder X-ray diffraction and TG analysis top

Simulated and experimental powder X-ray diffraction (PXRD) patterns of (1) are shown in Fig. S2 of the Supporting information. All the peaks in the recorded curves match approximately those in the simulated curves generated from single-crystal diffraction data, which confirms the phase purity of the as-prepared products. All of the coordination polymers are stable under ambient conditions. Thermogravimetric (TG) analyses were performed to assess the thermal stability of complex (1). Polymer (1) was stable up to 483 K, at which temperature it started to decompose. (Fig. S3 in the Supporting information).

Conclusions top

In summary, we have successfully synthesized and characterized two ZnII coordination polymers based on 3,6-bis­(pyridin-4-yl)phenanthrene-9,10-dione. They show one-dimensional zigzag chain and two-dimensional wave-like net structures. A variety of weak inter­actions, including C—H···O C—H···π hydrogen bonds and ππ stacking inter­actions, occur in the structure of (1), while numerous weak O—H···Br, O—H···O and C—H···O hydrogen bonds are observed in the structure of (2). We conclude that the weak inter­actions play a remarkable role in establishing the packing of these two polymers. Both (1) and (2) are packed in an ABAB fashion, and layers A and B are composed of left- and right-handed helical chains, respectively. The angular phenanthrene ligand displays diverse coordination modes, exhibiting N:N'-bidentate and N:N':O-tridentate ligands in complexes (1) and (2), respectively. Moreover, the thermal stabilities of (1) was also discussed.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the ??% probability level and H atoms have been omitted for clarity. [Please provide probability level]
[Figure 2] Fig. 2. C—H ···π interactions between the chains to form the two-dimensional network in (1).
[Figure 3] Fig. 3. A presentation of the C—H···O hydrogen bonds between layers in (1).
[Figure 4] Fig. 4. A view of the left- (red) and right-handed (blue) helical chains in (1).
[Figure 5] Fig. 5. The ABAB stacking pattern along the a axis of (1).
[Figure 6] Fig. 6. The molecular structure of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the ??% probability level and H atoms have been omitted for clarity. [Please provide probability level]
[Figure 7] Fig. 7. (a)/(b) The right- and left-hand helical chains in the adjacent layers; (c)/(d) the different two-dimensional networks of (2) including two types of helical chains; (e) the packing of the undulating layers along the [001] direction in the sequence ABAB and a presentation of the hydrogen-bond interactions between two adjacent wave-like nets A and B.
[Figure 8] Fig. 8. The presentation of O···H—O (violet) and Br···H—O (pink) hydrogen bonds in (2).
(130609dm) catena-Poly[[dibromidozinc(II)]-µ-[3,6-bis(pyridin-4-yl)phenanthrene-9,10-dione-κ2N:N']] top
Crystal data top
[ZnBr2(C24H14N2O2)]F(000) = 576
Mr = 587.56Dx = 1.836 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 10.169 (3) ÅCell parameters from 1427 reflections
b = 7.858 (2) Åθ = 2.6–23.3°
c = 13.818 (4) ŵ = 4.94 mm1
β = 105.757 (4)°T = 298 K
V = 1062.7 (6) Å3Block, yellow
Z = 20.24 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1982 independent reflections
Radiation source: fine-focus sealed tube1450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.384, Tmax = 0.566k = 79
5333 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0198P)2]
where P = (Fo2 + 2Fc2)/3
1982 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[ZnBr2(C24H14N2O2)]V = 1062.7 (6) Å3
Mr = 587.56Z = 2
Monoclinic, P2/nMo Kα radiation
a = 10.169 (3) ŵ = 4.94 mm1
b = 7.858 (2) ÅT = 298 K
c = 13.818 (4) Å0.24 × 0.15 × 0.13 mm
β = 105.757 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1982 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1450 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.566Rint = 0.037
5333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.85Δρmax = 0.42 e Å3
1982 reflectionsΔρmin = 0.39 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54664 (4)0.59811 (5)0.68437 (3)0.05252 (15)
C10.6232 (3)0.1654 (5)0.8316 (2)0.0396 (9)
H10.55280.18860.77430.048*
C20.6109 (3)0.0270 (5)0.8883 (2)0.0399 (9)
H20.53370.04160.86900.048*
C30.7135 (3)0.0115 (4)0.9750 (2)0.0312 (8)
C40.8236 (3)0.0994 (4)1.0000 (2)0.0358 (9)
H40.89330.08221.05860.043*
C50.8299 (3)0.2350 (4)0.9383 (2)0.0345 (8)
H50.90590.30590.95600.041*
C60.7054 (3)0.1640 (4)1.0346 (2)0.0313 (8)
C70.6639 (3)0.3170 (4)0.9839 (2)0.0389 (9)
H70.63760.31940.91400.047*
C80.6621 (3)0.4637 (4)1.0375 (2)0.0377 (9)
H80.63550.56551.00340.045*
C90.6996 (3)0.4618 (4)1.1421 (2)0.0286 (8)
C100.7342 (3)0.3087 (4)1.1942 (2)0.0264 (7)
C110.7383 (3)0.1629 (4)1.1392 (2)0.0296 (8)
H110.76390.06081.17310.035*
C120.7112 (3)0.6268 (4)1.1947 (2)0.0354 (8)
N10.7321 (3)0.2695 (3)0.85439 (18)0.0309 (6)
O20.6677 (2)0.7608 (3)1.15359 (18)0.0494 (7)
Zn10.75000.44861 (7)0.75000.03071 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0436 (2)0.0656 (3)0.0454 (2)0.0191 (2)0.00695 (18)0.0041 (2)
C10.034 (2)0.054 (3)0.0279 (19)0.0034 (18)0.0020 (16)0.0076 (17)
C20.035 (2)0.045 (2)0.037 (2)0.0121 (18)0.0056 (18)0.0031 (18)
C30.034 (2)0.035 (2)0.0272 (19)0.0030 (16)0.0116 (16)0.0006 (15)
C40.036 (2)0.042 (2)0.0265 (19)0.0030 (17)0.0039 (16)0.0014 (16)
C50.0356 (19)0.035 (2)0.0317 (19)0.0077 (16)0.0077 (16)0.0013 (16)
C60.036 (2)0.027 (2)0.0326 (19)0.0015 (16)0.0113 (16)0.0017 (15)
C70.049 (2)0.038 (2)0.0291 (19)0.0018 (18)0.0104 (17)0.0044 (17)
C80.043 (2)0.029 (2)0.043 (2)0.0035 (17)0.0146 (18)0.0146 (17)
C90.0278 (19)0.0245 (19)0.0353 (19)0.0006 (15)0.0115 (15)0.0003 (15)
C100.0303 (18)0.0223 (19)0.0284 (17)0.0019 (15)0.0111 (15)0.0016 (14)
C110.0354 (19)0.0225 (19)0.0308 (19)0.0016 (15)0.0091 (15)0.0030 (15)
C120.035 (2)0.030 (2)0.047 (2)0.0014 (16)0.0199 (17)0.0073 (17)
N10.0324 (16)0.0348 (17)0.0256 (15)0.0026 (13)0.0082 (13)0.0027 (12)
O20.0603 (17)0.0255 (15)0.0649 (17)0.0057 (13)0.0213 (14)0.0096 (13)
Zn10.0333 (3)0.0322 (3)0.0264 (3)0.0000.0077 (2)0.000
Geometric parameters (Å, º) top
Br1—Zn12.3367 (7)C7—C81.373 (4)
C1—N11.344 (4)C7—H70.9300
C1—C21.366 (4)C8—C91.391 (4)
C1—H10.9300C8—H80.9300
C2—C31.391 (4)C9—C101.398 (4)
C2—H20.9300C9—C121.475 (4)
C3—C41.387 (4)C10—C111.382 (4)
C3—C61.468 (4)C10—C10i1.487 (6)
C4—C51.377 (4)C11—H110.9300
C4—H40.9300C12—O21.221 (4)
C5—N11.334 (4)C12—C12i1.517 (6)
C5—H50.9300N1—Zn12.058 (3)
C6—C111.392 (4)Zn1—N1ii2.058 (3)
C6—C71.398 (4)Zn1—Br1ii2.3367 (7)
N1—C1—C2123.2 (3)C9—C8—H8119.6
N1—C1—H1118.4C8—C9—C10120.3 (3)
C2—C1—H1118.4C8—C9—C12117.8 (3)
C1—C2—C3120.2 (3)C10—C9—C12121.8 (3)
C1—C2—H2119.9C11—C10—C9118.1 (3)
C3—C2—H2119.9C11—C10—C10i122.71 (18)
C4—C3—C2116.3 (3)C9—C10—C10i119.18 (18)
C4—C3—C6122.5 (3)C10—C11—C6122.1 (3)
C2—C3—C6121.1 (3)C10—C11—H11118.9
C5—C4—C3120.1 (3)C6—C11—H11118.9
C5—C4—H4119.9O2—C12—C9123.9 (3)
C3—C4—H4119.9O2—C12—C12i119.5 (2)
N1—C5—C4123.1 (3)C9—C12—C12i116.52 (19)
N1—C5—H5118.4C5—N1—C1116.9 (3)
C4—C5—H5118.4C5—N1—Zn1124.1 (2)
C11—C6—C7118.7 (3)C1—N1—Zn1118.4 (2)
C11—C6—C3122.9 (3)N1ii—Zn1—N193.73 (15)
C7—C6—C3118.4 (3)N1ii—Zn1—Br1ii112.23 (7)
C8—C7—C6119.9 (3)N1—Zn1—Br1ii108.01 (7)
C8—C7—H7120.0N1ii—Zn1—Br1108.01 (7)
C6—C7—H7120.0N1—Zn1—Br1112.23 (7)
C7—C8—C9120.8 (3)Br1ii—Zn1—Br1119.64 (4)
C7—C8—H8119.6
N1—C1—C2—C30.5 (6)C9—C10—C11—C62.0 (5)
C1—C2—C3—C41.5 (5)C10i—C10—C11—C6178.4 (3)
C1—C2—C3—C6177.1 (3)C7—C6—C11—C101.5 (5)
C2—C3—C4—C52.5 (5)C3—C6—C11—C10178.0 (3)
C6—C3—C4—C5176.1 (3)C8—C9—C12—O213.3 (5)
C3—C4—C5—N11.5 (5)C10—C9—C12—O2171.3 (3)
C4—C3—C6—C1144.6 (5)C8—C9—C12—C12i163.5 (3)
C2—C3—C6—C11136.9 (3)C10—C9—C12—C12i12.0 (5)
C4—C3—C6—C7134.8 (3)C4—C5—N1—C10.6 (5)
C2—C3—C6—C743.7 (5)C4—C5—N1—Zn1170.7 (2)
C11—C6—C7—C82.8 (5)C2—C1—N1—C51.6 (5)
C3—C6—C7—C8176.6 (3)C2—C1—N1—Zn1170.2 (3)
C6—C7—C8—C90.8 (5)C5—N1—Zn1—N1ii107.4 (3)
C7—C8—C9—C102.7 (5)C1—N1—Zn1—N1ii63.8 (2)
C7—C8—C9—C12172.8 (3)C5—N1—Zn1—Br1ii7.4 (3)
C8—C9—C10—C114.0 (5)C1—N1—Zn1—Br1ii178.6 (2)
C12—C9—C10—C11171.3 (3)C5—N1—Zn1—Br1141.4 (2)
C8—C9—C10—C10i176.3 (3)C1—N1—Zn1—Br147.4 (3)
C12—C9—C10—C10i8.3 (5)
Symmetry codes: (i) x+3/2, y, z+5/2; (ii) x+3/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2iii0.932.523.442 (2)171
C11—H11···O2iv0.932.543.258 (2)134
C8—H8···Cg3v0.932.933.738 (1)147
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z.
(121217f) Poly[[bromido[µ3-10-hydroxy-3,6-bis(pyridin-4-yl)phenanthren-9-olato-κ3N:N':O9]zinc(II)] hemihydrate] top
Crystal data top
[ZnBr(C24H15N2O2)]·0.5H2OF(000) = 2072
Mr = 517.67Dx = 1.745 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.138 (9) ÅCell parameters from 1786 reflections
b = 10.921 (4) Åθ = 2.3–20.9°
c = 16.490 (7) ŵ = 3.30 mm1
β = 108.931 (7)°T = 298 K
V = 3941 (3) Å3Plan, red
Z = 80.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7314 independent reflections
Radiation source: fine-focus sealed tube3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
phi and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2817
Tmin = 0.655, Tmax = 0.734k = 1312
20300 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.001P)2]
where P = (Fo2 + 2Fc2)/3
7314 reflections(Δ/σ)max = 0.002
552 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[ZnBr(C24H15N2O2)]·0.5H2OV = 3941 (3) Å3
Mr = 517.67Z = 8
Monoclinic, P21/cMo Kα radiation
a = 23.138 (9) ŵ = 3.30 mm1
b = 10.921 (4) ÅT = 298 K
c = 16.490 (7) Å0.14 × 0.12 × 0.10 mm
β = 108.931 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7314 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3188 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.734Rint = 0.095
20300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.82Δρmax = 0.79 e Å3
7314 reflectionsΔρmin = 0.61 e Å3
552 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78429 (3)0.85690 (7)0.56283 (5)0.0626 (2)
Br21.27093 (3)0.75694 (8)1.03289 (5)0.0701 (3)
C10.8874 (2)0.7625 (5)0.7701 (4)0.0342 (16)
H10.88900.77970.71560.041*
C20.9409 (2)0.7337 (5)0.8337 (4)0.0273 (15)
H20.97720.72880.82110.033*
C30.9410 (2)0.7117 (5)0.9162 (4)0.0239 (14)
C40.8846 (2)0.7200 (5)0.9280 (4)0.0391 (17)
H40.88230.70780.98270.047*
C50.8328 (3)0.7452 (5)0.8631 (4)0.0413 (18)
H50.79580.74750.87400.050*
C60.9970 (2)0.6737 (5)0.9872 (4)0.0246 (15)
C71.0546 (2)0.6706 (5)0.9751 (4)0.0297 (16)
H71.05810.69350.92260.036*
C81.1056 (2)0.6338 (5)1.0406 (4)0.0303 (16)
H81.14300.62981.03080.036*
C91.1028 (2)0.6023 (5)1.1216 (4)0.0236 (15)
C101.0450 (2)0.5998 (5)1.1328 (4)0.0256 (15)
C110.9937 (2)0.6372 (5)1.0651 (4)0.0270 (15)
H110.95580.63721.07340.032*
C121.1575 (3)0.5752 (5)1.1920 (4)0.0277 (16)
C131.1516 (3)0.5439 (5)1.2686 (4)0.0311 (17)
C141.0938 (2)0.5303 (5)1.2816 (4)0.0261 (16)
C151.0397 (3)0.5552 (5)1.2123 (4)0.0246 (15)
C160.9842 (2)0.5260 (5)1.2247 (4)0.0312 (17)
H160.94850.54121.17950.037*
C170.9785 (2)0.4771 (5)1.2976 (4)0.0265 (16)
C181.0328 (2)0.4587 (5)1.3671 (4)0.0377 (18)
H181.03090.42861.41890.045*
C191.0884 (3)0.4850 (5)1.3581 (4)0.0352 (17)
H191.12370.47241.40450.042*
C200.9191 (3)0.4410 (5)1.3039 (4)0.0270 (16)
C210.9062 (3)0.4431 (5)1.3803 (4)0.0336 (17)
H210.93540.47251.42960.040*
C220.8510 (3)0.4026 (5)1.3846 (4)0.0357 (17)
H220.84360.40771.43670.043*
C230.8193 (3)0.3565 (6)1.2427 (4)0.0425 (18)
H230.78930.32711.19420.051*
C240.8731 (3)0.3979 (5)1.2337 (4)0.0400 (18)
H240.87830.39671.18020.048*
C250.3852 (2)0.7366 (5)0.2506 (4)0.0342 (16)
H250.38630.75490.19600.041*
C260.4400 (2)0.7221 (5)0.3160 (4)0.0303 (16)
H260.47660.72850.30430.036*
C270.4407 (2)0.6983 (5)0.3979 (4)0.0301 (16)
C280.3835 (2)0.6893 (5)0.4101 (4)0.046 (2)
H280.38120.67480.46460.055*
C290.3309 (3)0.7020 (5)0.3411 (4)0.0431 (19)
H290.29350.69350.35030.052*
C300.4985 (2)0.6796 (5)0.4720 (4)0.0311 (17)
C310.5561 (2)0.6922 (5)0.4623 (4)0.0359 (17)
H310.55910.71650.40980.043*
C320.6078 (2)0.6692 (5)0.5293 (4)0.0379 (18)
H320.64560.67570.52100.046*
C330.6056 (2)0.6358 (5)0.6106 (4)0.0278 (15)
C340.5477 (3)0.6222 (5)0.6208 (4)0.0278 (16)
C350.4957 (2)0.6461 (5)0.5510 (4)0.0322 (16)
H350.45760.63900.55810.039*
C360.6610 (3)0.6176 (5)0.6828 (4)0.0313 (17)
C370.6556 (3)0.5888 (5)0.7603 (4)0.0293 (16)
C380.5988 (3)0.5661 (5)0.7726 (4)0.0287 (16)
C390.5436 (2)0.5809 (5)0.7020 (4)0.0258 (15)
C400.4890 (2)0.5463 (5)0.7146 (4)0.0310 (16)
H400.45300.55460.66870.037*
C410.4849 (3)0.5014 (5)0.7890 (4)0.0311 (16)
C420.5398 (3)0.4901 (5)0.8593 (4)0.0387 (18)
H420.53870.46090.91180.046*
C430.5945 (3)0.5223 (5)0.8494 (4)0.0366 (18)
H430.63010.51450.89600.044*
C440.4247 (3)0.4670 (5)0.7960 (4)0.0324 (17)
C450.4106 (3)0.4726 (5)0.8707 (4)0.0373 (18)
H450.44000.49970.92060.045*
C460.3539 (3)0.4390 (5)0.8728 (4)0.0398 (18)
H460.34600.44560.92450.048*
C470.3224 (3)0.3940 (5)0.7323 (4)0.0406 (18)
H470.29200.36780.68320.049*
C480.3777 (3)0.4264 (5)0.7247 (4)0.0431 (19)
H480.38380.42120.67170.052*
N10.83355 (19)0.7672 (4)0.7827 (3)0.0306 (13)
N20.8076 (2)0.3560 (4)1.3167 (3)0.0363 (14)
N30.33095 (19)0.7259 (4)0.2616 (3)0.0326 (13)
N40.3094 (2)0.3972 (4)0.8045 (3)0.0359 (14)
O10.71546 (15)0.6319 (3)0.6718 (2)0.0386 (11)
O21.21235 (15)0.5794 (3)1.1819 (2)0.0338 (11)
O30.70554 (16)0.5765 (4)0.8315 (3)0.0476 (13)
H30.73230.53910.81930.071*
O41.20136 (15)0.5214 (4)1.3402 (2)0.0435 (12)
H4A1.22920.49301.32560.065*
O50.7500 (2)0.5737 (5)0.4679 (3)0.130 (2)
H5A0.76740.62660.50580.195*
H5B0.74210.50390.48450.195*
Zn10.75681 (3)0.78857 (6)0.67976 (4)0.0360 (2)
Zn21.25180 (3)0.72904 (7)1.16239 (5)0.0365 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0628 (5)0.0859 (7)0.0460 (5)0.0056 (4)0.0270 (4)0.0164 (5)
Br20.0673 (5)0.1042 (7)0.0486 (5)0.0136 (5)0.0323 (4)0.0210 (5)
C10.036 (4)0.038 (4)0.030 (4)0.002 (3)0.012 (3)0.004 (3)
C20.019 (3)0.035 (4)0.027 (4)0.002 (3)0.005 (3)0.003 (3)
C30.020 (3)0.018 (4)0.029 (4)0.003 (3)0.003 (3)0.000 (3)
C40.023 (4)0.062 (5)0.032 (4)0.008 (3)0.007 (3)0.004 (4)
C50.033 (4)0.050 (5)0.042 (5)0.011 (3)0.014 (3)0.014 (4)
C60.020 (3)0.016 (4)0.036 (4)0.003 (3)0.007 (3)0.000 (3)
C70.025 (4)0.039 (4)0.023 (4)0.003 (3)0.005 (3)0.002 (3)
C80.015 (3)0.044 (4)0.033 (4)0.001 (3)0.010 (3)0.002 (4)
C90.022 (4)0.018 (4)0.027 (4)0.005 (3)0.002 (3)0.001 (3)
C100.021 (4)0.021 (4)0.030 (4)0.001 (3)0.002 (3)0.002 (3)
C110.019 (3)0.028 (4)0.037 (4)0.001 (3)0.013 (3)0.005 (3)
C120.018 (4)0.027 (4)0.038 (5)0.005 (3)0.009 (3)0.001 (3)
C130.013 (4)0.035 (4)0.039 (5)0.007 (3)0.002 (3)0.004 (4)
C140.022 (4)0.025 (4)0.031 (4)0.004 (3)0.008 (3)0.001 (3)
C150.023 (4)0.020 (4)0.031 (4)0.000 (3)0.009 (3)0.001 (3)
C160.023 (4)0.034 (4)0.032 (5)0.005 (3)0.003 (3)0.005 (3)
C170.023 (4)0.027 (4)0.032 (4)0.001 (3)0.011 (3)0.001 (3)
C180.033 (4)0.046 (5)0.036 (5)0.002 (3)0.014 (4)0.002 (4)
C190.021 (4)0.049 (5)0.029 (4)0.003 (3)0.001 (3)0.004 (4)
C200.022 (4)0.026 (4)0.033 (4)0.000 (3)0.008 (3)0.004 (3)
C210.029 (4)0.040 (4)0.030 (5)0.014 (3)0.007 (3)0.010 (3)
C220.038 (4)0.035 (4)0.040 (5)0.007 (3)0.021 (4)0.004 (4)
C230.031 (4)0.054 (5)0.037 (5)0.009 (3)0.004 (4)0.004 (4)
C240.038 (4)0.051 (5)0.038 (5)0.012 (3)0.021 (4)0.004 (4)
C250.025 (4)0.039 (4)0.039 (4)0.003 (3)0.011 (3)0.011 (3)
C260.019 (3)0.035 (4)0.041 (4)0.001 (3)0.016 (3)0.003 (4)
C270.021 (3)0.031 (4)0.035 (4)0.002 (3)0.005 (3)0.000 (3)
C280.026 (4)0.076 (6)0.031 (4)0.008 (3)0.002 (3)0.005 (4)
C290.023 (4)0.055 (5)0.055 (5)0.003 (3)0.016 (4)0.013 (4)
C300.023 (4)0.030 (4)0.034 (4)0.003 (3)0.001 (3)0.005 (3)
C310.027 (4)0.046 (5)0.035 (4)0.007 (3)0.010 (3)0.002 (3)
C320.013 (3)0.053 (5)0.050 (5)0.001 (3)0.013 (3)0.003 (4)
C330.021 (4)0.025 (4)0.037 (5)0.000 (3)0.010 (3)0.005 (3)
C340.026 (4)0.024 (4)0.031 (4)0.002 (3)0.006 (3)0.001 (3)
C350.016 (3)0.036 (4)0.047 (5)0.001 (3)0.014 (3)0.010 (4)
C360.019 (4)0.032 (4)0.044 (5)0.003 (3)0.012 (3)0.003 (4)
C370.013 (3)0.033 (4)0.038 (5)0.002 (3)0.003 (3)0.003 (3)
C380.026 (4)0.020 (4)0.037 (5)0.009 (3)0.004 (3)0.002 (3)
C390.016 (3)0.026 (4)0.035 (4)0.000 (3)0.008 (3)0.000 (3)
C400.022 (4)0.030 (4)0.035 (4)0.001 (3)0.002 (3)0.005 (3)
C410.033 (4)0.022 (4)0.039 (5)0.004 (3)0.013 (4)0.002 (3)
C420.051 (5)0.040 (5)0.026 (4)0.004 (4)0.013 (4)0.001 (3)
C430.029 (4)0.041 (5)0.037 (5)0.007 (3)0.006 (3)0.003 (4)
C440.040 (4)0.022 (4)0.037 (5)0.001 (3)0.015 (4)0.003 (3)
C450.036 (4)0.047 (5)0.025 (4)0.013 (3)0.005 (3)0.008 (4)
C460.046 (5)0.044 (5)0.034 (5)0.009 (4)0.020 (4)0.009 (4)
C470.030 (4)0.050 (5)0.039 (5)0.011 (3)0.007 (4)0.007 (4)
C480.044 (4)0.051 (5)0.037 (5)0.024 (4)0.017 (4)0.002 (4)
N10.021 (3)0.034 (3)0.033 (3)0.003 (2)0.004 (2)0.001 (3)
N20.032 (3)0.037 (4)0.038 (4)0.003 (3)0.007 (3)0.004 (3)
N30.023 (3)0.041 (4)0.032 (3)0.005 (3)0.007 (3)0.006 (3)
N40.032 (3)0.047 (4)0.030 (4)0.004 (3)0.012 (3)0.002 (3)
O10.015 (2)0.044 (3)0.054 (3)0.001 (2)0.007 (2)0.000 (2)
O20.017 (2)0.045 (3)0.039 (3)0.004 (2)0.009 (2)0.008 (2)
O30.026 (3)0.073 (4)0.037 (3)0.011 (2)0.000 (2)0.011 (3)
O40.020 (2)0.067 (4)0.040 (3)0.009 (2)0.006 (2)0.001 (3)
O50.200 (6)0.112 (5)0.073 (5)0.020 (4)0.037 (4)0.021 (4)
Zn10.0245 (4)0.0489 (6)0.0336 (5)0.0045 (4)0.0080 (3)0.0029 (4)
Zn20.0227 (4)0.0512 (5)0.0354 (5)0.0038 (4)0.0092 (3)0.0048 (4)
Geometric parameters (Å, º) top
Br1—Zn12.3398 (13)C27—C301.503 (7)
Br2—Zn22.3371 (13)C28—C291.378 (7)
C1—N11.331 (6)C28—H280.9300
C1—C21.374 (6)C29—N31.337 (7)
C1—H10.9300C29—H290.9300
C2—C31.381 (7)C30—C351.375 (7)
C2—H20.9300C30—C311.399 (7)
C3—C41.382 (6)C31—C321.363 (6)
C3—C61.495 (6)C31—H310.9300
C4—C51.352 (6)C32—C331.406 (7)
C4—H40.9300C32—H320.9300
C5—N11.353 (7)C33—C341.413 (7)
C5—H50.9300C33—C361.451 (7)
C6—C111.372 (7)C34—C351.393 (7)
C6—C71.411 (6)C34—C391.444 (7)
C7—C81.377 (6)C35—H350.9300
C7—H70.9300C36—O11.339 (6)
C8—C91.401 (7)C36—C371.361 (8)
C8—H80.9300C37—O31.361 (6)
C9—C101.408 (7)C37—C381.416 (7)
C9—C121.444 (7)C38—C431.387 (7)
C10—C111.401 (6)C38—C391.431 (7)
C10—C151.441 (7)C39—C401.398 (7)
C11—H110.9300C40—C411.353 (7)
C12—O21.334 (6)C40—H400.9300
C12—C131.357 (8)C41—C421.420 (7)
C13—O41.379 (6)C41—C441.485 (7)
C13—C141.428 (7)C42—C431.374 (7)
C14—C191.398 (7)C42—H420.9300
C14—C151.422 (7)C43—H430.9300
C15—C161.401 (7)C44—C451.372 (8)
C16—C171.360 (7)C44—C481.390 (7)
C16—H160.9300C45—C461.376 (7)
C17—C181.414 (7)C45—H450.9300
C17—C201.467 (7)C46—N41.336 (6)
C18—C191.372 (7)C46—H460.9300
C18—H180.9300C47—N41.319 (7)
C19—H190.9300C47—C481.372 (7)
C20—C241.376 (7)C47—H470.9300
C20—C211.386 (7)C48—H480.9300
C21—C221.374 (7)N2—Zn2i2.058 (5)
C21—H210.9300N3—Zn2ii2.022 (4)
C22—N21.339 (6)N4—Zn1iii2.020 (5)
C22—H220.9300Zn1—O11.943 (4)
C23—N21.333 (7)Zn2—O21.948 (4)
C23—C241.377 (7)O3—H30.8200
C23—H230.9300O4—H4A0.8200
C24—H240.9300O5—H5A0.8501
C25—N31.331 (6)O5—H5B0.8501
C25—C261.381 (6)Zn1—N12.033 (4)
C25—H250.9300Zn1—N4iv2.020 (5)
C26—C271.371 (7)Zn2—N3v2.022 (4)
C26—H260.9300Zn2—N2vi2.058 (5)
C27—C281.405 (7)
N1—C1—C2123.1 (5)C35—C30—C31118.2 (5)
N1—C1—H1118.4C35—C30—C27120.2 (6)
C2—C1—H1118.4C31—C30—C27121.5 (6)
C1—C2—C3120.4 (5)C32—C31—C30120.5 (6)
C1—C2—H2119.8C32—C31—H31119.7
C3—C2—H2119.8C30—C31—H31119.7
C2—C3—C4115.3 (5)C31—C32—C33121.8 (6)
C2—C3—C6122.9 (5)C31—C32—H32119.1
C4—C3—C6121.7 (5)C33—C32—H32119.1
C5—C4—C3122.5 (6)C32—C33—C34118.0 (5)
C5—C4—H4118.8C32—C33—C36121.5 (6)
C3—C4—H4118.8C34—C33—C36120.5 (6)
C4—C5—N1121.5 (6)C35—C34—C33118.6 (6)
C4—C5—H5119.3C35—C34—C39121.8 (6)
N1—C5—H5119.3C33—C34—C39119.5 (5)
C11—C6—C7117.9 (5)C30—C35—C34122.7 (6)
C11—C6—C3121.1 (5)C30—C35—H35118.6
C7—C6—C3121.0 (5)C34—C35—H35118.6
C8—C7—C6120.4 (6)O1—C36—C37122.0 (6)
C8—C7—H7119.8O1—C36—C33119.5 (6)
C6—C7—H7119.8C37—C36—C33118.4 (6)
C7—C8—C9121.7 (5)O3—C37—C36121.6 (6)
C7—C8—H8119.1O3—C37—C38115.2 (6)
C9—C8—H8119.1C36—C37—C38123.2 (6)
C8—C9—C10118.1 (5)C43—C38—C37122.4 (6)
C8—C9—C12121.1 (6)C43—C38—C39118.2 (6)
C10—C9—C12120.8 (6)C37—C38—C39119.3 (6)
C11—C10—C9119.0 (6)C40—C39—C38117.4 (6)
C11—C10—C15121.5 (5)C40—C39—C34123.8 (5)
C9—C10—C15119.5 (5)C38—C39—C34118.7 (6)
C6—C11—C10122.7 (5)C41—C40—C39124.4 (6)
C6—C11—H11118.6C41—C40—H40117.8
C10—C11—H11118.6C39—C40—H40117.8
O2—C12—C13120.8 (5)C40—C41—C42117.8 (6)
O2—C12—C9120.9 (6)C40—C41—C44120.4 (6)
C13—C12—C9118.2 (6)C42—C41—C44121.8 (6)
C12—C13—O4122.2 (6)C43—C42—C41119.6 (6)
C12—C13—C14123.2 (6)C43—C42—H42120.2
O4—C13—C14114.5 (6)C41—C42—H42120.2
C19—C14—C15118.6 (6)C42—C43—C38122.6 (6)
C19—C14—C13122.3 (5)C42—C43—H43118.7
C15—C14—C13118.9 (6)C38—C43—H43118.7
C16—C15—C14116.8 (6)C45—C44—C48115.2 (6)
C16—C15—C10124.2 (5)C45—C44—C41124.1 (6)
C14—C15—C10118.8 (6)C48—C44—C41120.7 (6)
C17—C16—C15125.0 (5)C44—C45—C46121.1 (6)
C17—C16—H16117.5C44—C45—H45119.4
C15—C16—H16117.5C46—C45—H45119.4
C16—C17—C18117.2 (6)N4—C46—C45123.3 (6)
C16—C17—C20122.0 (5)N4—C46—H46118.3
C18—C17—C20120.8 (6)C45—C46—H46118.3
C19—C18—C17120.0 (6)N4—C47—C48124.7 (6)
C19—C18—H18120.0N4—C47—H47117.7
C17—C18—H18120.0C48—C47—H47117.7
C18—C19—C14122.2 (5)C47—C48—C44120.0 (6)
C18—C19—H19118.9C47—C48—H48120.0
C14—C19—H19118.9C44—C48—H48120.0
C24—C20—C21115.8 (6)C1—N1—C5117.2 (5)
C24—C20—C17121.3 (6)C1—N1—Zn1118.8 (4)
C21—C20—C17122.9 (6)C5—N1—Zn1123.6 (4)
C22—C21—C20121.3 (6)C23—N2—C22116.4 (6)
C22—C21—H21119.4C23—N2—Zn2i120.0 (4)
C20—C21—H21119.4C22—N2—Zn2i118.5 (4)
N2—C22—C21122.5 (6)C25—N3—C29116.9 (5)
N2—C22—H22118.8C25—N3—Zn2ii122.3 (4)
C21—C22—H22118.8C29—N3—Zn2ii120.5 (4)
N2—C23—C24124.0 (6)C47—N4—C46115.6 (6)
N2—C23—H23118.0C47—N4—Zn1iii120.3 (4)
C24—C23—H23118.0C46—N4—Zn1iii120.0 (4)
C20—C24—C23120.1 (6)C36—O1—Zn1124.0 (3)
C20—C24—H24120.0C12—O2—Zn2124.4 (3)
C23—C24—H24120.0C37—O3—H3109.5
N3—C25—C26123.4 (6)C13—O4—H4A109.5
N3—C25—H25118.3H5A—O5—H5B118.2
C26—C25—H25118.3O1—Zn1—N4iv98.53 (18)
C27—C26—C25120.4 (6)O1—Zn1—N1103.45 (16)
C27—C26—H26119.8N4iv—Zn1—N1116.9 (2)
C25—C26—H26119.8O1—Zn1—Br1119.01 (12)
C26—C27—C28116.3 (5)N4iv—Zn1—Br1109.82 (15)
C26—C27—C30123.4 (6)N1—Zn1—Br1109.13 (15)
C28—C27—C30120.3 (6)O2—Zn2—N3v101.65 (17)
C29—C28—C27119.8 (6)O2—Zn2—N2vi99.39 (18)
C29—C28—H28120.1N3v—Zn2—N2vi110.8 (2)
C27—C28—H28120.1O2—Zn2—Br2119.87 (11)
N3—C29—C28123.1 (6)N3v—Zn2—Br2110.58 (15)
N3—C29—H29118.4N2vi—Zn2—Br2113.55 (16)
C28—C29—H29118.4
N1—C1—C2—C32.2 (9)C36—C33—C34—C35177.1 (5)
C1—C2—C3—C40.6 (8)C32—C33—C34—C39176.3 (5)
C1—C2—C3—C6176.8 (5)C36—C33—C34—C394.6 (8)
C2—C3—C4—C51.4 (9)C31—C30—C35—C341.2 (9)
C6—C3—C4—C5174.9 (5)C27—C30—C35—C34177.1 (5)
C3—C4—C5—N11.9 (10)C33—C34—C35—C301.5 (9)
C2—C3—C6—C11171.3 (6)C39—C34—C35—C30176.7 (5)
C4—C3—C6—C114.7 (8)C32—C33—C36—O10.4 (8)
C2—C3—C6—C76.7 (8)C34—C33—C36—O1179.4 (5)
C4—C3—C6—C7177.4 (5)C32—C33—C36—C37178.1 (6)
C11—C6—C7—C81.1 (8)C34—C33—C36—C370.9 (8)
C3—C6—C7—C8179.1 (5)O1—C36—C37—O31.9 (9)
C6—C7—C8—C92.1 (8)C33—C36—C37—O3176.6 (5)
C7—C8—C9—C104.9 (8)O1—C36—C37—C38176.2 (5)
C7—C8—C9—C12174.0 (5)C33—C36—C37—C385.3 (9)
C8—C9—C10—C114.6 (8)O3—C37—C38—C436.4 (8)
C12—C9—C10—C11174.4 (5)C36—C37—C38—C43171.8 (6)
C8—C9—C10—C15173.4 (5)O3—C37—C38—C39177.8 (5)
C12—C9—C10—C157.7 (8)C36—C37—C38—C393.9 (9)
C7—C6—C11—C101.4 (8)C43—C38—C39—C402.0 (8)
C3—C6—C11—C10179.4 (5)C37—C38—C39—C40173.9 (5)
C9—C10—C11—C61.5 (8)C43—C38—C39—C34177.8 (5)
C15—C10—C11—C6176.4 (5)C37—C38—C39—C341.8 (8)
C8—C9—C12—O20.0 (8)C35—C34—C39—C408.6 (9)
C10—C9—C12—O2178.9 (5)C33—C34—C39—C40169.5 (5)
C8—C9—C12—C13179.2 (6)C35—C34—C39—C38175.9 (5)
C10—C9—C12—C131.9 (8)C33—C34—C39—C385.9 (8)
O2—C12—C13—O43.5 (9)C38—C39—C40—C410.9 (9)
C9—C12—C13—O4177.3 (5)C34—C39—C40—C41176.4 (6)
O2—C12—C13—C14175.9 (5)C39—C40—C41—C420.7 (9)
C9—C12—C13—C143.3 (9)C39—C40—C41—C44180.0 (5)
C12—C13—C14—C19172.8 (6)C40—C41—C42—C431.2 (9)
O4—C13—C14—C196.7 (8)C44—C41—C42—C43179.5 (5)
C12—C13—C14—C152.5 (8)C41—C42—C43—C380.0 (9)
O4—C13—C14—C15178.0 (5)C37—C38—C43—C42174.1 (5)
C19—C14—C15—C163.3 (8)C39—C38—C43—C421.7 (9)
C13—C14—C15—C16172.2 (5)C40—C41—C44—C45150.2 (6)
C19—C14—C15—C10178.9 (5)C42—C41—C44—C4529.0 (9)
C13—C14—C15—C103.4 (8)C40—C41—C44—C4829.5 (8)
C11—C10—C15—C1611.0 (9)C42—C41—C44—C48151.2 (6)
C9—C10—C15—C16166.9 (5)C48—C44—C45—C460.5 (9)
C11—C10—C15—C14173.7 (5)C41—C44—C45—C46179.8 (5)
C9—C10—C15—C148.3 (8)C44—C45—C46—N41.2 (9)
C14—C15—C16—C170.6 (8)N4—C47—C48—C440.5 (10)
C10—C15—C16—C17175.9 (6)C45—C44—C48—C470.8 (9)
C15—C16—C17—C182.4 (9)C41—C44—C48—C47179.5 (5)
C15—C16—C17—C20175.7 (5)C2—C1—N1—C51.8 (8)
C16—C17—C18—C192.6 (8)C2—C1—N1—Zn1171.9 (4)
C20—C17—C18—C19175.5 (5)C4—C5—N1—C10.3 (9)
C17—C18—C19—C140.0 (9)C4—C5—N1—Zn1173.6 (4)
C15—C14—C19—C183.1 (9)C24—C23—N2—C222.1 (9)
C13—C14—C19—C18172.2 (5)C24—C23—N2—Zn2i152.3 (5)
C16—C17—C20—C2432.0 (9)C21—C22—N2—C233.3 (9)
C18—C17—C20—C24146.0 (6)C21—C22—N2—Zn2i151.4 (4)
C16—C17—C20—C21150.6 (6)C26—C25—N3—C291.2 (8)
C18—C17—C20—C2131.4 (8)C26—C25—N3—Zn2ii173.0 (4)
C24—C20—C21—C221.0 (9)C28—C29—N3—C250.5 (9)
C17—C20—C21—C22176.6 (5)C28—C29—N3—Zn2ii174.8 (4)
C20—C21—C22—N21.9 (9)C48—C47—N4—C462.0 (10)
C21—C20—C24—C232.2 (9)C48—C47—N4—Zn1iii155.3 (5)
C17—C20—C24—C23175.4 (5)C45—C46—N4—C472.3 (9)
N2—C23—C24—C200.7 (10)C45—C46—N4—Zn1iii155.0 (5)
N3—C25—C26—C271.7 (9)C37—C36—O1—Zn193.0 (6)
C25—C26—C27—C280.4 (9)C33—C36—O1—Zn185.5 (6)
C25—C26—C27—C30179.1 (5)C13—C12—O2—Zn2112.4 (5)
C26—C27—C28—C291.2 (8)C9—C12—O2—Zn268.4 (6)
C30—C27—C28—C29177.6 (5)C36—O1—Zn1—N4iv4.8 (5)
C27—C28—C29—N31.7 (9)C36—O1—Zn1—N1115.7 (4)
C26—C27—C30—C35174.6 (6)C36—O1—Zn1—Br1123.2 (4)
C28—C27—C30—C354.1 (8)C1—N1—Zn1—O1111.3 (4)
C26—C27—C30—C313.6 (8)C5—N1—Zn1—O161.9 (5)
C28—C27—C30—C31177.7 (6)C1—N1—Zn1—N4iv141.7 (4)
C35—C30—C31—C321.3 (8)C5—N1—Zn1—N4iv45.1 (5)
C27—C30—C31—C32176.9 (5)C1—N1—Zn1—Br116.3 (4)
C30—C31—C32—C331.9 (9)C5—N1—Zn1—Br1170.5 (4)
C31—C32—C33—C342.2 (9)C12—O2—Zn2—N3v122.4 (4)
C31—C32—C33—C36176.8 (5)C12—O2—Zn2—N2vi8.8 (4)
C32—C33—C34—C351.9 (8)C12—O2—Zn2—Br2115.4 (4)
Symmetry codes: (i) x+2, y1/2, z+5/2; (ii) x1, y, z1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y, z+1; (vi) x+2, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2vii0.821.832.614 (3)161
O4—H4A···O1vii0.821.862.606 (5)151
O5—H5A···Br1viii0.852.673.441 (2)152
O5—H5B···Br2ix0.852.723.492 (2)152
C47—H47···O5x0.932.453.201 (3)138
Symmetry codes: (vii) x+1, y+1, z+1; (viii) x+1, y1/2, z+1/2; (ix) x, y1, z; (x) x, y+1/2, z+1/2.

Experimental details

(130609dm)(121217f)
Crystal data
Chemical formula[ZnBr2(C24H14N2O2)][ZnBr(C24H15N2O2)]·0.5H2O
Mr587.56517.67
Crystal system, space groupMonoclinic, P2/nMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)10.169 (3), 7.858 (2), 13.818 (4)23.138 (9), 10.921 (4), 16.490 (7)
β (°) 105.757 (4) 108.931 (7)
V3)1062.7 (6)3941 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)4.943.30
Crystal size (mm)0.24 × 0.15 × 0.130.14 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.384, 0.5660.655, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
5333, 1982, 1450 20300, 7314, 3188
Rint0.0370.095
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.055, 0.85 0.051, 0.071, 0.82
No. of reflections19827314
No. of parameters141552
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.390.79, 0.61

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (130609dm) top
Br1—Zn12.3367 (7)C12—C12i1.517 (6)
C12—O21.221 (4)N1—Zn12.058 (3)
N1ii—Zn1—N193.73 (15)N1—Zn1—Br1112.23 (7)
N1—Zn1—Br1ii108.01 (7)Br1ii—Zn1—Br1119.64 (4)
Symmetry codes: (i) x+3/2, y, z+5/2; (ii) x+3/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (130609dm) top
Cg3 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2iii0.932.523.442 (2)171
C11—H11···O2iv0.932.543.258 (2)134
C8—H8···Cg3v0.932.933.738 (1)147
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z.
Selected geometric parameters (Å, º) for (121217f) top
Br1—Zn12.3398 (13)Zn1—O11.943 (4)
Br2—Zn22.3371 (13)Zn2—O21.948 (4)
C12—O21.334 (6)Zn1—N12.033 (4)
C13—O41.379 (6)Zn1—N4i2.020 (5)
C36—O11.339 (6)Zn2—N3ii2.022 (4)
C37—O31.361 (6)Zn2—N2iii2.058 (5)
O1—Zn1—N4i98.53 (18)O2—Zn2—N3ii101.65 (17)
O1—Zn1—N1103.45 (16)N3ii—Zn2—N2iii110.8 (2)
O1—Zn1—Br1119.01 (12)O2—Zn2—Br2119.87 (11)
N1—Zn1—Br1109.13 (15)N3ii—Zn2—Br2110.58 (15)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) for (121217f) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iv0.821.832.614 (3)161
O4—H4A···O1iv0.821.862.606 (5)151
O5—H5A···Br1v0.852.673.441 (2)152
O5—H5B···Br2vi0.852.723.492 (2)152
C47—H47···O5vii0.932.453.201 (3)138
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1, z; (vii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds