Download citation
Download citation
link to html
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two mol­ecules in the asymmetric unit. The conformation of both mol­ecules is very similar and is mainly determined by an intra­molecular N-H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N-H...O hydrogen bonds. The intra­molecular hydrogen-bonding motif and conformation of the C-SO2-NH(C=O)-NH-C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by [pi]-[pi] stacking between the 5-cyano­benzene rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011301771X/uk3071sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011301771X/uk3071Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011301771X/uk3071Isup3.cml
Supplementary material

CCDC reference: 964797

Introduction top

Recently, we have described a novel reference compound, N-tert-butyl-N'-[2-(4-methyl­phenyl­amino)-5-nitro­benzene­sulfonyl]­urea (BM-573), a 5-nitro­benzene­sulfonyl­urea derivative known to be a TXA2 receptor antagonist and a thromboxane synthase inhibitor (Dogné et al., 2004). Such a compound is expected to become the prototype of a new class of anti­platelet agents.

In our study of new TXA2 receptor antagonists and thromboxane synthase inhibitors, we synthesized and crystallized the title compound, (I). This compound may be considered as a structural analogue of BM-573 resulting from the isosteric replacement of its nitro group by a cyano group, and of its –NH– bridge by an –O– bridge. Compound (I) was found to be as potent as this reference compound as a TXA2 receptor antagonist, supporting the view that such structural modifications are tolerated without alteration of the pharmacological profile (Bambi-Nyanguile et al., 2013).

Experimental top

Synthesis and crystallization top

Compound (I) was synthesized in a five-step procedure starting from 4-fluoro-3-nitro­benzo­nitrile, as previously described by Bambi-Nyanguile et al. (2013). Suitable crystals for X-ray crystallography were grown from a methanol–water mixture (50/50 v/v).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All C-bound H atoms were placed in geometrically idealized positions and contrained to ride on their parent atoms, with C—H = 0.93 (aromatic) or 0.96 Å (methyl) and Uiso(H) = kUeq(C), where k = 1.2 for aromatic and 1.5 for methyl H atoms. N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N).

Results and discussion top

A view of the molecular structures of the two molecules in the asymmetric unit of (I) is shown in Fig. 1. Both molecules show an intra­molecular N—H···O hydrogen bond between an N atom of the urea moiety (N13 and N43) and an O atom of the sulfonyl group (O9 and O39), influencing their conformation (Table 2). The angle between the least-squares planes through rings C1–C6 and C19–C24 is 78.9 (2)°, and it is 80.1 (2)° between rings C31–C36 and C49–C54. The similar conformation of both molecules is further reflected by the r.m.s. deviation of 0.054 Å obtained for a least-squares fit of all 27 non-H atoms. Neighbouring molecules form dimers through hydrogen-bond inter­actions between the remaining N atom (N10 and N40) and the O atom (O12 and O42) of the urea groups (Fig. 2 and Table 2). The crystal packing shows chains of dimers in the b direction, formed by C—H···O inter­actions between aromatic ring atoms C5, C6, C35 and C36 and O atoms O42, O38, O12 and O8 (Fig. 3 and Table 2).

The occurrence of an intra­molecular hydrogen bond in the C—SO2—NH—C(O)—NH—C fragment was further explored in the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002). A search for this fragment resulted in 79 hits. Only four structures show an intra­molecular N—H···O hydrogen bond [CSD refcodes QERXUG (Yagupolskii et al., 2001), TOHBUN (Iwata et al., 1997), TOHBUN01 (Grell et al., 1998) and USOCOV (Gelbrich et al., 2011)]. The C—S—N—C torsion angle has two equally populated preferred regions, +sc and -sc, and has no influence on hydrogen-bond formation (three of the four structures are in the +sc region). The S—N—C—N torsion angle indicates a ±ap conformation, except for the four structures where a ±sp conformation occurs. The N—C—N—C torsion angle has preferred regions ±sp and ±ap (minor and major populations, respectively), and the four structures are all in the +ap region. The equivalent torsion angles for (I) are also given in Table 2 and show -ac, ±sp and -ap conformations. These observations are in agreement with quantum chemical calculations on the model system PhSO2NHC(O)NHMe (Kasetti et al.,

2010), showing that, in the gas phase, the conformation with an intra­molecular hydrogen bond is about 4.12 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) more stable than the alternative rotamer not showing the intra­molecular inter­action. In a chloro­form medium, the energy difference is reduced to 0.37 kcal mol-1 and in a water medium is even reversed.

In the crystal packing of (I), ππ inter­actions between the 5-cyano­benzene rings link two molecules into dimers (Fig. 3), with a Cg1···Cg1ii distance of 3.978 (2) Å and a Cg2···Cg2i distance of 3.887 (2) Å [Cg1 and Cg2 are the centroids of the C1–C6 and C31–C36 rings, respectively; symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x, y, -z + 3/2]. Furthermore, the packing shows a number of weaker contacts of

C—H···N type [C20—20···N27ii = 3.425 (7) Å and C50—H50···N57i = 3.439 (6) Å].

Despite the fact that methanol was essential as crystallization solvent for obtaining good-quality crystals of (I), no methanol molecules are present in the crystal packing. Also, no voids larger than 18 Å3 are observed in the crystal packing. For the compound TOHBUN, a second polymorph has been found which does not show the intra­molecular N—H···OS inter­action (Endo et al., 2003). To date, no second polymorph has been observed for (I).

Related literature top

For related literature, see: Allen (2002); Bambi-Nyanguile, Hanson, Ooms, Alpan, Kolh, Dogné & Pirotte (2013); Dogné et al. (2004); Endo et al. (2003); Gelbrich et al. (2011); Grell et al. (1998); Iwata et al. (1997); Kasetti et al. (2010); Yagupolskii et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dotted lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Dimer formation in (I), through N—H···O hydrogen-bond interactions (dotted lines). [Symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x, y, -z + 3/2.]
[Figure 3] Fig. 3. Interactions in the crystal packing of (I); lighter dashed lines (red in the electronic version of the paper) are N—H···O interactions and darker dashed lines (blue) are C—H···O interactions. The 5-cyanobenzene rings involved in ππ interactions are shaded, with the C1–C6 ring in lighter shading (green) and the C31–C36 ring in darker shading (red).
N-tert-Butyl-N'-[5-cyano-2-(4-methylphenoxy)phenylsulfonyl]urea top
Crystal data top
C19H21N3O4SF(000) = 1632
Mr = 387.45Dx = 1.229 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 10.6408 (5) ÅCell parameters from 11196 reflections
b = 15.8571 (4) Åθ = 3.3–27.0°
c = 24.8678 (9) ŵ = 0.18 mm1
β = 93.534 (4)°T = 289 K
V = 4188.0 (3) Å3Plate, colourless
Z = 80.45 × 0.25 × 0.05 mm
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
8550 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5931 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 019
Tmin = 0.738, Tmax = 1.000l = 031
8550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0449P)2 + 4.7193P]
where P = (Fo2 + 2Fc2)/3
8548 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H21N3O4SV = 4188.0 (3) Å3
Mr = 387.45Z = 8
Monoclinic, P2/cMo Kα radiation
a = 10.6408 (5) ŵ = 0.18 mm1
b = 15.8571 (4) ÅT = 289 K
c = 24.8678 (9) Å0.45 × 0.25 × 0.05 mm
β = 93.534 (4)°
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
8550 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5931 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.031
8550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
8548 reflectionsΔρmin = 0.26 e Å3
507 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2478 (4)0.34567 (19)0.71760 (14)0.0644 (9)
C20.1999 (3)0.27413 (18)0.74231 (13)0.0537 (8)
C30.1411 (3)0.2811 (2)0.78966 (13)0.0593 (8)
H30.11170.23300.80630.071*
C40.1256 (4)0.3597 (2)0.81270 (14)0.0673 (9)
C50.1699 (4)0.4306 (2)0.78713 (16)0.0802 (12)
H50.15820.48360.80210.096*
C60.2304 (5)0.4241 (2)0.74040 (16)0.0822 (12)
H60.25970.47230.72390.099*
C110.4395 (4)0.15059 (19)0.67005 (13)0.0560 (8)
C140.4692 (4)0.1714 (3)0.57238 (13)0.0747 (11)
C150.5765 (5)0.2355 (3)0.58006 (19)0.1061 (16)
H15A0.54250.28990.58790.159*
H15B0.62100.23870.54770.159*
H15C0.63340.21800.60940.159*
C160.3760 (5)0.2005 (4)0.52702 (16)0.1179 (19)
H16A0.31260.15810.52030.177*
H16B0.41980.20970.49490.177*
H16C0.33690.25220.53730.177*
C170.5219 (5)0.0853 (3)0.56087 (17)0.1038 (16)
H17A0.57630.06740.59090.156*
H17B0.56870.08800.52910.156*
H17C0.45400.04580.55520.156*
C190.3584 (4)0.4019 (2)0.64509 (16)0.0729 (11)
C200.2939 (5)0.4314 (3)0.60054 (18)0.0884 (13)
H200.21620.40860.58910.106*
C210.3464 (6)0.4966 (3)0.57221 (19)0.1012 (15)
H210.30340.51710.54120.121*
C220.4586 (6)0.5312 (3)0.5886 (2)0.0958 (16)
C230.5211 (5)0.5000 (3)0.6333 (2)0.1036 (16)
H230.59820.52330.64500.124*
C240.4723 (5)0.4342 (3)0.66215 (18)0.0971 (14)
H240.51650.41250.69250.116*
C250.5124 (7)0.6055 (3)0.5577 (2)0.153 (3)
H25A0.60160.59820.55580.229*
H25B0.49620.65720.57620.229*
H25C0.47300.60740.52200.229*
C260.0640 (5)0.3668 (3)0.86226 (17)0.0876 (13)
C310.2504 (4)0.84444 (19)0.72155 (14)0.0615 (9)
C320.3037 (3)0.77223 (18)0.74597 (13)0.0543 (8)
C330.3757 (3)0.7775 (2)0.79362 (13)0.0582 (8)
H330.40870.72890.80990.070*
C340.3993 (3)0.8559 (2)0.81748 (14)0.0633 (9)
C350.3493 (4)0.9278 (2)0.79213 (16)0.0732 (11)
H350.36590.98040.80750.088*
C360.2762 (4)0.9227 (2)0.74515 (17)0.0759 (11)
H360.24370.97150.72890.091*
C410.0426 (4)0.6513 (2)0.67085 (13)0.0603 (9)
C440.0109 (6)0.6762 (3)0.57342 (16)0.1062 (18)
C450.1127 (7)0.7391 (4)0.5820 (2)0.163 (3)
H45A0.15650.72350.61310.245*
H45B0.17080.74030.55090.245*
H45C0.07600.79400.58750.245*
C460.0753 (8)0.7068 (4)0.52928 (19)0.171 (3)
H46A0.11870.75710.54130.256*
H46B0.02510.71850.49680.256*
H46C0.13570.66370.52250.256*
C470.0640 (7)0.5897 (3)0.5595 (2)0.140 (3)
H47A0.00360.55160.55320.211*
H47B0.11940.59350.52760.211*
H47C0.11000.56920.58880.211*
C490.1176 (4)0.9018 (2)0.64997 (15)0.0668 (10)
C500.1664 (4)0.9354 (3)0.60546 (18)0.0840 (12)
H500.24140.91510.59320.101*
C510.1022 (5)1.0002 (3)0.57886 (18)0.0893 (13)
H510.13491.02310.54830.107*
C520.0070 (5)1.0316 (3)0.59587 (18)0.0819 (12)
C530.0529 (5)0.9967 (3)0.64028 (19)0.0944 (14)
H530.12761.01760.65270.113*
C540.0072 (5)0.9317 (3)0.66756 (17)0.0887 (13)
H540.02690.90830.69770.106*
C550.0738 (6)1.1053 (3)0.5675 (2)0.132 (2)
H55A0.06071.15540.58870.198*
H55B0.16231.09360.56290.198*
H55C0.04061.11350.53280.198*
C560.4732 (4)0.8609 (3)0.86787 (17)0.0760 (11)
N100.3536 (3)0.14991 (17)0.71095 (11)0.0560 (7)
H100.389 (3)0.140 (2)0.7423 (14)0.067*
N130.3965 (3)0.1687 (2)0.62053 (11)0.0673 (8)
H130.315 (4)0.176 (2)0.6176 (15)0.081*
N270.0159 (5)0.3723 (3)0.90141 (17)0.1244 (16)
N400.1387 (3)0.64971 (18)0.71261 (11)0.0603 (7)
H400.115 (4)0.643 (2)0.7430 (15)0.072*
N430.0752 (4)0.6698 (2)0.62208 (12)0.0775 (10)
H430.154 (4)0.682 (3)0.6185 (17)0.093*
N570.5319 (4)0.8638 (3)0.90760 (16)0.1037 (13)
O80.1532 (2)0.11652 (14)0.74811 (11)0.0747 (7)
O90.1541 (2)0.18033 (15)0.65792 (10)0.0702 (7)
O120.5490 (2)0.13168 (16)0.68322 (9)0.0673 (6)
O180.3089 (3)0.33206 (14)0.67201 (11)0.0880 (9)
O380.3479 (2)0.61399 (14)0.75181 (11)0.0796 (8)
O390.3266 (3)0.67820 (15)0.66139 (10)0.0789 (8)
O420.0635 (3)0.63208 (18)0.68313 (10)0.0773 (7)
O480.1775 (3)0.83257 (14)0.67533 (11)0.0863 (9)
S70.20576 (8)0.17400 (5)0.71188 (3)0.0562 (2)
S370.28779 (9)0.67228 (5)0.71509 (4)0.0606 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.094 (3)0.0373 (16)0.064 (2)0.0004 (16)0.0151 (19)0.0012 (14)
C20.066 (2)0.0366 (16)0.0590 (18)0.0039 (14)0.0043 (16)0.0001 (13)
C30.071 (2)0.0470 (18)0.0606 (19)0.0046 (16)0.0085 (17)0.0045 (15)
C40.081 (3)0.061 (2)0.061 (2)0.0079 (19)0.0134 (18)0.0034 (17)
C50.117 (4)0.048 (2)0.077 (3)0.006 (2)0.018 (2)0.0128 (18)
C60.129 (4)0.0379 (18)0.082 (3)0.005 (2)0.023 (3)0.0019 (17)
C110.075 (2)0.0424 (17)0.0503 (18)0.0077 (16)0.0055 (16)0.0007 (13)
C140.104 (3)0.073 (2)0.0478 (18)0.020 (2)0.0148 (19)0.0078 (17)
C150.132 (4)0.101 (4)0.089 (3)0.002 (3)0.043 (3)0.013 (3)
C160.152 (5)0.149 (5)0.053 (2)0.041 (4)0.008 (3)0.025 (3)
C170.164 (5)0.082 (3)0.068 (3)0.027 (3)0.026 (3)0.007 (2)
C190.108 (3)0.0417 (18)0.072 (2)0.006 (2)0.032 (2)0.0029 (17)
C200.103 (3)0.073 (3)0.090 (3)0.009 (2)0.011 (3)0.006 (2)
C210.142 (5)0.080 (3)0.083 (3)0.006 (3)0.019 (3)0.020 (2)
C220.147 (5)0.062 (3)0.084 (3)0.016 (3)0.050 (3)0.004 (2)
C230.124 (4)0.084 (3)0.107 (4)0.035 (3)0.035 (3)0.009 (3)
C240.131 (4)0.082 (3)0.078 (3)0.020 (3)0.006 (3)0.006 (2)
C250.240 (8)0.082 (3)0.148 (5)0.021 (4)0.103 (5)0.022 (3)
C260.117 (4)0.076 (3)0.071 (3)0.017 (2)0.019 (3)0.003 (2)
C310.080 (2)0.0361 (16)0.068 (2)0.0042 (15)0.0039 (18)0.0026 (14)
C320.061 (2)0.0367 (16)0.066 (2)0.0069 (14)0.0092 (16)0.0013 (14)
C330.065 (2)0.0476 (18)0.062 (2)0.0081 (15)0.0089 (17)0.0015 (15)
C340.067 (2)0.060 (2)0.064 (2)0.0112 (17)0.0098 (17)0.0096 (17)
C350.091 (3)0.047 (2)0.082 (3)0.0105 (19)0.010 (2)0.0158 (18)
C360.099 (3)0.0386 (18)0.089 (3)0.0014 (18)0.000 (2)0.0036 (17)
C410.083 (3)0.0439 (17)0.0526 (19)0.0032 (17)0.0088 (18)0.0021 (14)
C440.180 (5)0.075 (3)0.058 (2)0.015 (3)0.037 (3)0.009 (2)
C450.222 (8)0.115 (5)0.138 (5)0.019 (5)0.113 (5)0.004 (4)
C460.289 (10)0.162 (6)0.058 (3)0.074 (6)0.019 (4)0.030 (3)
C470.231 (7)0.095 (4)0.088 (3)0.052 (4)0.051 (4)0.006 (3)
C490.086 (3)0.0427 (18)0.071 (2)0.0024 (18)0.002 (2)0.0031 (16)
C500.083 (3)0.070 (3)0.101 (3)0.007 (2)0.017 (2)0.006 (2)
C510.106 (4)0.076 (3)0.086 (3)0.006 (3)0.008 (3)0.021 (2)
C520.100 (3)0.063 (2)0.080 (3)0.009 (2)0.016 (2)0.004 (2)
C530.098 (4)0.089 (3)0.096 (3)0.030 (3)0.010 (3)0.004 (3)
C540.110 (4)0.089 (3)0.070 (3)0.009 (3)0.019 (2)0.006 (2)
C550.169 (6)0.092 (4)0.127 (4)0.036 (4)0.050 (4)0.011 (3)
C560.082 (3)0.073 (3)0.074 (3)0.018 (2)0.011 (2)0.014 (2)
N100.0658 (19)0.0546 (16)0.0479 (14)0.0099 (13)0.0044 (13)0.0086 (12)
N130.077 (2)0.079 (2)0.0463 (15)0.0160 (18)0.0039 (15)0.0074 (14)
N270.173 (5)0.120 (3)0.086 (3)0.025 (3)0.049 (3)0.004 (2)
N400.069 (2)0.0571 (16)0.0537 (15)0.0119 (14)0.0035 (14)0.0105 (13)
N430.105 (3)0.075 (2)0.0514 (16)0.015 (2)0.0069 (18)0.0089 (15)
N570.113 (3)0.120 (3)0.077 (2)0.022 (3)0.001 (2)0.017 (2)
O80.0832 (18)0.0418 (12)0.1018 (19)0.0075 (12)0.0271 (15)0.0066 (12)
O90.0694 (16)0.0620 (14)0.0769 (16)0.0042 (12)0.0134 (13)0.0130 (12)
O120.0685 (17)0.0820 (17)0.0517 (13)0.0163 (13)0.0056 (11)0.0023 (11)
O180.146 (3)0.0408 (13)0.0827 (17)0.0087 (14)0.0505 (18)0.0032 (12)
O380.0821 (19)0.0408 (13)0.112 (2)0.0056 (12)0.0226 (16)0.0014 (13)
O390.093 (2)0.0630 (15)0.0833 (17)0.0063 (14)0.0287 (15)0.0165 (13)
O420.0735 (19)0.097 (2)0.0598 (15)0.0103 (15)0.0112 (13)0.0004 (13)
O480.129 (2)0.0411 (13)0.0847 (18)0.0054 (14)0.0274 (17)0.0038 (12)
S70.0653 (5)0.0355 (4)0.0679 (5)0.0003 (4)0.0055 (4)0.0005 (3)
S370.0706 (6)0.0346 (4)0.0763 (6)0.0013 (4)0.0023 (4)0.0031 (4)
Geometric parameters (Å, º) top
C1—C21.401 (4)C33—H330.9300
C1—C61.384 (5)C33—C341.394 (4)
C1—O181.358 (4)C34—C351.392 (5)
C2—C31.371 (4)C34—C561.440 (5)
C2—S71.762 (3)C35—H350.9300
C3—H30.9300C35—C361.365 (5)
C3—C41.387 (5)C36—H360.9300
C4—C51.388 (5)C41—N401.412 (4)
C4—C261.435 (5)C41—N431.315 (5)
C5—H50.9300C41—O421.226 (4)
C5—C61.367 (5)C44—C451.498 (8)
C6—H60.9300C44—C461.551 (8)
C11—N101.409 (4)C44—C471.515 (6)
C11—N131.319 (4)C44—N431.475 (5)
C11—O121.228 (4)C45—H45A0.9600
C14—C151.531 (6)C45—H45B0.9600
C14—C161.527 (6)C45—H45C0.9600
C14—C171.510 (5)C46—H46A0.9600
C14—N131.466 (4)C46—H46B0.9600
C15—H15A0.9600C46—H46C0.9600
C15—H15B0.9600C47—H47A0.9600
C15—H15C0.9600C47—H47B0.9600
C16—H16A0.9600C47—H47C0.9600
C16—H16B0.9600C49—C501.360 (5)
C16—H16C0.9600C49—C541.364 (6)
C17—H17A0.9600C49—O481.400 (4)
C17—H17B0.9600C50—H500.9300
C17—H17C0.9600C50—C511.380 (6)
C19—C201.351 (6)C51—H510.9300
C19—C241.359 (6)C51—C521.355 (6)
C19—O181.412 (4)C52—C531.353 (6)
C20—H200.9300C52—C551.520 (6)
C20—C211.388 (6)C53—H530.9300
C21—H210.9300C53—C541.370 (6)
C21—C221.354 (7)C54—H540.9300
C22—C231.354 (7)C55—H55A0.9600
C22—C251.535 (6)C55—H55B0.9600
C23—H230.9300C55—H55C0.9600
C23—C241.385 (6)C56—N571.137 (5)
C24—H240.9300N10—H100.86 (3)
C25—H25A0.9600N10—S71.620 (3)
C25—H25B0.9600N13—H130.88 (4)
C25—H25C0.9600N40—H400.82 (4)
C26—N271.131 (5)N40—S371.624 (3)
C31—C321.400 (4)N43—H430.87 (4)
C31—C361.392 (4)O8—S71.421 (2)
C31—O481.359 (4)O9—S71.422 (2)
C32—C331.373 (4)O38—S371.423 (3)
C32—S371.765 (3)O39—S371.425 (3)
C6—C1—C2119.1 (3)C36—C35—C34121.4 (3)
O18—C1—C2116.3 (3)C36—C35—H35119.3
O18—C1—C6124.6 (3)C31—C36—H36120.0
C1—C2—S7121.2 (2)C35—C36—C31120.1 (3)
C3—C2—C1120.6 (3)C35—C36—H36120.0
C3—C2—S7118.1 (2)N43—C41—N40117.5 (4)
C2—C3—H3120.0O42—C41—N40116.7 (3)
C2—C3—C4119.9 (3)O42—C41—N43125.8 (3)
C4—C3—H3120.0C45—C44—C46110.9 (5)
C3—C4—C5119.1 (3)C45—C44—C47111.9 (6)
C3—C4—C26119.9 (3)C47—C44—C46110.5 (5)
C5—C4—C26121.0 (3)N43—C44—C45110.3 (4)
C4—C5—H5119.4N43—C44—C46103.7 (5)
C6—C5—C4121.3 (3)N43—C44—C47109.2 (4)
C6—C5—H5119.4C44—C45—H45A109.5
C1—C6—H6120.0C44—C45—H45B109.5
C5—C6—C1119.9 (3)C44—C45—H45C109.5
C5—C6—H6120.0H45A—C45—H45B109.5
N13—C11—N10118.2 (3)H45A—C45—H45C109.5
O12—C11—N10116.9 (3)H45B—C45—H45C109.5
O12—C11—N13124.9 (3)C44—C46—H46A109.5
C16—C14—C15109.7 (4)C44—C46—H46B109.5
C17—C14—C15109.9 (4)C44—C46—H46C109.5
C17—C14—C16111.4 (4)H46A—C46—H46B109.5
N13—C14—C15110.2 (3)H46A—C46—H46C109.5
N13—C14—C16105.1 (3)H46B—C46—H46C109.5
N13—C14—C17110.4 (3)C44—C47—H47A109.5
C14—C15—H15A109.5C44—C47—H47B109.5
C14—C15—H15B109.5C44—C47—H47C109.5
C14—C15—H15C109.5H47A—C47—H47B109.5
H15A—C15—H15B109.5H47A—C47—H47C109.5
H15A—C15—H15C109.5H47B—C47—H47C109.5
H15B—C15—H15C109.5C50—C49—C54120.3 (4)
C14—C16—H16A109.5C50—C49—O48119.2 (4)
C14—C16—H16B109.5C54—C49—O48120.4 (4)
C14—C16—H16C109.5C49—C50—H50120.7
H16A—C16—H16B109.5C49—C50—C51118.6 (4)
H16A—C16—H16C109.5C51—C50—H50120.7
H16B—C16—H16C109.5C50—C51—H51118.9
C14—C17—H17A109.5C52—C51—C50122.2 (4)
C14—C17—H17B109.5C52—C51—H51118.9
C14—C17—H17C109.5C51—C52—C55121.5 (5)
H17A—C17—H17B109.5C53—C52—C51117.7 (4)
H17A—C17—H17C109.5C53—C52—C55120.8 (5)
H17B—C17—H17C109.5C52—C53—H53119.0
C20—C19—C24121.6 (4)C52—C53—C54122.0 (4)
C20—C19—O18118.4 (4)C54—C53—H53119.0
C24—C19—O18119.9 (4)C49—C54—C53119.2 (4)
C19—C20—H20120.8C49—C54—H54120.4
C19—C20—C21118.4 (5)C53—C54—H54120.4
C21—C20—H20120.8C52—C55—H55A109.5
C20—C21—H21119.2C52—C55—H55B109.5
C22—C21—C20121.6 (5)C52—C55—H55C109.5
C22—C21—H21119.2H55A—C55—H55B109.5
C21—C22—C25120.6 (6)H55A—C55—H55C109.5
C23—C22—C21118.6 (4)H55B—C55—H55C109.5
C23—C22—C25120.8 (6)N57—C56—C34179.2 (5)
C22—C23—H23119.3C11—N10—H10113 (2)
C22—C23—C24121.3 (5)C11—N10—S7133.0 (2)
C24—C23—H23119.3S7—N10—H10114 (2)
C19—C24—C23118.6 (5)C11—N13—C14126.8 (3)
C19—C24—H24120.7C11—N13—H13113 (3)
C23—C24—H24120.7C14—N13—H13120 (3)
C22—C25—H25A109.5C41—N40—H40116 (3)
C22—C25—H25B109.5C41—N40—S37133.3 (3)
C22—C25—H25C109.5S37—N40—H40110 (3)
H25A—C25—H25B109.5C41—N43—C44125.9 (4)
H25A—C25—H25C109.5C41—N43—H43117 (3)
H25B—C25—H25C109.5C44—N43—H43117 (3)
N27—C26—C4179.7 (6)C1—O18—C19118.9 (3)
C36—C31—C32118.8 (3)C31—O48—C49119.5 (3)
O48—C31—C32116.6 (3)N10—S7—C2106.20 (16)
O48—C31—C36124.6 (3)O8—S7—C2106.26 (15)
C31—C32—S37121.4 (3)O8—S7—N10106.17 (15)
C33—C32—C31120.9 (3)O8—S7—O9119.96 (16)
C33—C32—S37117.6 (2)O9—S7—C2108.65 (15)
C32—C33—H33120.1O9—S7—N10108.80 (15)
C32—C33—C34119.9 (3)N40—S37—C32106.37 (16)
C34—C33—H33120.1O38—S37—C32106.07 (16)
C33—C34—C56119.5 (3)O38—S37—N40106.30 (16)
C35—C34—C33118.9 (3)O38—S37—O39119.96 (18)
C35—C34—C56121.5 (3)O39—S37—C32108.84 (15)
C34—C35—H35119.3O39—S37—N40108.53 (16)
C1—C2—C3—C41.8 (5)C33—C32—S37—O39124.6 (3)
C1—C2—S7—N1065.5 (3)C33—C34—C35—C361.2 (6)
C1—C2—S7—O8178.3 (3)C34—C35—C36—C310.0 (6)
C1—C2—S7—O951.3 (3)C36—C31—C32—C332.9 (5)
C2—C1—C6—C51.7 (7)C36—C31—C32—S37173.8 (3)
C2—C1—O18—C19179.5 (4)C36—C31—O48—C493.4 (6)
C2—C3—C4—C50.2 (6)C41—N40—S37—C32103.0 (3)
C2—C3—C4—C26180.0 (4)C41—N40—S37—O38144.3 (3)
C3—C2—S7—N10117.7 (3)C41—N40—S37—O3914.0 (4)
C3—C2—S7—O85.0 (3)C45—C44—N43—C4156.5 (6)
C3—C2—S7—O9125.4 (3)C46—C44—N43—C41175.3 (4)
C3—C4—C5—C61.2 (7)C47—C44—N43—C4166.9 (6)
C4—C5—C6—C10.3 (7)C49—C50—C51—C520.4 (7)
C6—C1—C2—C32.8 (6)C50—C49—C54—C530.9 (7)
C6—C1—C2—S7173.9 (3)C50—C49—O48—C31102.8 (4)
C6—C1—O18—C190.3 (6)C50—C51—C52—C530.4 (7)
C11—N10—S7—C2102.7 (3)C50—C51—C52—C55177.5 (4)
C11—N10—S7—O8144.4 (3)C51—C52—C53—C540.3 (7)
C11—N10—S7—O914.1 (4)C52—C53—C54—C490.9 (7)
C15—C14—N13—C1158.6 (5)C54—C49—C50—C510.3 (6)
C16—C14—N13—C11176.8 (4)C54—C49—O48—C3181.6 (5)
C17—C14—N13—C1163.0 (5)C55—C52—C53—C54178.2 (4)
C19—C20—C21—C220.8 (7)C56—C34—C35—C36178.1 (4)
C20—C19—C24—C231.2 (7)N10—C11—N13—C14178.9 (3)
C20—C19—O18—C1101.6 (4)N13—C11—N10—S75.2 (5)
C20—C21—C22—C230.9 (7)N40—C41—N43—C44178.8 (4)
C20—C21—C22—C25177.7 (4)N43—C41—N40—S374.5 (5)
C21—C22—C23—C240.0 (8)O12—C11—N10—S7176.9 (3)
C22—C23—C24—C191.1 (7)O12—C11—N13—C141.1 (6)
C24—C19—C20—C210.3 (7)O18—C1—C2—C3177.4 (3)
C24—C19—O18—C182.6 (5)O18—C1—C2—S75.9 (5)
C25—C22—C23—C24178.7 (5)O18—C1—C6—C5178.5 (4)
C26—C4—C5—C6179.0 (4)O18—C19—C20—C21176.1 (4)
C31—C32—C33—C341.8 (5)O18—C19—C24—C23176.9 (4)
C31—C32—S37—N4064.6 (3)O42—C41—N40—S37178.0 (3)
C31—C32—S37—O38177.4 (3)O42—C41—N43—C444.0 (6)
C31—C32—S37—O3952.2 (3)O48—C31—C32—C33178.1 (3)
C32—C31—C36—C352.0 (6)O48—C31—C32—S375.2 (5)
C32—C31—O48—C49177.7 (3)O48—C31—C36—C35179.1 (4)
C32—C33—C34—C350.3 (5)O48—C49—C50—C51176.0 (4)
C32—C33—C34—C56179.0 (3)O48—C49—C54—C53176.6 (4)
C33—C32—S37—N40118.6 (3)S7—C2—C3—C4174.9 (3)
C33—C32—S37—O385.7 (3)S37—C32—C33—C34175.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O12i0.86 (3)1.93 (3)2.784 (4)171 (3)
N13—H13···O90.87 (4)2.04 (4)2.801 (4)145 (3)
N40—H40···O42ii0.82 (4)1.96 (4)2.774 (4)177.0 (15)
N43—H43···O390.87 (4)2.07 (4)2.794 (5)141 (4)
C5—H5···O42ii0.932.603.484 (4)160
C6—H6···O380.932.523.266 (4)138
C35—H35···O12iii0.932.573.452 (4)159
C36—H36···O8iv0.932.553.343 (4)144
C20—H20···N27ii0.932.563.425 (7)155
C50—H50···N57i0.932.553.439 (6)161
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2; (iii) x+1, y+1, z+3/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O4S
Mr387.45
Crystal system, space groupMonoclinic, P2/c
Temperature (K)289
a, b, c (Å)10.6408 (5), 15.8571 (4), 24.8678 (9)
β (°) 93.534 (4)
V3)4188.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.45 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova
diffractometer (single source at offset, Eos detector)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8550, 8550, 5931
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.174, 1.06
No. of reflections8548
No. of parameters507
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O12i0.86 (3)1.93 (3)2.784 (4)171 (3)
N13—H13···O90.87 (4)2.04 (4)2.801 (4)145 (3)
N40—H40···O42ii0.82 (4)1.96 (4)2.774 (4)177.0 (15)
N43—H43···O390.87 (4)2.07 (4)2.794 (5)141 (4)
C5—H5···O42ii0.932.603.484 (4)160
C6—H6···O380.932.523.266 (4)138
C35—H35···O12iii0.932.573.452 (4)159
C36—H36···O8iv0.932.553.343 (4)144
C20—H20···N27ii0.932.563.425 (7)155
C50—H50···N57i0.932.553.439 (6)161
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2; (iii) x+1, y+1, z+3/2; (iv) x, y+1, z.
Overview of the torsion angles in the C—SO2—NH—C(O)—NH—C fragment of various compounds, showing the N—H···OS interaction top
C—S—N—CS—N—C—NN—C—N—CSO···H—N
QERXUG85.411.8178.32.19
TOHBUN94.76.2170.82.01
TOHBUN194.66.1170.92.01
USOCOV-64.3-33.0170.52.15
(I), molecule A-102.7 (3)-5.2 (5)-178.9 (4)2.04 (4)
(I), molecule B-103.0 (3)4.5 (5)-178.8 (4)2.07 (4)
CSD refcodes: QERXUG (Yagupolskii et al., 2001), TOHBUN (Iwata et al., 1997), TOHBUN01 (Grell et al., 1998) and USOCOV (Gelbrich et al., 2011)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds