Download citation
Download citation
link to html
The isostructural crystals of 4-cyano-N-(4-meth­oxy­phenyl)benzene­sulfonamide, C14H12N2O3S, (I), N-(4-meth­oxy­phenyl)-4-(trifluoro­methyl)benzene­sulfonamide, C14H12F3NO3S, (II), 4-iodo-N-(4-meth­oxy­phenyl)benzene­sulfonamide, C13H12INO3S, (III), 4-bromo-N-(4-meth­oxy­phenyl)benzene­sulfonamide, C13H12BrNO3S, (IV), 4-chloro-N-(4-meth­oxy­phenyl)benzene­sulfonamide, C13H12ClNO3S, (V), 4-fluoro-N-(4-meth­oxy­phenyl)benzene­sulfonamide, C13H12FNO3S, (VI), N-(4-chloro­phenyl)-4-meth­oxy­benzene­sulfonamide, C13H12ClNO3S, (VII), and 4-cyano-N-phenyl­benzene­sulfonamide, C13H10N2O2S, (VIII), contain infinite chains composed of N-H...O(sulfonyl) hydrogen-bonded mol­ecules. The crystal structures of (I)-(VIII) have been compared using the XPac software and quanti­tative descriptors of isostructurality were generated [Gelbrich, Threlfall & Hursthouse (2012). Cryst­EngComm, 14, 5454-5464]. Certain isostructural relationships in this series involve mol­ecules with substantially different spatial demands, e.g. (VI) and (VIII) are related by the simultaneous inter­change of F[rightwards arrow]CN on the benzene­sul­fon­amide ring and OMe[rightwards arrow]H on the N-phenyl ring, which indicates that the geometry of the three-dimensional crystal-packing mode of (I)-(VIII) is unusually adaptable to different mol­ecular shapes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112039297/uk3052sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, VIII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052VIIsup8.hkl
Contains datablock VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112039297/uk3052VIIIsup9.hkl
Contains datablock VIII

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052Isup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052IIsup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052IIIsup12.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052IVsup13.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052Vsup14.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052VIsup15.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052VIIsup16.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112039297/uk3052VIIIsup17.cml
Supplementary material

CCDC references: 906589; 906590; 906591; 906592; 906593; 906594; 906595; 906596

Comment top

We have investigated families of crystal structures of closely related organic compounds in order to examine the effect of incremental changes in molecular shape, van der Waals interactions and other, more directed, intermolecular forces on the crystal packing (Hursthouse, 2004; Gelbrich & Hursthouse, 2006; Gelbrich et al., 2007, 2012; Hursthouse et al., 2010, 2011). One such family comprises a 10 × 10 matrix of 4,4'-substituted N-phenylbenzenesulfonamides, XC6H4–SO2–NH–C6H4Y, denoted X/Y, where X and Y are NO2, CN, CF3, I, Br, Cl, F, Me, OMe and H. A general overview of this set has been given previously (Gelbrich et al., 2007) and it was reported that all investigated crystal structures contain N—H···A bonded molecules (A = hydrogen-bond acceptor). The crystal structures of the X/Y set were classified according to: (i) the type of A site employed; (ii) the connectivity type of the resulting N—H···A bonded structure; (iii) the spatial arrangement of the molecules forming this hydrogen-bonded structure; (iv) the complete three-dimensional crystal-packing arrangement (`structure type'). A subset of 22 isostructural X/Y compounds has been discussed in detail (Gelbrich et al., 2007). This particular structure type, denoted A1.1, is characterized by the presence of centrosymmetric N—H···O(sulfonyl) bonded dimers, which are arranged around a 3 axis.

In this contribution, we report another eight crystal structures of the X/Y matrix: CN/OMe, (I), CF3/OMe, (II), I/OMe, (III), Br/OMe, (IV), Cl/OMe, (V), F/OMe, (VI), OMe/Cl, (VII), and CN/H, (VIII). The crystals of (I)–(VIII) investigated here all have the space group Pna21. The asymmetric units of (I)–(VIII) contain a single molecule (Fig. 1). The overlay in Fig. 2 illustrates that the molecular geometries are very similar throughout the series, except for the X and Y substituents. The most significant conformational differences between individual members may be described in terms of a slight rotation of the aromatic rings about the pseudo-axes S1—C1···C4—X and N1—C7···C10—Y. In the following we discuss details of the molecular and crystal structure of Cl/OMe, (V), which is representative of the entire series of structures (I)–(VIII), denoted previously as type B1.10 (Gelbrich et al., 2007), where B indicates the presence of N—H···O(sulfonyl) bonded chains, 1 indicates their specific geometry and 10 is the running number of structure types exhibiting these characteristics. [Is this B1.10 notation different from the A1.1 in the previous paragraph?]

The V-shaped molecular geometry is characterized by the three torsion angles C2—C1—S1—N1 = -88.2 (3)°, C1—S1—N1—C7 = -67.9 (3)° and S1—N1—C7—C8 = 101.1 (3)°. The centroids of the two aromatic rings of (V) are 4.983 (4) Å apart and the mean planes of these two rings form an angle of 42.8 (1)°. The methoxy substituents Y in (I)–(VI) and X in (VII) are oriented in such a way that the OMe group is approximately coplanar with the attached aromatic ring. In (I)–(VI), the terminal O3—C bond is oriented approximately parallel to the C7—C12 bond of the ring, and in (VII) it lies parallel to the C1—C2 bond.

Each molecule is linked to two other molecules via an N1—H···O1(sulfonyl) interaction. The resulting hydrogen-bonded chain (Fig. 3) has a V-shaped cross-section and propagates parallel to the c axis. Neighbouring chains of this kind are arranged into a layer structure, which lies parallel to the bc plane and possesses n-glide symmetry (Fig. 4). The stacking of these two-dimensional structures along [100] is such that the molecules of neighbouring layers are related by 21 and glide-symmetry operations.

The crystal structures of (I)–(VIII) were compared with each other using the program XPAC (Gelbrich & Hursthouse, 2005), using geometric parameters generated from all non-H atomic positions, except for those of the substituents X and Y. Each crystal structure was represented by a cluster consisting of a central molecule and its 14 closest neighbours. The complete clusters representing (I)–(VIII) were found to possess fundamentally the same geometry, indicating isostructurality. The isostructurality of the X/OMe series with X = CN, CF3, I, Br and Cl, i.e. (I)–(V), is not unusual, since the molecular shape varies relatively little in this group. However, each of (VI), (VII) and (VIII) differs quite substantially from these five compounds in the size of either or both of their X and Y substituents, so that their isostructurality with (I)–(V) is rather surprising.

To quantify the isostructural relationships in this set, the XPAC dissimilarity index x (Gelbrich et al., 2012) and distance parameter d were calculated for all 28 comparisons between two individual structures. The results of these calculations are collected in Fig. 5. As expected, the lowest x values ( 3.1), indicating the highest degree of similarity, were found for the X/OMe subset (I)–(V). The inclusion of the fluoro analogue, (VI), resulted in somewhat higher values (x 4.9) because F is considerably smaller than the other X substituents present in this subset. Even larger molecular-shape differences exist between (I)–(V) on the one hand and OMe/Cl, (VII), and in particular CN/H, (VIII), on the other. The modifications of the packing geometry are therefore more pronounced and the dissimilarity parameters for comparisons involving (VII) and (VIII) are systematically higher, at 3.7 x 5.2 and 6.8 x 7.9, respectively. Overall, the dissimilarity indices x for the B1.10 series are broadly consistent with trends identified in a recent study of close chemical analogues of (I)–(VIII) (Gelbrich et al., 2012).

OMe/Cl, (VII), and CN/H, (VIII), are the two least closely related packing arrangements in this group (x = 10.1). For a more detailed analysis, an individual dissimilarity parameter xi was calculated for each unit consisting of two next-neighbour molecules in the structures of (VII) and (VIII). The lowest xi value of 3.2 was obtained for the assembly of two N—H···O linked molecules, while for all other two-molecule units the values were considerably higher (10.0 xi 14.3). This indicates that the geometry of the hydrogen-bonded chain is very rigid. Therefore, adjustment for the different shape requirements of the various X and Y substituents consists mainly of a subtle change in the alignment of neighbouring N—H···O bonded chains relative to one another.

Related literature top

For related literature, see: Gelbrich & Hursthouse (2005, 2006); Gelbrich et al. (2007, 2012); Hursthouse (2004); Hursthouse et al. (2010, 2011).

Experimental top

Compounds (I)–(VIII) were prepared as described previously (Gelbrich et al., 2007). All XPac (Gelbrich & Hursthouse, 2005; Gelbrich et al., 2012) calculations were carried out with a set of 16 non-H atomic positions per molecule which did not include the substituents X and Y. The dissimilarity parameters collected in Fig. 4 refer to clusters composed of a central molecule and its 14 closest neighbours, which represent complete crystal structures.

Refinement top

The structure models of (I) and (IV)–(VIII) were refined using matching sets of atomic coordinates, with the z coordinate of atom S1 at approximately 0.5. The corresponding inverted model was used in the case of (II) and (III). All H atoms were identified in a difference map. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip, with C—H = 0.98 Å, and refined with Uiso(H) = 1.5Ueq(C). H atoms attached to aromatic C atoms were positioned geometrically, with C—H = 0.95 Å, and refined with Uiso(H) = 1.2Ueq(C). H atoms attached to the N atoms were refined with restrained distances [N—H = 0.86 (2) Å], and their Uiso parameters were refined freely.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric units of (I)–(VIII), with the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. An overlay of the molecular structures of (I) (red in the electronic version of the paper), (II) (orange), (III) (purple), (IV) (yellow), (V) (grey), (VI) (dark blue), (VII) (light blue) and (VIII) (green), based on a least-squares fit of 16 atomic positions (all non-H atoms, except those of the substituents X and Y). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The N—H···O bonded chain in the crystal structure of Cl/OMe, (V). O, N and H atoms directly involved in hydrogen bonding are drawn as spheres.
[Figure 4] Fig. 4. The crystal packing of (V), (VII) and (VIII), viewed parallel to the c axis, with X and Y substituents drawn as spheres. N—H···O bonded chains, which propagate parallel to [001], are represented by a single molecule. The layer structure highlighted by dot-dashed lines (left diagram) is the result of the stacking of these chains via a glide operation. Note that OMe/Cl, (VII), and CN/H, (VIII), show the largest differences (x = 10.1) of all investigated structures.
[Figure 5] Fig. 5. An XPAC map, showing the dissimilarity indices x (lower left section of the matrix) and distance parameters d (upper right section) for the 28 binary structure comparisons in the investigated set.
(I) 4-Cyano-N-(4-methoxyphenyl)benzenesulfonamide top
Crystal data top
C14H12N2O3SF(000) = 600
Mr = 288.32Dx = 1.370 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3975 reflections
a = 22.0249 (7) Åθ = 2.9–26.0°
b = 12.5626 (5) ŵ = 0.24 mm1
c = 5.0512 (1) ÅT = 293 K
V = 1397.62 (8) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2582 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
ϕ and ω scansh = 2624
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1315
Tmin = 0.954, Tmax = 0.976l = 56
10978 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0123P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.17 e Å3
2582 reflectionsΔρmin = 0.18 e Å3
187 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.026 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1042 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (9)
Crystal data top
C14H12N2O3SV = 1397.62 (8) Å3
Mr = 288.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.0249 (7) ŵ = 0.24 mm1
b = 12.5626 (5) ÅT = 293 K
c = 5.0512 (1) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1990 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.976Rint = 0.044
10978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.18 e Å3
2582 reflectionsAbsolute structure: Flack (1983), with 1042 Friedel pairs
187 parametersAbsolute structure parameter: 0.02 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23268 (3)0.24262 (4)0.50004 (14)0.04928 (19)
O10.21574 (9)0.22588 (15)0.2298 (3)0.0651 (5)
O20.24917 (8)0.34582 (13)0.5899 (4)0.0620 (5)
O30.05375 (8)0.17783 (13)0.5305 (4)0.0672 (5)
N10.17517 (10)0.20608 (17)0.6802 (4)0.0512 (5)
H10.1825 (12)0.218 (2)0.845 (4)0.068 (9)*
N20.46936 (18)0.1168 (3)0.8326 (10)0.1395 (15)
C10.29271 (11)0.15418 (19)0.5730 (5)0.0481 (6)
C60.29725 (13)0.0578 (2)0.4424 (6)0.0635 (7)
H60.26940.04010.31110.076*
C20.33286 (11)0.1800 (2)0.7731 (5)0.0566 (7)
H20.32920.24440.86220.068*
C30.37872 (13)0.1092 (2)0.8404 (7)0.0663 (8)
H30.40620.12620.97370.080*
C40.38326 (12)0.0135 (2)0.7083 (6)0.0648 (7)
C50.34284 (12)0.0116 (2)0.5071 (7)0.0707 (8)
H50.34670.07560.41610.085*
C70.14547 (10)0.10587 (19)0.6299 (5)0.0464 (6)
C80.15769 (10)0.0179 (2)0.7840 (5)0.0532 (6)
H80.18730.02150.91480.064*
C90.12615 (11)0.0753 (2)0.7449 (5)0.0574 (7)
H90.13400.13400.85200.069*
C100.08287 (10)0.08239 (18)0.5477 (5)0.0512 (6)
C110.07138 (10)0.0045 (2)0.3908 (5)0.0557 (6)
H110.04270.00000.25620.067*
C120.10245 (11)0.09931 (19)0.4321 (5)0.0518 (6)
H120.09430.15830.32660.062*
C130.43091 (17)0.0595 (3)0.7789 (8)0.0903 (10)
C140.00815 (14)0.1891 (3)0.3315 (8)0.0789 (9)
H14A0.00830.25980.33820.118*
H14B0.02580.17680.16040.118*
H14C0.02360.13830.36220.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0591 (4)0.0521 (4)0.0367 (3)0.0045 (3)0.0016 (3)0.0008 (3)
O10.0819 (12)0.0799 (13)0.0334 (10)0.0049 (10)0.0030 (9)0.0006 (9)
O20.0774 (11)0.0436 (10)0.0650 (12)0.0078 (8)0.0017 (9)0.0025 (8)
O30.0649 (10)0.0564 (10)0.0802 (14)0.0060 (8)0.0163 (11)0.0021 (10)
N10.0562 (13)0.0604 (13)0.0371 (11)0.0037 (10)0.0016 (9)0.0075 (11)
N20.143 (3)0.106 (3)0.169 (4)0.047 (2)0.036 (3)0.004 (3)
C10.0546 (14)0.0459 (14)0.0437 (13)0.0079 (10)0.0067 (10)0.0022 (10)
C60.0746 (16)0.0580 (16)0.0579 (18)0.0056 (13)0.0065 (13)0.0120 (13)
C20.0606 (16)0.0551 (15)0.0541 (16)0.0054 (12)0.0027 (13)0.0105 (12)
C30.0631 (17)0.0655 (19)0.0702 (19)0.0026 (13)0.0086 (15)0.0023 (15)
C40.0699 (18)0.0493 (16)0.075 (2)0.0022 (13)0.0007 (16)0.0032 (15)
C50.0895 (18)0.0484 (15)0.074 (2)0.0026 (13)0.0004 (18)0.0160 (16)
C70.0435 (13)0.0559 (16)0.0398 (13)0.0014 (11)0.0033 (11)0.0026 (11)
C80.0519 (14)0.0602 (16)0.0476 (15)0.0037 (12)0.0093 (12)0.0015 (12)
C90.0577 (15)0.0581 (16)0.0564 (16)0.0030 (12)0.0131 (13)0.0079 (13)
C100.0462 (12)0.0514 (14)0.0560 (17)0.0026 (10)0.0016 (11)0.0071 (12)
C110.0501 (14)0.0701 (18)0.0469 (13)0.0032 (12)0.0079 (12)0.0001 (13)
C120.0511 (14)0.0609 (15)0.0433 (15)0.0015 (11)0.0051 (11)0.0055 (11)
C130.098 (2)0.071 (2)0.103 (3)0.0127 (19)0.013 (2)0.0015 (18)
C140.0694 (18)0.085 (2)0.082 (2)0.0165 (16)0.0173 (17)0.0129 (19)
Geometric parameters (Å, º) top
S1—O21.4209 (18)C4—C51.388 (4)
S1—O11.4307 (18)C4—C131.439 (4)
S1—N11.626 (2)C5—H50.9300
S1—C11.766 (3)C7—C81.379 (4)
O3—C101.362 (3)C7—C121.379 (3)
O3—C141.428 (4)C8—C91.376 (3)
N1—C71.441 (3)C8—H80.9300
N1—H10.863 (18)C9—C101.382 (3)
N2—C131.143 (4)C9—H90.9300
C1—C21.381 (3)C10—C111.373 (3)
C1—C61.383 (4)C11—C121.389 (3)
C6—C51.369 (4)C11—H110.9300
C6—H60.9300C12—H120.9300
C2—C31.388 (4)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.378 (4)C14—H14C0.9600
C3—H30.9300
O2—S1—O1120.37 (11)C4—C5—H5120.0
O2—S1—N1106.14 (11)C8—C7—C12119.7 (2)
O1—S1—N1106.83 (12)C8—C7—N1120.8 (2)
O2—S1—C1108.42 (11)C12—C7—N1119.4 (2)
O1—S1—C1107.56 (12)C9—C8—C7120.2 (2)
N1—S1—C1106.79 (11)C9—C8—H8119.9
C10—O3—C14117.6 (2)C7—C8—H8119.9
C7—N1—S1120.10 (16)C8—C9—C10120.4 (2)
C7—N1—H1113.9 (18)C8—C9—H9119.8
S1—N1—H1110.3 (19)C10—C9—H9119.8
C2—C1—C6120.5 (2)O3—C10—C11125.2 (2)
C2—C1—S1118.96 (19)O3—C10—C9115.3 (2)
C6—C1—S1120.4 (2)C11—C10—C9119.5 (2)
C5—C6—C1119.8 (3)C10—C11—C12120.3 (2)
C5—C6—H6120.1C10—C11—H11119.9
C1—C6—H6120.1C12—C11—H11119.9
C1—C2—C3119.6 (3)C7—C12—C11119.9 (2)
C1—C2—H2120.2C7—C12—H12120.0
C3—C2—H2120.2C11—C12—H12120.0
C4—C3—C2119.5 (3)N2—C13—C4179.0 (5)
C4—C3—H3120.2O3—C14—H14A109.5
C2—C3—H3120.2O3—C14—H14B109.5
C3—C4—C5120.4 (2)H14A—C14—H14B109.5
C3—C4—C13119.3 (3)O3—C14—H14C109.5
C5—C4—C13120.3 (3)H14A—C14—H14C109.5
C6—C5—C4120.0 (2)H14B—C14—H14C109.5
C6—C5—H5120.0
(II) N-(4-Methoxyphenyl)-4-(trifluoromethyl)benzenesulfonamide top
Crystal data top
C14H12F3NO3SF(000) = 680
Mr = 331.31Dx = 1.546 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1615 reflections
a = 22.1833 (14) Åθ = 2.9–26.0°
b = 12.8024 (8) ŵ = 0.27 mm1
c = 5.0114 (3) ÅT = 120 K
V = 1423.23 (15) Å3Block, colourless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2724 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
ϕ and ω scansh = 2726
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.947, Tmax = 0.987l = 66
6994 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2724 reflectionsΔρmax = 0.28 e Å3
202 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1164 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C14H12F3NO3SV = 1423.23 (15) Å3
Mr = 331.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.1833 (14) ŵ = 0.27 mm1
b = 12.8024 (8) ÅT = 120 K
c = 5.0114 (3) Å0.20 × 0.10 × 0.05 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2003 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.987Rint = 0.081
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.37 e Å3
2724 reflectionsAbsolute structure: Flack (1983), with 1164 Friedel pairs
202 parametersAbsolute structure parameter: 0.04 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77318 (4)0.78225 (7)0.50004 (19)0.0267 (3)
O10.78954 (13)0.7996 (2)0.7721 (6)0.0326 (7)
O20.75644 (13)0.6803 (2)0.4104 (5)0.0312 (7)
O30.94230 (13)1.20316 (19)0.4916 (7)0.0361 (7)
N10.83024 (16)0.8182 (3)0.3150 (7)0.0276 (8)
H10.8214 (19)0.810 (3)0.145 (4)0.033*
C10.71342 (17)0.8700 (3)0.4250 (7)0.0238 (9)
C20.67254 (17)0.8426 (3)0.2271 (8)0.0289 (9)
H20.67460.77630.14230.035*
C30.62850 (19)0.9149 (3)0.1564 (9)0.0307 (10)
H30.60020.89880.02010.037*
C40.62607 (18)1.0101 (3)0.2850 (8)0.0287 (9)
C50.66670 (18)1.0362 (3)0.4820 (9)0.0309 (9)
H50.66431.10200.56910.037*
C60.71131 (19)0.9648 (3)0.5515 (8)0.0299 (10)
H60.74000.98160.68540.036*
C70.85891 (18)0.9182 (3)0.3672 (8)0.0271 (9)
C80.84404 (19)1.0046 (3)0.2187 (8)0.0298 (9)
H80.81400.99970.08430.036*
C90.87280 (18)1.0990 (3)0.2646 (9)0.0308 (9)
H90.86271.15860.16110.037*
C100.91659 (18)1.1062 (3)0.4625 (9)0.0306 (9)
C110.93144 (19)1.0196 (3)0.6120 (9)0.0309 (10)
H110.96131.02430.74720.037*
C120.90220 (18)0.9251 (3)0.5630 (8)0.0282 (10)
H120.91220.86510.66550.034*
C130.57759 (19)1.0861 (3)0.2096 (9)0.0335 (10)
C140.9845 (2)1.2152 (4)0.7062 (9)0.0428 (12)
H14A0.99971.28710.70830.064*
H14B1.01821.16670.68110.064*
H14C0.96441.20000.87600.064*
F10.52239 (10)1.05112 (19)0.2795 (6)0.0471 (7)
F20.58365 (12)1.17888 (19)0.3214 (7)0.0524 (8)
F30.57469 (11)1.1010 (2)0.0541 (5)0.0497 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0278 (5)0.0289 (5)0.0233 (5)0.0023 (4)0.0005 (5)0.0007 (5)
O10.0311 (16)0.0409 (16)0.0257 (15)0.0038 (13)0.0004 (14)0.0007 (13)
O20.0335 (16)0.0214 (14)0.0388 (17)0.0024 (12)0.0015 (13)0.0008 (11)
O30.0317 (16)0.0339 (15)0.0427 (16)0.0050 (12)0.0065 (17)0.0019 (15)
N10.0277 (19)0.0320 (17)0.0229 (17)0.0004 (15)0.0001 (15)0.0029 (15)
C10.024 (2)0.026 (2)0.022 (2)0.0010 (16)0.0027 (16)0.0035 (15)
C20.028 (2)0.026 (2)0.032 (2)0.0039 (17)0.002 (2)0.0036 (18)
C30.027 (2)0.030 (2)0.035 (2)0.003 (2)0.0051 (18)0.0000 (17)
C40.025 (2)0.031 (2)0.030 (2)0.0011 (17)0.005 (2)0.0039 (18)
C50.032 (2)0.029 (2)0.032 (2)0.0030 (17)0.004 (2)0.0034 (19)
C60.028 (2)0.031 (2)0.030 (2)0.0029 (18)0.0061 (18)0.0043 (18)
C70.025 (2)0.032 (2)0.024 (2)0.0022 (18)0.0040 (18)0.0049 (17)
C80.027 (2)0.036 (2)0.026 (2)0.0001 (19)0.0030 (19)0.0021 (18)
C90.029 (2)0.036 (2)0.028 (2)0.0067 (18)0.005 (2)0.0034 (18)
C100.024 (2)0.030 (2)0.038 (2)0.0002 (17)0.0054 (19)0.0035 (19)
C110.022 (2)0.039 (2)0.032 (2)0.0004 (19)0.0062 (19)0.0003 (18)
C120.024 (2)0.033 (2)0.027 (2)0.0063 (18)0.0030 (18)0.0010 (17)
C130.025 (2)0.030 (2)0.046 (3)0.0018 (19)0.007 (2)0.0014 (19)
C140.033 (3)0.049 (3)0.046 (3)0.008 (2)0.006 (2)0.005 (2)
F10.0226 (14)0.0480 (15)0.071 (2)0.0003 (11)0.0056 (14)0.0059 (14)
F20.0385 (15)0.0313 (14)0.087 (2)0.0049 (12)0.0102 (15)0.0038 (14)
F30.0382 (15)0.0664 (17)0.0444 (17)0.0173 (13)0.0012 (13)0.0184 (13)
Geometric parameters (Å, º) top
S1—O11.428 (3)C6—H60.9500
S1—O21.430 (3)C7—C81.373 (6)
S1—N11.635 (4)C7—C121.376 (6)
S1—C11.777 (4)C8—C91.386 (5)
O3—C101.374 (5)C8—H80.9500
O3—C141.434 (5)C9—C101.391 (6)
N1—C71.454 (5)C9—H90.9500
N1—H10.880 (19)C10—C111.377 (6)
C1—C61.370 (6)C11—C121.395 (6)
C1—C21.389 (5)C11—H110.9500
C2—C31.392 (6)C12—H120.9500
C2—H20.9500C13—F21.320 (5)
C3—C41.380 (5)C13—F31.337 (5)
C3—H30.9500C13—F11.350 (5)
C4—C51.378 (6)C14—H14A0.9800
C4—C131.498 (6)C14—H14B0.9800
C5—C61.392 (6)C14—H14C0.9800
C5—H50.9500
O1—S1—O2120.55 (16)C8—C7—N1120.5 (4)
O1—S1—N1107.50 (18)C12—C7—N1119.3 (3)
O2—S1—N1106.25 (17)C7—C8—C9120.1 (4)
O1—S1—C1107.03 (17)C7—C8—H8119.9
O2—S1—C1108.47 (18)C9—C8—H8119.9
N1—S1—C1106.25 (17)C8—C9—C10119.8 (4)
C10—O3—C14116.6 (3)C8—C9—H9120.1
C7—N1—S1119.0 (3)C10—C9—H9120.1
C7—N1—H1112 (3)O3—C10—C11124.8 (4)
S1—N1—H1110 (3)O3—C10—C9115.2 (4)
C6—C1—C2122.1 (4)C11—C10—C9120.1 (4)
C6—C1—S1119.2 (3)C10—C11—C12119.4 (4)
C2—C1—S1118.6 (3)C10—C11—H11120.3
C1—C2—C3118.2 (4)C12—C11—H11120.3
C1—C2—H2120.9C7—C12—C11120.4 (4)
C3—C2—H2120.9C7—C12—H12119.8
C4—C3—C2119.8 (4)C11—C12—H12119.8
C4—C3—H3120.1F2—C13—F3107.2 (4)
C2—C3—H3120.1F2—C13—F1106.3 (3)
C5—C4—C3121.5 (4)F3—C13—F1105.1 (4)
C5—C4—C13119.5 (4)F2—C13—C4113.8 (4)
C3—C4—C13118.9 (4)F3—C13—C4112.1 (4)
C4—C5—C6119.0 (4)F1—C13—C4111.8 (3)
C4—C5—H5120.5O3—C14—H14A109.5
C6—C5—H5120.5O3—C14—H14B109.5
C1—C6—C5119.4 (4)H14A—C14—H14B109.5
C1—C6—H6120.3O3—C14—H14C109.5
C5—C6—H6120.3H14A—C14—H14C109.5
C8—C7—C12120.2 (4)H14B—C14—H14C109.5
(III) 4-Iodo-N-(4-methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H12INO3SF(000) = 760
Mr = 389.20Dx = 1.862 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1619 reflections
a = 21.6853 (8) Åθ = 2.9–26.0°
b = 12.6570 (5) ŵ = 2.46 mm1
c = 5.0586 (3) ÅT = 120 K
V = 1388.44 (11) Å3Block, colourless
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2550 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2294 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ and ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.526, Tmax = 0.791l = 56
9765 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.0095P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.003
S = 1.04Δρmax = 0.63 e Å3
2550 reflectionsΔρmin = 0.61 e Å3
178 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0038 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1012 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Crystal data top
C13H12INO3SV = 1388.44 (11) Å3
Mr = 389.20Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.6853 (8) ŵ = 2.46 mm1
b = 12.6570 (5) ÅT = 120 K
c = 5.0586 (3) Å0.30 × 0.15 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2294 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.791Rint = 0.048
9765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.63 e Å3
S = 1.04Δρmin = 0.61 e Å3
2550 reflectionsAbsolute structure: Flack (1983), with 1012 Friedel pairs
178 parametersAbsolute structure parameter: 0.01 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.549955 (12)1.104130 (19)0.15503 (15)0.03175 (13)
S10.76462 (5)0.76103 (9)0.4999 (2)0.0217 (3)
O30.94977 (13)1.1770 (3)0.4618 (8)0.0251 (8)
O10.78196 (16)0.7767 (3)0.7713 (7)0.0274 (8)
O20.74772 (14)0.6581 (2)0.4084 (7)0.0240 (7)
N10.82259 (17)0.7982 (3)0.3158 (9)0.0213 (8)
H10.817 (2)0.785 (4)0.153 (5)0.034 (14)*
C10.70372 (19)0.8489 (3)0.4254 (10)0.0207 (9)
C20.6629 (2)0.8233 (3)0.2248 (9)0.0248 (11)
H20.66560.75700.13730.030*
C30.61815 (18)0.8959 (3)0.1541 (18)0.0253 (8)
H30.58920.87920.01940.030*
C40.6155 (2)0.9929 (3)0.2799 (11)0.0257 (10)
C50.6562 (2)1.0187 (3)0.4793 (10)0.0267 (11)
H50.65381.08560.56400.032*
C60.7007 (2)0.9461 (3)0.5550 (10)0.0258 (11)
H60.72880.96230.69330.031*
C70.8529 (2)0.8976 (3)0.3679 (10)0.0199 (9)
C80.84161 (19)0.9839 (3)0.2041 (10)0.0247 (12)
H80.81160.97960.06780.030*
C90.8750 (2)1.0770 (4)0.2428 (10)0.0257 (11)
H90.86831.13600.13050.031*
C100.9178 (2)1.0833 (3)0.4444 (10)0.0220 (10)
C110.92764 (19)0.9974 (3)0.6144 (13)0.0233 (11)
H110.95631.00260.75570.028*
C120.8950 (2)0.9050 (3)0.5736 (10)0.0230 (11)
H120.90150.84620.68700.028*
C130.9935 (2)1.1858 (3)0.6700 (16)0.0326 (11)
H13A1.01491.25380.65650.049*
H13B1.02351.12820.65650.049*
H13C0.97221.18160.84060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03164 (18)0.02122 (17)0.0424 (2)0.00334 (10)0.0021 (2)0.0034 (2)
S10.0240 (5)0.0200 (6)0.0211 (6)0.0013 (5)0.0002 (5)0.0005 (5)
O30.0263 (17)0.0186 (15)0.030 (2)0.0060 (11)0.0063 (14)0.0018 (14)
O10.0358 (19)0.0281 (18)0.0185 (18)0.0012 (15)0.0047 (17)0.0023 (14)
O20.0283 (15)0.0141 (16)0.0297 (18)0.0029 (12)0.0023 (14)0.0008 (14)
N10.0233 (19)0.0186 (18)0.022 (2)0.0016 (14)0.0014 (18)0.0026 (16)
C10.022 (2)0.018 (2)0.023 (2)0.0008 (16)0.0033 (19)0.0025 (18)
C20.024 (2)0.023 (2)0.028 (3)0.0022 (16)0.0004 (18)0.0017 (18)
C30.0239 (18)0.0230 (19)0.029 (2)0.0032 (15)0.005 (4)0.001 (3)
C40.028 (2)0.018 (2)0.031 (3)0.0000 (18)0.001 (2)0.003 (2)
C50.032 (2)0.019 (2)0.029 (3)0.0030 (18)0.003 (2)0.003 (2)
C60.028 (2)0.024 (2)0.026 (3)0.0045 (19)0.0064 (19)0.0056 (19)
C70.018 (2)0.022 (2)0.020 (2)0.0008 (16)0.001 (2)0.0011 (18)
C80.0205 (19)0.026 (2)0.028 (4)0.0004 (16)0.003 (2)0.001 (2)
C90.024 (2)0.026 (2)0.027 (3)0.0019 (18)0.003 (2)0.0025 (19)
C100.021 (2)0.021 (2)0.025 (3)0.0011 (17)0.001 (2)0.0033 (19)
C110.0168 (18)0.026 (2)0.027 (3)0.0003 (16)0.004 (2)0.002 (2)
C120.021 (2)0.025 (2)0.023 (3)0.0003 (17)0.0013 (18)0.0013 (16)
C130.036 (2)0.027 (2)0.035 (3)0.0057 (18)0.010 (3)0.000 (3)
Geometric parameters (Å, º) top
I1—C42.099 (4)C5—C61.386 (6)
S1—O21.430 (3)C5—H50.9500
S1—O11.437 (4)C6—H60.9500
S1—N11.634 (4)C7—C121.387 (7)
S1—C11.767 (4)C7—C81.393 (6)
O3—C101.377 (5)C8—C91.396 (6)
O3—C131.422 (7)C8—H80.9500
N1—C71.443 (5)C9—C101.381 (7)
N1—H10.85 (2)C9—H90.9500
C1—C21.384 (6)C10—C111.402 (7)
C1—C61.396 (7)C11—C121.383 (6)
C2—C31.385 (6)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.383 (7)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.379 (7)C13—H13C0.9800
O2—S1—O1120.1 (2)C5—C6—H6120.4
O2—S1—N1106.0 (2)C1—C6—H6120.4
O1—S1—N1107.7 (2)C12—C7—C8120.6 (4)
O2—S1—C1108.2 (2)C12—C7—N1119.7 (4)
O1—S1—C1108.2 (2)C8—C7—N1119.7 (4)
N1—S1—C1105.8 (2)C7—C8—C9119.1 (4)
C10—O3—C13116.8 (4)C7—C8—H8120.4
C7—N1—S1119.8 (3)C9—C8—H8120.4
C7—N1—H1114 (3)C10—C9—C8120.1 (4)
S1—N1—H1113 (3)C10—C9—H9120.0
C2—C1—C6121.4 (4)C8—C9—H9120.0
C2—C1—S1119.1 (3)O3—C10—C9115.8 (4)
C6—C1—S1119.3 (3)O3—C10—C11123.5 (4)
C1—C2—C3118.8 (5)C9—C10—C11120.7 (4)
C1—C2—H2120.6C12—C11—C10119.1 (5)
C3—C2—H2120.6C12—C11—H11120.4
C4—C3—C2119.9 (6)C10—C11—H11120.4
C4—C3—H3120.0C11—C12—C7120.4 (4)
C2—C3—H3120.0C11—C12—H12119.8
C5—C4—C3121.4 (5)C7—C12—H12119.8
C5—C4—I1119.6 (3)O3—C13—H13A109.5
C3—C4—I1119.0 (4)O3—C13—H13B109.5
C4—C5—C6119.3 (4)H13A—C13—H13B109.5
C4—C5—H5120.3O3—C13—H13C109.5
C6—C5—H5120.3H13A—C13—H13C109.5
C5—C6—C1119.2 (4)H13B—C13—H13C109.5
(IV) 4-Bromo-N-(4-methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H12BrNO3SF(000) = 688
Mr = 342.21Dx = 1.682 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1563 reflections
a = 21.6210 (7) Åθ = 2.9–26.0°
b = 12.3720 (3) ŵ = 3.20 mm1
c = 5.0526 (1) ÅT = 120 K
V = 1351.55 (6) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2521 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ and ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.567, Tmax = 0.646l = 65
9718 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0185P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.28 e Å3
2521 reflectionsΔρmin = 0.34 e Å3
178 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0049 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1028 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.019 (8)
Crystal data top
C13H12BrNO3SV = 1351.55 (6) Å3
Mr = 342.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.6210 (7) ŵ = 3.20 mm1
b = 12.3720 (3) ÅT = 120 K
c = 5.0526 (1) Å0.20 × 0.20 × 0.15 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2521 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2282 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.646Rint = 0.036
9718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.28 e Å3
S = 1.06Δρmin = 0.34 e Å3
2521 reflectionsAbsolute structure: Flack (1983), with 1028 Friedel pairs
178 parametersAbsolute structure parameter: 0.019 (8)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.448825 (13)0.101064 (18)0.82779 (9)0.03454 (11)
S10.23612 (3)0.23287 (5)0.50000 (12)0.01882 (16)
O10.21912 (10)0.21596 (15)0.2284 (3)0.0242 (5)
O20.25335 (9)0.33875 (13)0.5888 (4)0.0246 (4)
O30.04718 (8)0.18819 (14)0.5352 (4)0.0239 (5)
N10.17747 (12)0.19744 (17)0.6820 (4)0.0191 (5)
H10.1840 (13)0.203 (2)0.842 (4)0.026 (8)*
C10.29684 (12)0.1431 (2)0.5754 (5)0.0186 (6)
C20.33738 (13)0.1693 (2)0.7801 (6)0.0231 (6)
H20.33380.23670.86880.028*
C30.38296 (13)0.09650 (17)0.8537 (7)0.0250 (6)
H30.41110.11360.99190.030*
C40.38680 (13)0.00142 (19)0.7226 (6)0.0231 (7)
C50.34724 (13)0.02858 (19)0.5189 (6)0.0255 (6)
H50.35120.09610.43110.031*
C60.30148 (14)0.0442 (2)0.4439 (5)0.0250 (7)
H60.27370.02680.30460.030*
C70.14618 (13)0.09554 (18)0.6294 (5)0.0169 (6)
C80.15674 (13)0.00683 (17)0.7915 (6)0.0199 (6)
H80.18710.01020.92720.024*
C90.12263 (13)0.08656 (19)0.7534 (5)0.0216 (6)
H90.12910.14710.86570.026*
C100.07923 (13)0.09225 (17)0.5529 (5)0.0186 (6)
C110.07018 (14)0.00470 (19)0.3852 (5)0.0213 (6)
H110.04130.00940.24380.026*
C120.10348 (14)0.08948 (19)0.4252 (5)0.0206 (6)
H120.09710.15000.31270.025*
C130.00321 (13)0.19657 (19)0.3284 (7)0.0310 (6)
H13A0.01710.26730.33710.047*
H13B0.02410.18890.15740.047*
H13C0.02780.13930.34760.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0350 (2)0.02637 (15)0.04228 (19)0.00736 (12)0.00405 (19)0.00459 (17)
S10.0236 (4)0.0181 (3)0.0148 (3)0.0011 (3)0.0005 (3)0.0003 (3)
O10.0327 (13)0.0284 (10)0.0117 (9)0.0002 (9)0.0024 (9)0.0002 (8)
O20.0311 (11)0.0186 (9)0.0243 (9)0.0028 (8)0.0014 (9)0.0000 (8)
O30.0255 (12)0.0203 (9)0.0259 (11)0.0057 (7)0.0050 (9)0.0015 (8)
N10.0228 (14)0.0215 (12)0.0129 (11)0.0008 (9)0.0001 (10)0.0031 (10)
C10.0203 (16)0.0175 (12)0.0179 (13)0.0016 (10)0.0020 (12)0.0007 (11)
C20.0245 (16)0.0208 (12)0.0240 (16)0.0031 (11)0.0014 (13)0.0025 (11)
C30.0244 (15)0.0269 (13)0.0236 (15)0.0027 (11)0.0024 (16)0.0027 (13)
C40.0218 (17)0.0214 (14)0.0260 (14)0.0013 (12)0.0029 (13)0.0039 (11)
C50.0316 (18)0.0181 (12)0.0268 (15)0.0032 (12)0.0056 (15)0.0056 (13)
C60.0325 (19)0.0203 (14)0.0222 (14)0.0047 (13)0.0012 (13)0.0041 (11)
C70.0178 (16)0.0195 (13)0.0134 (12)0.0004 (11)0.0027 (12)0.0038 (10)
C80.0206 (14)0.0235 (12)0.0156 (14)0.0020 (10)0.0028 (13)0.0005 (12)
C90.0221 (17)0.0217 (13)0.0210 (15)0.0012 (11)0.0022 (12)0.0021 (10)
C100.0173 (16)0.0209 (13)0.0177 (14)0.0025 (10)0.0025 (12)0.0029 (10)
C110.0174 (15)0.0289 (14)0.0175 (15)0.0018 (11)0.0021 (12)0.0028 (11)
C120.0203 (16)0.0232 (14)0.0183 (13)0.0029 (11)0.0003 (12)0.0023 (10)
C130.0297 (17)0.0353 (14)0.0281 (14)0.0065 (12)0.0087 (17)0.0019 (17)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C5—C61.390 (4)
S1—O21.4338 (18)C5—H50.9500
S1—O11.4362 (18)C6—H60.9500
S1—N11.627 (3)C7—C81.388 (4)
S1—C11.761 (3)C7—C121.386 (4)
O3—C101.377 (3)C8—C91.384 (3)
O3—C131.416 (4)C8—H80.9500
N1—C71.455 (3)C9—C101.383 (4)
N1—H10.825 (18)C9—H90.9500
C1—C21.394 (4)C10—C111.389 (3)
C1—C61.396 (4)C11—C121.384 (4)
C2—C31.386 (4)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.383 (3)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.380 (4)C13—H13C0.9800
O2—S1—O1119.92 (12)C5—C6—H6120.4
O2—S1—N1105.77 (11)C1—C6—H6120.4
O1—S1—N1107.54 (12)C8—C7—C12120.4 (2)
O2—S1—C1108.35 (12)C8—C7—N1120.1 (3)
O1—S1—C1107.79 (12)C12—C7—N1119.5 (2)
N1—S1—C1106.79 (12)C9—C8—C7119.4 (3)
C10—O3—C13116.7 (2)C9—C8—H8120.3
C7—N1—S1119.52 (18)C7—C8—H8120.3
C7—N1—H1109.5 (19)C10—C9—C8120.4 (2)
S1—N1—H1113 (2)C10—C9—H9119.8
C2—C1—C6120.8 (2)C8—C9—H9119.8
C2—C1—S1118.85 (19)O3—C10—C9115.7 (2)
C6—C1—S1120.2 (2)O3—C10—C11124.2 (3)
C3—C2—C1119.7 (2)C9—C10—C11120.2 (2)
C3—C2—H2120.2C12—C11—C10119.6 (3)
C1—C2—H2120.2C12—C11—H11120.2
C4—C3—C2118.9 (3)C10—C11—H11120.2
C4—C3—H3120.5C11—C12—C7120.0 (2)
C2—C3—H3120.5C11—C12—H12120.0
C5—C4—C3122.2 (3)C7—C12—H12120.0
C5—C4—Br1119.27 (19)O3—C13—H13A109.5
C3—C4—Br1118.5 (2)O3—C13—H13B109.5
C4—C5—C6119.1 (2)H13A—C13—H13B109.5
C4—C5—H5120.4O3—C13—H13C109.5
C6—C5—H5120.4H13A—C13—H13C109.5
C5—C6—C1119.3 (3)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.10 (2)2.913 (3)169 (3)
Symmetry code: (i) x, y, z+1.
(V) 4-Chloro-N-(4-methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H12ClNO3SF(000) = 616
Mr = 297.75Dx = 1.485 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1510 reflections
a = 21.2580 (15) Åθ = 2.9–26.0°
b = 12.3967 (5) ŵ = 0.45 mm1
c = 5.0526 (3) ÅT = 120 K
V = 1331.51 (13) Å3Block, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2472 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2028 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ and ω scansh = 2622
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.916, Tmax = 0.957l = 65
6144 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.31 e Å3
2472 reflectionsΔρmin = 0.30 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0106 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 106 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (9)
Crystal data top
C13H12ClNO3SV = 1331.51 (13) Å3
Mr = 297.75Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.2580 (15) ŵ = 0.45 mm1
b = 12.3967 (5) ÅT = 120 K
c = 5.0526 (3) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2472 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2028 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.957Rint = 0.058
6144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.31 e Å3
S = 1.08Δρmin = 0.30 e Å3
2472 reflectionsAbsolute structure: Flack (1983), with 106 Friedel pairs
177 parametersAbsolute structure parameter: 0.08 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44246 (5)0.10433 (7)0.8254 (2)0.0462 (3)
S10.23039 (4)0.21692 (6)0.49918 (17)0.0260 (2)
O30.04598 (11)0.21093 (16)0.5381 (5)0.0319 (6)
O10.21312 (13)0.19829 (17)0.2291 (5)0.0332 (6)
O20.24738 (12)0.32294 (15)0.5848 (5)0.0312 (6)
N10.17048 (14)0.1813 (2)0.6831 (6)0.0261 (7)
H10.1818 (18)0.186 (3)0.846 (4)0.031*
C10.29233 (15)0.1281 (2)0.5782 (7)0.0229 (7)
C20.33229 (16)0.1543 (3)0.7856 (7)0.0293 (8)
H20.32770.22120.87530.035*
C30.37857 (17)0.0832 (2)0.8609 (8)0.0300 (8)
H30.40630.10051.00220.036*
C40.38433 (17)0.0144 (2)0.7278 (7)0.0321 (9)
C50.34506 (16)0.0414 (2)0.5227 (8)0.0317 (8)
H50.34990.10830.43340.038*
C60.29786 (17)0.0308 (2)0.4466 (7)0.0290 (9)
H60.26990.01320.30620.035*
C70.14028 (16)0.0780 (2)0.6324 (7)0.0243 (8)
C80.15330 (16)0.0106 (2)0.7925 (7)0.0273 (8)
H80.18420.00580.92780.033*
C90.12097 (17)0.1049 (2)0.7526 (7)0.0286 (8)
H90.12930.16530.86300.034*
C100.07635 (15)0.1135 (2)0.5537 (7)0.0262 (8)
C110.06396 (17)0.0257 (3)0.3938 (7)0.0296 (8)
H110.03340.03090.25710.036*
C120.09619 (17)0.0700 (2)0.4334 (6)0.0274 (8)
H120.08790.13040.32300.033*
C130.00328 (19)0.2245 (3)0.3214 (9)0.0398 (9)
H13A0.01220.29900.31870.060*
H13B0.02510.20880.15480.060*
H13C0.03230.17490.34220.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0454 (6)0.0411 (5)0.0521 (7)0.0130 (4)0.0074 (6)0.0045 (5)
S10.0324 (5)0.0263 (4)0.0193 (4)0.0013 (4)0.0002 (4)0.0005 (4)
O30.0301 (13)0.0320 (11)0.0337 (16)0.0038 (10)0.0069 (13)0.0014 (11)
O10.0445 (16)0.0381 (12)0.0170 (13)0.0040 (12)0.0038 (12)0.0016 (11)
O20.0444 (15)0.0208 (10)0.0283 (14)0.0033 (10)0.0013 (12)0.0018 (10)
N10.0294 (17)0.0284 (13)0.0204 (15)0.0012 (12)0.0012 (13)0.0041 (12)
C10.0251 (18)0.0257 (16)0.0179 (18)0.0002 (13)0.0055 (14)0.0000 (13)
C20.032 (2)0.0313 (16)0.025 (2)0.0016 (15)0.0016 (17)0.0041 (15)
C30.029 (2)0.0378 (18)0.0230 (19)0.0052 (15)0.0001 (18)0.0004 (16)
C40.035 (2)0.0264 (16)0.035 (2)0.0017 (15)0.0032 (19)0.0058 (15)
C50.038 (2)0.0274 (15)0.030 (2)0.0023 (15)0.0013 (19)0.0017 (17)
C60.033 (2)0.0289 (16)0.025 (2)0.0040 (14)0.0016 (15)0.0027 (14)
C70.0270 (19)0.0251 (16)0.0209 (18)0.0041 (14)0.0001 (15)0.0033 (14)
C80.0276 (18)0.0334 (17)0.0208 (19)0.0034 (14)0.0040 (16)0.0023 (15)
C90.0274 (19)0.0301 (16)0.028 (2)0.0011 (15)0.0033 (16)0.0023 (15)
C100.0223 (17)0.0297 (16)0.027 (2)0.0040 (13)0.0004 (15)0.0042 (14)
C110.027 (2)0.0371 (18)0.024 (2)0.0034 (15)0.0041 (15)0.0043 (15)
C120.029 (2)0.0317 (16)0.021 (2)0.0043 (16)0.0058 (15)0.0010 (14)
C130.032 (2)0.053 (2)0.035 (2)0.0107 (17)0.0109 (19)0.0014 (19)
Geometric parameters (Å, º) top
Cl1—C41.736 (3)C5—C61.398 (5)
S1—O21.430 (2)C5—H50.9500
S1—O11.432 (2)C6—H60.9500
S1—N11.637 (3)C7—C121.378 (4)
S1—C11.762 (3)C7—C81.392 (5)
O3—C101.372 (4)C8—C91.371 (4)
O3—C131.432 (4)C8—H80.9500
N1—C71.455 (4)C9—C101.386 (5)
N1—H10.858 (19)C9—H90.9500
C1—C61.382 (4)C10—C111.381 (5)
C1—C21.388 (5)C11—C121.384 (4)
C2—C31.375 (5)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.389 (4)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.372 (5)C13—H13C0.9800
O2—S1—O1120.09 (14)C1—C6—H6120.4
O2—S1—N1105.83 (15)C5—C6—H6120.4
O1—S1—N1107.35 (16)C12—C7—C8120.2 (3)
O2—S1—C1108.47 (15)C12—C7—N1119.5 (3)
O1—S1—C1107.85 (15)C8—C7—N1120.3 (3)
N1—S1—C1106.50 (15)C9—C8—C7119.2 (3)
C10—O3—C13116.5 (3)C9—C8—H8120.4
C7—N1—S1118.7 (2)C7—C8—H8120.4
C7—N1—H1111 (2)C8—C9—C10121.0 (3)
S1—N1—H1108 (3)C8—C9—H9119.5
C6—C1—C2121.0 (3)C10—C9—H9119.5
C6—C1—S1120.0 (3)O3—C10—C11124.8 (3)
C2—C1—S1118.8 (2)O3—C10—C9115.5 (3)
C3—C2—C1119.8 (3)C11—C10—C9119.6 (3)
C3—C2—H2120.1C10—C11—C12119.8 (3)
C1—C2—H2120.1C10—C11—H11120.1
C2—C3—C4119.2 (3)C12—C11—H11120.1
C2—C3—H3120.4C7—C12—C11120.3 (3)
C4—C3—H3120.4C7—C12—H12119.9
C5—C4—C3121.6 (3)C11—C12—H12119.9
C5—C4—Cl1119.4 (3)O3—C13—H13A109.5
C3—C4—Cl1119.0 (3)O3—C13—H13B109.5
C4—C5—C6119.2 (3)H13A—C13—H13B109.5
C4—C5—H5120.4O3—C13—H13C109.5
C6—C5—H5120.4H13A—C13—H13C109.5
C1—C6—C5119.2 (3)H13B—C13—H13C109.5
(VI) 4-Fluoro-N-(4-methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H12FNO3SF(000) = 584
Mr = 281.30Dx = 1.453 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1514 reflections
a = 20.7242 (4) Åθ = 2.9–26.0°
b = 12.3551 (4) ŵ = 0.27 mm1
c = 5.0209 (1) ÅT = 120 K
V = 1285.60 (5) Å3Block, colourless
Z = 40.22 × 0.14 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2239 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2182 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.944, Tmax = 0.974l = 46
13397 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2191P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2239 reflectionsΔρmax = 0.19 e Å3
177 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), with 823 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C13H12FNO3SV = 1285.60 (5) Å3
Mr = 281.30Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.7242 (4) ŵ = 0.27 mm1
b = 12.3551 (4) ÅT = 120 K
c = 5.0209 (1) Å0.22 × 0.14 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2182 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.974Rint = 0.041
13397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.37 e Å3
2239 reflectionsAbsolute structure: Flack (1983), with 823 Friedel pairs
177 parametersAbsolute structure parameter: 0.03 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.42758 (6)0.12674 (9)0.8167 (3)0.0344 (3)
S10.229203 (17)0.18245 (3)0.50000 (10)0.01522 (12)
O10.21135 (6)0.16377 (10)0.2274 (3)0.0209 (3)
O20.24741 (6)0.28851 (10)0.5854 (3)0.0199 (3)
O30.04008 (5)0.24482 (8)0.5186 (3)0.0222 (3)
N10.16700 (7)0.14782 (12)0.6836 (3)0.0162 (3)
H10.1761 (10)0.1572 (15)0.850 (3)0.016 (5)*
C10.29196 (7)0.09192 (13)0.5807 (4)0.0165 (4)
C20.33383 (8)0.11902 (14)0.7867 (4)0.0192 (4)
H20.33060.18740.87210.023*
C30.38040 (8)0.04508 (14)0.8662 (4)0.0220 (4)
H30.40990.06171.00530.026*
C40.38256 (8)0.05388 (14)0.7363 (4)0.0221 (4)
C50.34214 (8)0.08137 (13)0.5309 (4)0.0225 (4)
H50.34590.14950.44460.027*
C60.29554 (7)0.00726 (13)0.4520 (4)0.0190 (4)
H60.26650.02420.31180.023*
C70.13524 (8)0.04617 (13)0.6314 (4)0.0159 (4)
C80.14911 (8)0.04427 (13)0.7868 (4)0.0181 (4)
H80.18090.04000.92260.022*
C90.11645 (8)0.14025 (14)0.7429 (4)0.0190 (4)
H90.12570.20200.84890.023*
C100.07000 (7)0.14613 (13)0.5428 (4)0.0184 (4)
C110.05653 (8)0.05685 (13)0.3864 (4)0.0190 (4)
H110.02530.06150.24830.023*
C120.08911 (8)0.03992 (13)0.4330 (4)0.0180 (4)
H120.07960.10190.32810.022*
C130.00404 (9)0.25854 (15)0.3038 (5)0.0265 (4)
H13A0.02010.33310.30290.040*
H13B0.01800.24350.13510.040*
H13C0.04030.20850.32550.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0326 (6)0.0323 (6)0.0383 (8)0.0143 (5)0.0088 (6)0.0031 (6)
S10.0179 (2)0.01521 (19)0.0126 (2)0.00018 (13)0.00031 (19)0.00045 (17)
O10.0248 (6)0.0248 (6)0.0130 (8)0.0012 (5)0.0016 (6)0.0001 (5)
O20.0250 (6)0.0144 (6)0.0202 (8)0.0011 (5)0.0014 (6)0.0015 (5)
O30.0194 (5)0.0199 (5)0.0271 (8)0.0029 (4)0.0045 (6)0.0025 (6)
N10.0183 (7)0.0187 (7)0.0117 (8)0.0003 (5)0.0001 (6)0.0027 (6)
C10.0156 (7)0.0174 (8)0.0163 (10)0.0013 (6)0.0025 (7)0.0012 (7)
C20.0197 (8)0.0198 (8)0.0181 (10)0.0025 (6)0.0002 (7)0.0026 (7)
C30.0185 (8)0.0284 (9)0.0192 (10)0.0010 (7)0.0036 (7)0.0018 (8)
C40.0192 (8)0.0235 (9)0.0234 (11)0.0049 (7)0.0009 (8)0.0045 (8)
C50.0246 (8)0.0154 (7)0.0275 (12)0.0010 (6)0.0009 (8)0.0005 (8)
C60.0200 (8)0.0190 (7)0.0180 (10)0.0032 (6)0.0013 (7)0.0025 (7)
C70.0153 (7)0.0175 (8)0.0150 (10)0.0010 (6)0.0008 (7)0.0015 (7)
C80.0166 (7)0.0219 (8)0.0160 (10)0.0018 (6)0.0029 (7)0.0005 (7)
C90.0190 (8)0.0198 (8)0.0183 (10)0.0018 (6)0.0016 (7)0.0017 (7)
C100.0135 (7)0.0207 (8)0.0212 (11)0.0007 (6)0.0024 (7)0.0029 (8)
C110.0140 (7)0.0276 (9)0.0154 (10)0.0012 (6)0.0015 (7)0.0026 (8)
C120.0163 (7)0.0216 (8)0.0160 (10)0.0037 (6)0.0006 (7)0.0002 (7)
C130.0216 (8)0.0303 (9)0.0276 (12)0.0065 (7)0.0062 (8)0.0022 (8)
Geometric parameters (Å, º) top
F1—C41.358 (2)C5—C61.389 (2)
S1—O21.4294 (13)C5—H50.9500
S1—O11.4363 (15)C6—H60.9500
S1—N11.6414 (16)C7—C121.383 (2)
S1—C11.7626 (17)C7—C81.393 (2)
O3—C101.373 (2)C8—C91.383 (2)
O3—C131.424 (2)C8—H80.9500
N1—C71.442 (2)C9—C101.393 (3)
N1—H10.865 (16)C9—H90.9500
C1—C61.387 (2)C10—C111.382 (3)
C1—C21.391 (3)C11—C121.393 (2)
C2—C31.388 (2)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.386 (3)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.371 (3)C13—H13C0.9800
O2—S1—O1120.06 (8)C1—C6—H6120.4
O2—S1—N1106.13 (8)C5—C6—H6120.4
O1—S1—N1106.91 (8)C12—C7—C8120.09 (16)
O2—S1—C1108.55 (8)C12—C7—N1119.68 (15)
O1—S1—C1107.89 (8)C8—C7—N1120.18 (15)
N1—S1—C1106.56 (8)C9—C8—C7119.83 (17)
C10—O3—C13117.54 (14)C9—C8—H8120.1
C7—N1—S1118.91 (12)C7—C8—H8120.1
C7—N1—H1113.1 (13)C8—C9—C10119.86 (17)
S1—N1—H1109.7 (14)C8—C9—H9120.1
C6—C1—C2121.71 (16)C10—C9—H9120.1
C6—C1—S1119.53 (14)O3—C10—C11124.56 (16)
C2—C1—S1118.59 (14)O3—C10—C9114.95 (16)
C3—C2—C1119.30 (17)C11—C10—C9120.49 (15)
C3—C2—H2120.4C10—C11—C12119.44 (17)
C1—C2—H2120.4C10—C11—H11120.3
C4—C3—C2117.89 (18)C12—C11—H11120.3
C4—C3—H3121.1C7—C12—C11120.28 (16)
C2—C3—H3121.1C7—C12—H12119.9
F1—C4—C5118.63 (17)C11—C12—H12119.9
F1—C4—C3117.83 (17)O3—C13—H13A109.5
C5—C4—C3123.53 (16)O3—C13—H13B109.5
C4—C5—C6118.43 (17)H13A—C13—H13B109.5
C4—C5—H5120.8O3—C13—H13C109.5
C6—C5—H5120.8H13A—C13—H13C109.5
C1—C6—C5119.13 (18)H13B—C13—H13C109.5
(VII) N-(4-Chlorophenyl)-4-methoxybenzenesulfonamide top
Crystal data top
C13H12ClNO3SF(000) = 616
Mr = 297.75Dx = 1.483 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1562 reflections
a = 21.3923 (7) Åθ = 2.9–26.0°
b = 12.3691 (4) ŵ = 0.45 mm1
c = 5.0386 (2) ÅT = 120 K
V = 1333.23 (8) Å3Platelet, colourless
Z = 40.40 × 0.15 × 0.15 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2413 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2266 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.4°
ϕ and ω scansh = 2624
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1415
Tmin = 0.842, Tmax = 0.936l = 56
8878 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.4077P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2413 reflectionsΔρmax = 0.22 e Å3
178 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack (1983), with 945 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (7)
Crystal data top
C13H12ClNO3SV = 1333.23 (8) Å3
Mr = 297.75Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.3923 (7) ŵ = 0.45 mm1
b = 12.3691 (4) ÅT = 120 K
c = 5.0386 (2) Å0.40 × 0.15 × 0.15 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2266 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.936Rint = 0.048
8878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.32 e Å3
2413 reflectionsAbsolute structure: Flack (1983), with 945 Friedel pairs
178 parametersAbsolute structure parameter: 0.08 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24485 (2)0.21722 (4)0.50004 (14)0.01787 (13)
Cl10.02514 (3)0.19323 (5)0.43434 (15)0.03181 (18)
O10.22594 (8)0.20626 (13)0.2279 (3)0.0246 (4)
O20.26687 (7)0.31889 (13)0.5983 (4)0.0237 (4)
O30.42998 (8)0.12261 (14)0.7239 (4)0.0292 (4)
N10.18367 (9)0.18694 (16)0.6824 (4)0.0190 (4)
H10.1948 (12)0.189 (2)0.842 (4)0.023 (7)*
C10.30208 (10)0.11869 (18)0.5643 (5)0.0184 (5)
C20.34506 (10)0.13536 (19)0.7654 (5)0.0211 (5)
H20.34470.20140.86140.025*
C30.38859 (11)0.0563 (2)0.8277 (5)0.0245 (6)
H30.41800.06740.96630.029*
C40.38842 (11)0.03955 (18)0.6836 (5)0.0211 (5)
C50.34500 (10)0.05694 (17)0.4849 (6)0.0244 (5)
H50.34510.12330.39010.029*
C60.30141 (11)0.02154 (17)0.4231 (5)0.0211 (5)
H60.27150.00960.28690.033 (8)*
C70.14745 (11)0.09253 (17)0.6193 (5)0.0181 (5)
C80.15372 (11)0.00200 (18)0.7633 (5)0.0215 (5)
H80.18370.00590.90220.026*
C90.11688 (11)0.09082 (19)0.7073 (6)0.0241 (5)
H90.12070.15540.80800.029*
C100.07434 (10)0.08391 (17)0.5021 (6)0.0217 (5)
C110.06828 (11)0.00904 (18)0.3506 (5)0.0226 (5)
H110.03940.01150.20760.027*
C120.10482 (10)0.09824 (18)0.4098 (5)0.0210 (5)
H120.10090.16280.30890.025*
C130.47298 (12)0.1129 (2)0.9392 (6)0.0337 (6)
H13A0.50010.17680.94420.050*
H13B0.44980.10741.10650.050*
H13C0.49860.04800.91480.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0217 (3)0.0167 (2)0.0152 (3)0.0004 (2)0.0003 (3)0.0003 (3)
Cl10.0258 (3)0.0237 (3)0.0460 (5)0.0036 (2)0.0010 (3)0.0092 (3)
O10.0297 (9)0.0286 (9)0.0155 (9)0.0044 (7)0.0031 (8)0.0019 (7)
O20.0283 (9)0.0147 (8)0.0282 (10)0.0025 (7)0.0002 (8)0.0004 (7)
O30.0279 (9)0.0226 (9)0.0370 (12)0.0069 (7)0.0072 (9)0.0005 (8)
N10.0207 (10)0.0224 (10)0.0139 (10)0.0005 (8)0.0013 (8)0.0017 (9)
C10.0196 (11)0.0174 (11)0.0181 (13)0.0019 (8)0.0011 (9)0.0005 (9)
C20.0232 (12)0.0185 (12)0.0217 (13)0.0001 (9)0.0021 (10)0.0067 (10)
C30.0214 (12)0.0264 (13)0.0258 (14)0.0000 (10)0.0057 (10)0.0041 (10)
C40.0192 (12)0.0185 (12)0.0258 (15)0.0009 (9)0.0016 (10)0.0022 (10)
C50.0262 (11)0.0161 (11)0.0308 (15)0.0020 (8)0.0005 (12)0.0027 (12)
C60.0224 (11)0.0193 (11)0.0216 (13)0.0037 (9)0.0015 (10)0.0035 (10)
C70.0168 (11)0.0185 (11)0.0191 (12)0.0016 (9)0.0012 (9)0.0027 (10)
C80.0230 (12)0.0217 (13)0.0198 (13)0.0006 (9)0.0041 (10)0.0011 (10)
C90.0249 (12)0.0195 (12)0.0278 (14)0.0005 (9)0.0008 (11)0.0019 (11)
C100.0172 (10)0.0196 (11)0.0282 (13)0.0013 (8)0.0025 (11)0.0074 (11)
C110.0191 (12)0.0271 (13)0.0214 (14)0.0028 (9)0.0042 (10)0.0018 (11)
C120.0200 (11)0.0212 (11)0.0219 (13)0.0032 (9)0.0002 (10)0.0027 (10)
C130.0334 (13)0.0379 (14)0.0297 (16)0.0115 (11)0.0049 (11)0.0011 (13)
Geometric parameters (Å, º) top
S1—O21.4312 (17)C5—C61.381 (3)
S1—O11.4363 (18)C5—H50.9500
S1—N11.642 (2)C6—H60.9500
S1—C11.757 (2)C7—C81.382 (3)
Cl1—C101.747 (2)C7—C121.397 (3)
O3—C41.374 (3)C8—C91.381 (3)
O3—C131.428 (3)C8—H80.9500
N1—C71.437 (3)C9—C101.380 (4)
N1—H10.839 (17)C9—H90.9500
C1—C21.384 (3)C10—C111.386 (3)
C1—C61.396 (3)C11—C121.385 (3)
C2—C31.386 (3)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.390 (3)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.383 (4)C13—H13C0.9800
O2—S1—O1120.38 (11)C5—C6—H6120.6
O2—S1—N1105.62 (10)C1—C6—H6120.6
O1—S1—N1106.75 (10)C8—C7—C12120.2 (2)
O2—S1—C1108.45 (10)C8—C7—N1121.3 (2)
O1—S1—C1107.86 (11)C12—C7—N1118.6 (2)
N1—S1—C1107.10 (11)C9—C8—C7120.7 (2)
C4—O3—C13117.8 (2)C9—C8—H8119.7
C7—N1—S1119.44 (16)C7—C8—H8119.7
C7—N1—H1113.2 (18)C10—C9—C8118.7 (2)
S1—N1—H1107.6 (18)C10—C9—H9120.7
C2—C1—C6120.5 (2)C8—C9—H9120.7
C2—C1—S1119.62 (17)C9—C10—C11121.7 (2)
C6—C1—S1119.72 (18)C9—C10—Cl1119.72 (19)
C1—C2—C3120.5 (2)C11—C10—Cl1118.6 (2)
C1—C2—H2119.8C12—C11—C10119.3 (2)
C3—C2—H2119.8C12—C11—H11120.3
C2—C3—C4118.8 (2)C10—C11—H11120.3
C2—C3—H3120.6C11—C12—C7119.4 (2)
C4—C3—H3120.6C11—C12—H12120.3
O3—C4—C5115.2 (2)C7—C12—H12120.3
O3—C4—C3124.0 (2)O3—C13—H13A109.5
C5—C4—C3120.8 (2)O3—C13—H13B109.5
C6—C5—C4120.5 (2)H13A—C13—H13B109.5
C6—C5—H5119.8O3—C13—H13C109.5
C4—C5—H5119.8H13A—C13—H13C109.5
C5—C6—C1118.9 (2)H13B—C13—H13C109.5
(VIII) 4-Cyano-N-phenylbenzenesulfonamide top
Crystal data top
C13H10N2O2SF(000) = 536
Mr = 258.29Dx = 1.387 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1441 reflections
a = 20.1912 (7) Åθ = 2.9–26.0°
b = 12.0001 (4) ŵ = 0.26 mm1
c = 5.1055 (1) ÅT = 120 K
V = 1237.04 (6) Å3Block, colourless
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2286 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2187 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.4°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.939, Tmax = 0.975l = 65
13628 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.2848P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2286 reflectionsΔρmax = 0.13 e Å3
169 parametersΔρmin = 0.28 e Å3
2 restraintsAbsolute structure: Flack (1983), with 925 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C13H10N2O2SV = 1237.04 (6) Å3
Mr = 258.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.1912 (7) ŵ = 0.26 mm1
b = 12.0001 (4) ÅT = 120 K
c = 5.1055 (1) Å0.25 × 0.20 × 0.10 mm
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2187 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.975Rint = 0.041
13628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.13 e Å3
S = 1.08Δρmin = 0.28 e Å3
2286 reflectionsAbsolute structure: Flack (1983), with 925 Friedel pairs
169 parametersAbsolute structure parameter: 0.02 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22272 (2)0.20700 (3)0.49997 (10)0.02143 (11)
O10.20576 (7)0.18560 (11)0.2318 (2)0.0271 (3)
O20.23773 (7)0.31755 (10)0.5834 (3)0.0281 (3)
N10.16081 (8)0.16490 (12)0.6811 (3)0.0231 (3)
H10.1730 (10)0.1734 (16)0.840 (3)0.021 (5)*
N20.49107 (10)0.14131 (16)0.8742 (5)0.0493 (5)
C10.29062 (8)0.12052 (15)0.5829 (4)0.0219 (4)
C20.33073 (9)0.15267 (15)0.7917 (4)0.0246 (4)
H20.32290.22090.88080.029*
C30.38211 (9)0.08373 (15)0.8672 (4)0.0269 (4)
H30.41010.10431.00880.032*
C40.39268 (8)0.01634 (15)0.7340 (4)0.0271 (4)
C50.35239 (9)0.04766 (14)0.5262 (4)0.0293 (4)
H50.36030.11570.43630.035*
C60.30049 (9)0.02126 (15)0.4507 (4)0.0264 (4)
H60.27220.00050.31030.032*
C70.12937 (8)0.05963 (15)0.6267 (4)0.0221 (4)
C80.13993 (9)0.03073 (15)0.7904 (4)0.0281 (4)
H80.17030.02510.93190.034*
C90.10600 (10)0.12924 (16)0.7469 (4)0.0329 (5)
H90.11210.19070.86160.040*
C100.06319 (9)0.13808 (15)0.5366 (4)0.0304 (5)
H100.04000.20580.50620.027 (5)*
C110.05412 (9)0.04855 (16)0.3709 (4)0.0298 (4)
H110.02550.05550.22420.037 (6)*
C120.08647 (8)0.05149 (15)0.4169 (4)0.0259 (4)
H120.07920.11370.30530.031*
C130.44723 (10)0.08700 (17)0.8124 (4)0.0345 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (2)0.0209 (2)0.0173 (2)0.00093 (15)0.00005 (19)0.00220 (18)
O10.0335 (7)0.0315 (7)0.0161 (7)0.0018 (5)0.0015 (6)0.0018 (5)
O20.0371 (7)0.0205 (6)0.0267 (8)0.0004 (5)0.0000 (6)0.0039 (5)
N10.0248 (8)0.0280 (8)0.0165 (8)0.0001 (6)0.0000 (6)0.0041 (6)
N20.0426 (11)0.0410 (11)0.0643 (14)0.0123 (9)0.0087 (10)0.0091 (10)
C10.0219 (8)0.0214 (9)0.0223 (9)0.0028 (6)0.0021 (7)0.0017 (7)
C20.0260 (9)0.0228 (9)0.0249 (10)0.0026 (7)0.0008 (8)0.0066 (7)
C30.0242 (9)0.0290 (10)0.0276 (10)0.0041 (7)0.0018 (8)0.0035 (8)
C40.0234 (8)0.0255 (9)0.0323 (11)0.0018 (7)0.0047 (9)0.0003 (8)
C50.0320 (9)0.0222 (8)0.0338 (11)0.0025 (7)0.0025 (9)0.0068 (9)
C60.0297 (9)0.0236 (9)0.0259 (11)0.0062 (7)0.0009 (7)0.0063 (7)
C70.0205 (8)0.0254 (9)0.0204 (9)0.0011 (7)0.0039 (7)0.0019 (7)
C80.0288 (9)0.0307 (10)0.0247 (11)0.0061 (8)0.0034 (8)0.0009 (8)
C90.0370 (11)0.0270 (10)0.0349 (12)0.0060 (8)0.0027 (9)0.0031 (9)
C100.0263 (9)0.0261 (9)0.0389 (13)0.0003 (7)0.0074 (9)0.0049 (9)
C110.0233 (9)0.0378 (10)0.0284 (10)0.0027 (8)0.0007 (8)0.0043 (9)
C120.0245 (9)0.0291 (10)0.0242 (10)0.0003 (8)0.0007 (8)0.0031 (7)
C130.0307 (10)0.0304 (10)0.0424 (13)0.0009 (9)0.0014 (9)0.0051 (9)
Geometric parameters (Å, º) top
S1—O21.4259 (13)C5—C61.390 (3)
S1—O11.4343 (13)C5—H50.9500
S1—N11.6350 (16)C6—H60.9500
S1—C11.7707 (18)C7—C121.381 (3)
N1—C71.441 (2)C7—C81.385 (3)
N1—H10.855 (16)C8—C91.384 (3)
N2—C131.144 (3)C8—H80.9500
C1—C61.383 (2)C9—C101.383 (3)
C1—C21.393 (2)C9—H90.9500
C2—C31.382 (3)C10—C111.380 (3)
C2—H20.9500C10—H100.9500
C3—C41.396 (3)C11—C121.387 (3)
C3—H30.9500C11—H110.9500
C4—C51.389 (3)C12—H120.9500
C4—C131.447 (3)
O2—S1—O1120.15 (8)C6—C5—H5120.2
O2—S1—N1106.33 (8)C1—C6—C5119.07 (17)
O1—S1—N1107.59 (8)C1—C6—H6120.5
O2—S1—C1108.02 (8)C5—C6—H6120.5
O1—S1—C1107.94 (8)C12—C7—C8120.60 (17)
N1—S1—C1106.00 (8)C12—C7—N1119.20 (16)
C7—N1—S1119.91 (12)C8—C7—N1120.14 (17)
C7—N1—H1114.5 (13)C9—C8—C7119.71 (18)
S1—N1—H1106.3 (14)C9—C8—H8120.1
C6—C1—C2121.86 (17)C7—C8—H8120.1
C6—C1—S1119.97 (14)C10—C9—C8119.96 (18)
C2—C1—S1118.08 (13)C10—C9—H9120.0
C3—C2—C1118.95 (17)C8—C9—H9120.0
C3—C2—H2120.5C11—C10—C9119.96 (17)
C1—C2—H2120.5C11—C10—H10120.0
C2—C3—C4119.59 (18)C9—C10—H10120.0
C2—C3—H3120.2C10—C11—C12120.53 (19)
C4—C3—H3120.2C10—C11—H11119.7
C5—C4—C3121.02 (17)C12—C11—H11119.7
C5—C4—C13119.92 (17)C7—C12—C11119.19 (17)
C3—C4—C13119.05 (18)C7—C12—H12120.4
C4—C5—C6119.51 (17)C11—C12—H12120.4
C4—C5—H5120.2N2—C13—C4178.8 (2)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC14H12N2O3SC14H12F3NO3SC13H12INO3SC13H12BrNO3S
Mr288.32331.31389.20342.21
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21Orthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)293120120120
a, b, c (Å)22.0249 (7), 12.5626 (5), 5.0512 (1)22.1833 (14), 12.8024 (8), 5.0114 (3)21.6853 (8), 12.6570 (5), 5.0586 (3)21.6210 (7), 12.3720 (3), 5.0526 (1)
V3)1397.62 (8)1423.23 (15)1388.44 (11)1351.55 (6)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.240.272.463.20
Crystal size (mm)0.20 × 0.15 × 0.100.20 × 0.10 × 0.050.30 × 0.15 × 0.100.20 × 0.20 × 0.15
Data collection
DiffractometerBruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.9760.947, 0.9870.526, 0.7910.567, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
10978, 2582, 1990 6994, 2724, 2003 9765, 2550, 2294 9718, 2521, 2282
Rint0.0440.0810.0480.036
(sin θ/λ)max1)0.6170.6170.6180.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.04 0.055, 0.123, 1.01 0.031, 0.075, 1.04 0.026, 0.057, 1.06
No. of reflections2582272425502521
No. of parameters187202178178
No. of restraints2222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.180.28, 0.370.63, 0.610.28, 0.34
Absolute structureFlack (1983), with 1042 Friedel pairsFlack (1983), with 1164 Friedel pairsFlack (1983), with 1012 Friedel pairsFlack (1983), with 1028 Friedel pairs
Absolute structure parameter0.02 (9)0.04 (13)0.01 (3)0.019 (8)


(V)(VI)(VII)(VIII)
Crystal data
Chemical formulaC13H12ClNO3SC13H12FNO3SC13H12ClNO3SC13H10N2O2S
Mr297.75281.30297.75258.29
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21Orthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)120120120120
a, b, c (Å)21.2580 (15), 12.3967 (5), 5.0526 (3)20.7242 (4), 12.3551 (4), 5.0209 (1)21.3923 (7), 12.3691 (4), 5.0386 (2)20.1912 (7), 12.0001 (4), 5.1055 (1)
V3)1331.51 (13)1285.60 (5)1333.23 (8)1237.04 (6)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.450.270.450.26
Crystal size (mm)0.20 × 0.20 × 0.100.22 × 0.14 × 0.100.40 × 0.15 × 0.150.25 × 0.20 × 0.10
Data collection
DiffractometerBruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.916, 0.9570.944, 0.9740.842, 0.9360.939, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6144, 2472, 2028 13397, 2239, 2182 8878, 2413, 2266 13628, 2286, 2187
Rint0.0580.0410.0480.041
(sin θ/λ)max1)0.6160.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 1.08 0.027, 0.076, 1.00 0.032, 0.074, 1.04 0.028, 0.067, 1.08
No. of reflections2472223924132286
No. of parameters177177178169
No. of restraints2222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.300.19, 0.370.22, 0.320.13, 0.28
Absolute structureFlack (1983), with 106 Friedel pairsFlack (1983), with 823 Friedel pairsFlack (1983), with 945 Friedel pairsFlack (1983), with 925 Friedel pairs
Absolute structure parameter0.08 (9)0.03 (7)0.08 (7)0.02 (7)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.825 (18)2.100 (19)2.913 (3)169 (3)
Symmetry code: (i) x, y, z+1.
Comparison of hydrogen-bond geometry for (I)–(VIII) (°, Å) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H1···O1i0.863 (18)2.077 (19)2.927 (3)168 (2)
(II)N1—H1···O1ii0.880 (19)2.00 (2)2.877 (4)172 (4)
(III)N1—H1···O1ii0.85 (2)2.08 (2)2.905 (6)164 (4)
(IV)N1—H1···O2i0.825 (18)2.100 (19)2.913 (3)169 (3)
(V)N1—H1···O1i0.858 (19)2.054 (19)2.911 (4)177 (4)
(VI)N1—H1···O1i0.865 (16)2.032 (17)2.888 (2)170.0 (19)
(VII)N1—H1···O1i0.839 (17)2.066 (18)2.903 (3)175 (3)
(VIII)N1—H1···O1i0.855 (16)2.111 (16)2.965 (2)176.8 (19)
Symmetry codes: (i) x, y, z + 1; (ii) x, y, z - 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds