Download citation
Download citation
link to html
Three substituted triphen­yl(phenyl­imino)phospho­ranes, namely (4-cyano­phenyl­imino)triphenyl­phospho­rane, C25H19N2P, (I), (4-nitro­phenyl­imino)triphenyl­phospho­rane, C24H19N2O2P, (II), and (3-nitro­phenyl­imino)triphenyl­phospho­rane, C24H19N2O2P, (III), were synthesized as precursors for the preparation of substituted diphenyl­carbodiimides. All three compounds display a supramolecular arrangement in which the substituted benzene rings are organized in an antiparallel fashion. The nitro group on the ring participates in C-H...O and O...[pi] inter­actions, forming inter­molecular dimers. Compound (III) shows disorder which involves the rotation of one of the phenyl rings of the triphenyl­phosphine group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109047763/uk3009sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109047763/uk3009Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109047763/uk3009IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109047763/uk3009IIIsup4.hkl
Contains datablock III

CCDC references: 765483; 765484; 765485

Comment top

There is considerable interest in organic semiconductors these days mainly because of the convenient and easy way in which their molecular structures, and hence their properties, can be tuned to a specific application. This is in stark contrast to the present-day CMOS (complementary metal oxide semiconductor) technology where such tuning is almost impossible. Switching from polymeric to oligomeric organic materials is a worthwhile undertaking because of the numerous opto-electronic applications for which these new compounds are used, as has been discussed in depth by Müllen & Wegner (1998) and Segura & Martin (2000). The most important reason for making this transition is the fact that it is far easier to produce, purify and structurally characterize oligomers than polymers, as they are monodisperse materials. For these reasons, oligomers have been extensively used as model compounds for polymers but it is far more rewarding to study the properties of these oligomeric organic semiconductor materials for their own sake. The solid-state structures and electronic properties of one particular class of these oligomeric organic semiconductors – distyrylbenzenes, oligomeric derivatives of PPV [poly(p-phenylene vinylene)] – have already been extensively studied and the influence of substituents on the properties of the carbon backbone have been investigated (Baeke et al., 2007; Vande Velde et al., 2004; Vande Velde, Baeke et al. 2005; Vande Velde, De Borger et al., 2005; Vande Velde, Geise et al., 2005; Vande Velde et al., 2006; Irngartinger et al., 1994; Hakansson et al., 1992; Bartholomew et al., 2000a; Bartholomew et al. 2000b; Coates et al., 1998; Nohra et al., 2006; Renak et al., 1999; Sancho-Garcia et al., 2005; Zeller et al., 2005). However, keeping in mind the tunability of these materials, it is equally interesting to determine the effects of the replacement of the ethenylic –CHCH– link by other spacers such as –CHN– (benzylideneanilines), –NSN– (sulfodiimides) or –NCN– (carbodiimides) fragments. The work we present here deals with the precursors to carbodiimide derivatives of distryrylbenzenes, i.e. triphenyl(phenylimino)phosphoranes. Because of the recent interest in carbodiimides as precursors for nitrogen-containing heterocycles, the synthesis of these compounds has received considerable attention (Ding et al., 2000, 2004; Liu et al., 2006; Okawa et al., 1996; Yuan et al., 2006; Zhao et al., 2006; Wamhoff et al., 1993; Eguchi, 2005). The most important pathway to obtain carbodiimides is through the aza–Wittig reaction of iminophosphoranes with isocyanates (Ding et al., 2004, 2005; Liu et al., 2006; Zhao et al., 2006), since this reaction proceeds under mild conditions, requires only readily available precursors and does not involve the use of difficult-to-handle compounds such as phosgene (Kurzer & Douraghi, 1967; Mikolajczyk & Kielbasinski, 1981; Ulrich & Sayigh, 1966). The required iminophosphoranes can be obtained by a Staudinger reaction from azide derivatives (Ding et al., 2000; Okawa et al., 1996; Kurzer & Douraghi, 1967), or, more conveniently, by the direct reaction of an aromatic amine with triphenylphosphine (Ding et al., 2004, 2005; Liu et al., 2006; Okawa et al., 1996; Yuan et al., 2006; Zhao et al., 2006), as depicted in the scheme. In this work we report the molecular and crystal structures of the three precursor iminophosphoranes (I), (II), and (III), obtained using the latter reaction.

Table 1 presents selected geometric parameters of the three triphenyl(phenylimino)phosphoranes under investigation; the numbering of the atoms can be found in the scheme. The molecular geometries are similar for the three compounds. As can be seen from the values of the C6—C1—N1—P1 torsion angle, ring A is almost co-planar with the NP bond, even though for the 3-nitro derivative (III) the deviation is somewhat larger. The values of the C1—N1—P1—C13 torsion angle indicate that ring C of the triphenylphosphine moiety is only slightly twisted compared to the plane formed by the PN bond and ring A, whereas the torsion angles of rings B and D vary between approximately 40° and 85°. In comparison with the two other angles between the PN bond and the rings of the triphenylphosphine moiety, the N1—P1—C13 angle is much smaller due to the intramolecular C14—H14···N1 interaction, of which the H···N contact distances and C—H···N angles are 2.51 Å and 108°, 2.51 (2) Å and 110°, and 2.67 Å and 105° for compounds (I), (II) and (III), respectively. This smaller N1—P1—C13 angle can also be found in the structures of related triphenyl(phenylimino)phosphoranes such as the parent triphenyl(phenylimino)phosphorane [GEHRIU (Bohm et al., 1988) in the Cambridge Structural Database (CSD) (Allen, 2002)], triphenyl(2-aminophenylimino)phosphorane (JOZYIG) (Llamas-Saiz et al., 1992), triphenyl[2-(N,N-dimethylamino)phenylimino]phosphorane (HATXOP) (Llamas-Saiz & Foces-Foces, 1994) and triphenyl(4-bromophenylimino)phosphorane (BPITPP) (Hewlins, 1971).

The crystal structure of triphenyl(4-cyanophenylimino)phosphorane, (I), which is graphically represented in Fig. 1, is composed of alternating layers of cyanophenyl rings and triphenylphosphine groups. Within the cyanophenyl layer the fragments are oriented in an antiparallel fashion. The successive molecules are linked in the direction of the b axis in the triphenylphosphine layer by C16—H16···Cg(B)i contacts [symmetry code (i) = 1 - x, 1/2 + y, 1/2 - z] 2.83 Å, 129° (represented by the dotted lines in Fig. 1), in which Cg(B) is the centroid of ring B. These two layers combine into two-dimensional layers, which are stacked on top of each other to give the three-dimensional structure. The successive stacked layers are connected by C21—H21···Cg(A)ii contacts [symmetry code (ii) = 1 + x, y, z] 2.72 Å, 159° (not shown in Fig. 1).

The packing of triphenyl(4-nitrophenylimino)phosphorane, (II), shown in Fig. 2(a), is based on dimers with the nitrophenyl rings in an antiparallel cofacial arrangement, one of which is shown in Fig. 2(b). These dimers are due to intermolecular O1···Cg(A)iii [symmetry code (iii) = 2 - x, 1 - y, 1 - z] 3.473 (2) Å, 84.81 (11)° (not shown in Fig. 2b) and C24—H24···O1iii [2.68 (3) Å, 145 (2)°] contacts (represented by the dotted lines in Fig. 2b). The former are possible most likely because of the fact that ring A is electron-poorer due to the presence of the nitro group. The dimers are then linked into a three-dimensional structure through C22—H22···N1iv contacts [symmetry code (iv) = 1 + x, 3/2 - y, 1/2 + z] 2.67 (2) Å, 152.3 (16)° (not shown in Fig. 2b) and a network of C—H···O contacts consisting of C9—H9···O2i [2.59 (3) Å, 139.0 (16)°] and C10—H10···O1v contacts [symmetry code (v) = 2 - x, 1/2 + y, 1/2 - z] 2.701 (19) Å, 132.7 (15)° (represented by the dotted lines in Fig. 2a). The latter generate infinite chains in the direction of the a axis, in which nitro groups alternate with rings B of the triphenylphosphine fragment, which contain H9 and H10.

The packing of triphenyl(3-nitrophenylimino)phosphorane, (III), which is presented in Fig. 3(a), is similar to that of compound (II). Two molecules are involved in a dimer via three separate intermolecular interactions, which are represented by the dotted lines in Fig. 3(b). The first is the N2—O2···Cg(A)vi contact [symmetry code (vi) = 1 - x, 1 - y, 1 - z] 3.798 (4) Å, 92.77 (17)° which is possible again because of the lower electron density in ring A due to the presence of the nitro group. The other two are C—H···O contacts, i.e. C8—H8···O2vi (2.63 Å, 122°) and C9—H9···O2vi (2.62 Å, 123°). These dimers are then connected to adjacent molecules by a C—H···O interaction involving the nitro group's atom O1, which was unused in the dimer contacts, i.e. C14—H14···O1vii [symmetry code (vii) = 1 - x, 2 - y, 1 - z] 2.70 Å, 128° (represented by the dotted lines in Fig. 3a). The result is a supramolecular structure which displays alternating layers of nitrophenyl and triphenylphosphine moieties.

The fact that the crystal structures of (II) and (III) are based on intermolecular dimers sets them apart from (I). These dimers owe their existence mainly to the presence of the nitro groups: they generate one [for (II)] or two [for (III)] C—H···O interactions and, because of the reduced electron density in the rings A of (II) and (III), as a consequence of the electron-withdrawing properties of the nitro group, one O···Cg interaction. Thus, the nitro group in the 3-position in (III) generates one more intermolecular contact within the dimer than the nitro group in the 4-position in (II) does. The supramolecular structure of (III), on the other hand, can count on just one intermolecular C—H···O contact, while for (II) one C—H···N and two additional C—H···O interactions become available from the nitro group in the 4-position. For (I), the nitrile functionalities are not involved in the supramolecular structure and the whole is based on weaker C—H···π interactions. Since the previously mentioned related triphenyl(phenylimino)phosphoranes all have electron-donating substituents, the typical dimers found in compounds (II) and (III) are absent due to the resulting higher electron density in ring A. Their packing is mainly based on C—H···π contacts as in compound (I), although ππ interactions can be found in HATXOP (Llamas-Saiz et al., 1994) and JOZYIG (Llamas-Saiz et al., 1992) and the structure of HATXOP displays C—H···N interactions.

Related literature top

For related literature, see: Allen (2002); Baeke et al. (2007); Bartholomew et al. (2000a, 2000b); Bohm et al. (1988); Coates et al. (1998); Ding et al. (2000, 2004, 2005); Eguchi (2005); Hakansson et al. (1992); Hewlins (1971); Irngartinger et al. (1994); Kurzer & Douraghi (1967); Liu et al. (2006); Llamas-Saiz & Foces-Foces (1994); Llamas-Saiz, Foces-Foces, Elguero, Molina, Alajarín & Vidal (1992); Mikolajczyk & Kielbasinski (1981); Nohra et al. (2006); Okawa et al. (1996); Renak et al. (1999); Sancho-Garcia, Brédas, Beljonne, Cornil, Martinez-Alvarez, Hanack, Poulsen, Gierschner, Mack, Egelhaaf & Oelkrug (2005); Segura & Martin (2000); Ulrich & Sayigh (1966); Vande Velde, Baeke, Geise & Blockhuys (2005); Vande Velde, Chen, Baeke, Moens, Dieltiens, Geise, Zeller & Blockhuys (2004); Vande Velde, De Borger & Blockhuys (2005); Vande Velde, Geise & Blockhuys (2005, 2006); Wamhoff et al. (1993); Yuan et al. (2006); Zeller et al. (2005); Zhao et al. (2006).

Experimental top

All reagents and solvents were obtained from ACROS and used as received. 1H and 13C NMR spectra were recorded using a Bruker Avance II spectrometer operating at 400 MHz and 100 MHz, respectively; chemical shifts δ are given in p.p.m.. relative to tetramethylsilane (TMS) and coupling constants J are given in Hz. The relevant numbering scheme is depicted in the scheme. The synthetic pathway for the preparation of compounds (I), (II) and (III) is shown in the scheme: the appropriately substituted aniline was stirred at room temperature with the triphenylphosphine/hexachloroethane/triethylamine system in acetonitrile and the resulting precipitate was recrystallized from ethanol to obtain large crystals of the desired products. The melting points are uncorrected.

For (I), triethylamine (18.2 g, 0.18 mol) was added slowly to a solution of 4-cyanoaniline (7.1 g, 0.06 mol), triphenylphosphine (23.6 g, 0.09 mol) and hexachloroethane (21.3 g, 0.09 mol) in dry acetonitrile (200 ml). The mixture was stirred at room temperature overnight and then cooled in a refrigerator. The precipitated yellow solid was filtered off and was recrystallized from ethanol. The yield was 15.4 g (68%) m.p. 461 K. δ 1H (CDCl3): 6.73 (d, 2H, JHH = 8.3, H2 and H6), 7.24 (d, 2H, JHH = 8.6, H3 and H5), 7.47 (m, 6H, H9, H11, H15, H17, H21 and H23), 7.55 (t × d, 3H, JHH = 7.4, JHP = 1.7, H10, H16 and H22), 7.73 (d × d, 6H, JHP = 12.2, JHH = 7.1, H8, H12, H14, H18, H20 and H24). δ 13C (CDCl3): 98.65 (s, C4), 121.03 (s, CN), 123.40 (d, JCP = 18.6, C2 and C6), 128.90 (d, JCP = 12.0, C9, C11, C15, C17, C21 and C23), 129.28 (d, JCP = 100.2, C7, C13 and C19), 132.21 (d, JCP = 2.8, C10, C16 and C22), 132.50 (d, JCP = 10.0, C8, C12, C14, C18, C20 and C24), 132.94 (d, JCP = 1.5, C3 and C5), 156.70 (d, JCP = 2.0, C1).

For (II), triethylamine (18.2 g, 0.18 mol) was added slowly to a solution of 4-nitroaniline (8.3 g, 0.06 mol), triphenylphosphine (23.6 g, 0.09 mol) and hexachloroethane (21.3 g, 0.09 mol) in dry acetonitrile (200 ml). The mixture was stirred at room temperature overnight and then cooled in a refrigerator. The precipitated yellow solid was filtered off and was recrystallized from ethanol. The yield was 16.4 g (69%) m.p. 428 K. δ 1H (CDCl3): 6.68 (d, 2H, JHH = 9.1, H2 and H6), 7.49 (m, 6H, H9, H11, H15, H17, H21 and H23), 7.57 (t × d, 3H, JHH = 7.2, JHP = 1.8, H10, H16 and H22), 7.73 (d × d, 6H, JHP = 12.2, JHH = 7.1, H8, H12, H14, H18, H20 and H24), 7.90 (d, 2H, JHH = 9.1, H3 and H5). δ 13C (CDCl3): 122.27 (d, JCP = 19.0, C2 and C6), 125.50 (d, JCP = 1.7, C3 and C5), 129.00 (d, JCP = 12.2, C9, C11, C15, C17, C21 and C23), 129.78 (d, JCP = 99.8, C7, C13 and C19), 132.42 (d, JCP = 2.8, C10, C16 and C22), 132.50 (d, JCP = 9.7, C8, C12, C14, C18, C20 and C24), 138.08 (s, C4), 159.99 (d, JCP = 3.0, C1).

For (III), triethylamine (18.2 g, 0.18 mol) was added slowly to a solution of 3-nitroaniline (8.3 g, 0.06 mol), triphenylphosphine (23.6 g, 0.09 mol) and hexachloroethane (21.3 g, 0.09 mol) in dry acetonitrile (200 ml). The mixture was stirred at room temperature overnight and then cooled in a refrigerator. The precipitate was filtered off but proved to be mostly triethylammonium chloride. The filtrate was partially evaporated, during which an orange precipitate formed. This new precipitate was filtered off and recrystallized from ethanol. The yield was 12.3 g (52%) m.p. 407 K. δ 1H (CDCl3): 7.14 (d, 1H, JHH = 8.0, H6), 7.47 - 7.55 (m, 8H, H2, H5, H9, H11, H15, H17, H21 and H23), 7.59 (t × d, 3H, JHH = 7.6, JHP = 1.2, H10, H16 and H22), 7.68 (d × d, 1H, JHH = 7.0 and 1.4, H4), 7.79 (d × d, 6H, JHP = 12.2, JHH = 7.2, H8, H12, H14, H18, H20 and H24). δ 13C (CDCl3): 116.95 (d, JCP = 16.6, C2), 128.44 (s, C4), 128.56, (s, C5), 129.00 (d, JCP = 12.3, C9, C11, C15, C17, C21 and C23), 129.61 (d, JCP = 16.7, C6), 131.90 (d, JCP = 2.9, C10, C16 and C22), 132.55 (s, C3), 132.72 (d, JCP = 9.9, C8, C12, C14, C18, C20 and C24), 148.89 (s, C1).

X-ray quality crystals of compounds (I), (II) and (III) were grown by slow cooling of a hot ethanol solution, and cut into the appropriate dimensions using a razor blade.

Refinement top

When possible, H atoms were located in a difference map and left free to refine, resulting in C—H distances between 0.90 (2) and 0.99 (2)Å. Uiso(H) values were constrained to 1.5Ueq(C). When not possible, H atoms were placed in calculated positions and refined as riding with C—H distances of 0.93Å and with Uiso(H) = 1.2Ueq(C). Ring B of the triphenylphosphine moiety in compound (III) turned out to be disordered. The displacement parameters of the atoms in the minor conformer were restrained to be the same as for the corresponding atoms in the major conformer. Furthermore, the P1—C7 and P1—C97 distances were restrained to be equal within a standard deviation of 0.02 Å. The disorder consists of a rotation of the ring of approximately 40° around the C7—C10 axis, which is itself not drastically displaced by the disorder, as shown in Fig. 4. Site- occupancy factors are 0.791 (3) and 0.209 (3) for the major and minor conformers, respectively. The major form is obviously energetically more favourable, since in the minor conformer the C8—H8···O2 and C9—H9···O2 contacts are absent.

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 2008) for (I), (II); SHELXS97 (Sheldrick, 2008) for (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I), (II) and (III), the last showing the disorder in ring B; C7—C8—C9—C10—C11—C12 is the major conformer. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing and the C—H···π contacts of (I).
[Figure 3] Fig. 3. (a) Graphical representation of the packing and network of C—H···O contacts connecting the dimers of (II), and (b) a view of the C—H···O contact generating the dimers. The molecule on the left is related to that on the right by the symmetry code (2-x, 1-y, 1-z).
[Figure 4] Fig. 4. (a) Graphical representation of the packing and network of C—H···O contacts connecting the dimers of (III) (only the major conformer is shown), and (b) a view of the C—H···O and O···Cg contacts generating the dimers. The molecule on the right is related to that on the left one by symmetry code (1-x, 1-y, 1-z).
(I) (4-cyanophenylimino)triphenylphosphorane top
Crystal data top
C25H19N2PF(000) = 792
Mr = 378.39Dx = 1.271 Mg m3
Monoclinic, P21/cMelting point: 461 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.581 (3) ÅCell parameters from 25 reflections
b = 13.862 (1) Åθ = 5.7–20.4°
c = 17.170 (4) ŵ = 0.15 mm1
β = 104.53 (2)°T = 293 K
V = 1977.1 (9) Å3Needle, yellow
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 100
ω/2θ scansk = 1616
7279 measured reflectionsl = 1920
3481 independent reflections3 standard reflections every 60 min
2198 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.431P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C25H19N2PV = 1977.1 (9) Å3
Mr = 378.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.581 (3) ŵ = 0.15 mm1
b = 13.862 (1) ÅT = 293 K
c = 17.170 (4) Å0.4 × 0.2 × 0.2 mm
β = 104.53 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.041
7279 measured reflections3 standard reflections every 60 min
3481 independent reflections intensity decay: none
2198 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3481 reflectionsΔρmin = 0.23 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.43085 (7)0.98161 (4)0.15534 (3)0.03856 (16)
N10.2907 (2)0.95971 (12)0.07875 (11)0.0462 (5)
C130.5092 (3)1.09837 (15)0.13864 (13)0.0408 (5)
C10.2105 (2)0.87581 (16)0.05162 (12)0.0394 (5)
C190.6017 (2)0.90139 (15)0.17504 (12)0.0383 (5)
C70.3636 (3)0.99261 (15)0.24664 (13)0.0437 (5)
C60.0905 (3)0.88052 (17)0.02089 (13)0.0475 (6)
H60.06990.93920.04780.057*
C40.0305 (3)0.71188 (17)0.01517 (14)0.0471 (6)
C230.7406 (3)0.75936 (18)0.23488 (15)0.0600 (7)
H230.75160.70860.27130.072*
C120.2009 (3)0.98428 (18)0.24176 (15)0.0560 (6)
H120.13010.96800.19300.067*
C30.1485 (3)0.70562 (17)0.05664 (14)0.0509 (6)
H30.16870.64660.08300.061*
C80.4678 (3)1.01650 (18)0.31973 (13)0.0575 (6)
H80.57791.02040.32420.069*
C20.2357 (3)0.78513 (16)0.08928 (13)0.0479 (6)
H20.31360.77890.13760.057*
C50.0030 (3)0.80107 (18)0.05298 (14)0.0525 (6)
H50.07620.80690.10090.063*
C250.0625 (3)0.62901 (19)0.04954 (15)0.0546 (6)
C210.8278 (3)0.84116 (19)0.13166 (16)0.0608 (7)
H210.89880.84660.09890.073*
C220.8442 (3)0.76707 (19)0.18560 (16)0.0609 (7)
H220.92550.72170.18900.073*
C240.6203 (3)0.82689 (16)0.23033 (13)0.0491 (6)
H240.55170.82230.26440.059*
C200.7068 (3)0.90750 (17)0.12577 (14)0.0514 (6)
H200.69520.95710.08830.062*
N20.1378 (3)0.56437 (17)0.07742 (14)0.0733 (7)
C100.2464 (5)1.0257 (2)0.3798 (2)0.0809 (10)
H100.20681.03740.42460.097*
C180.6534 (3)1.13273 (18)0.18645 (15)0.0588 (7)
H180.71141.09590.22930.071*
C140.4250 (3)1.15437 (17)0.07649 (14)0.0563 (6)
H140.32741.13270.04430.068*
C160.6273 (4)1.27555 (19)0.1084 (2)0.0729 (8)
H160.66751.33510.09770.088*
C170.7106 (3)1.2213 (2)0.17054 (19)0.0699 (8)
H170.80731.24420.20280.084*
C90.4078 (4)1.03457 (19)0.38598 (16)0.0748 (8)
H90.47711.05270.43460.090*
C110.1427 (4)1.0000 (2)0.3086 (2)0.0758 (9)
H110.03340.99310.30530.091*
C150.4850 (4)1.2431 (2)0.06156 (19)0.0756 (8)
H150.42761.28090.01920.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0369 (3)0.0408 (3)0.0379 (3)0.0010 (3)0.0092 (2)0.0001 (3)
N10.0419 (10)0.0449 (11)0.0470 (11)0.0030 (8)0.0025 (9)0.0021 (8)
C130.0425 (12)0.0396 (12)0.0433 (12)0.0007 (10)0.0164 (10)0.0043 (10)
C10.0334 (11)0.0476 (13)0.0383 (12)0.0006 (10)0.0109 (10)0.0029 (10)
C190.0360 (11)0.0400 (12)0.0381 (12)0.0035 (9)0.0077 (10)0.0021 (10)
C70.0480 (13)0.0403 (13)0.0458 (13)0.0032 (10)0.0174 (11)0.0026 (10)
C60.0469 (13)0.0518 (14)0.0409 (13)0.0019 (11)0.0053 (11)0.0017 (11)
C40.0407 (13)0.0533 (15)0.0482 (14)0.0074 (11)0.0127 (11)0.0072 (11)
C230.0598 (16)0.0558 (16)0.0567 (16)0.0101 (13)0.0002 (13)0.0078 (12)
C120.0515 (14)0.0567 (15)0.0659 (16)0.0046 (12)0.0264 (12)0.0062 (13)
C30.0486 (13)0.0464 (13)0.0555 (15)0.0006 (11)0.0087 (12)0.0022 (11)
C80.0681 (16)0.0614 (15)0.0458 (13)0.0008 (14)0.0195 (12)0.0026 (12)
C20.0409 (12)0.0524 (14)0.0437 (13)0.0019 (11)0.0016 (10)0.0032 (11)
C50.0443 (13)0.0673 (17)0.0404 (13)0.0048 (12)0.0002 (11)0.0018 (12)
C250.0491 (14)0.0597 (16)0.0552 (15)0.0082 (13)0.0135 (12)0.0059 (13)
C210.0524 (16)0.0616 (17)0.0758 (18)0.0003 (13)0.0299 (14)0.0094 (14)
C220.0427 (14)0.0583 (17)0.0754 (19)0.0086 (12)0.0027 (13)0.0131 (14)
C240.0452 (13)0.0571 (15)0.0444 (13)0.0015 (12)0.0101 (11)0.0038 (11)
C200.0541 (14)0.0490 (14)0.0562 (15)0.0005 (12)0.0236 (12)0.0018 (12)
N20.0700 (15)0.0676 (15)0.0765 (16)0.0195 (13)0.0078 (13)0.0116 (13)
C100.129 (3)0.0597 (18)0.076 (2)0.0251 (19)0.067 (2)0.0109 (16)
C180.0545 (15)0.0563 (16)0.0627 (17)0.0126 (13)0.0093 (13)0.0048 (13)
C140.0584 (15)0.0533 (16)0.0578 (15)0.0025 (12)0.0160 (13)0.0082 (12)
C160.086 (2)0.0429 (15)0.105 (2)0.0081 (16)0.0532 (19)0.0029 (16)
C170.0615 (17)0.0589 (18)0.092 (2)0.0222 (14)0.0234 (16)0.0218 (16)
C90.118 (3)0.0614 (19)0.0493 (16)0.0062 (18)0.0282 (17)0.0011 (13)
C110.079 (2)0.069 (2)0.098 (2)0.0207 (16)0.0568 (19)0.0208 (17)
C150.089 (2)0.0553 (17)0.087 (2)0.0005 (16)0.0306 (18)0.0192 (15)
Geometric parameters (Å, º) top
P1—N11.5729 (18)C8—C91.384 (3)
P1—C131.803 (2)C8—H80.9300
P1—C191.803 (2)C2—H20.9300
P1—C71.808 (2)C5—H50.9300
N1—C11.372 (3)C25—N21.138 (3)
C13—C141.370 (3)C21—C221.366 (3)
C13—C181.386 (3)C21—C201.371 (3)
C1—C61.404 (3)C21—H210.9300
C1—C21.405 (3)C22—H220.9300
C19—C241.385 (3)C24—H240.9300
C19—C201.386 (3)C20—H200.9300
C7—C121.382 (3)C10—C111.367 (4)
C7—C81.386 (3)C10—C91.367 (4)
C6—C51.368 (3)C10—H100.9300
C6—H60.9300C18—C171.375 (3)
C4—C31.388 (3)C18—H180.9300
C4—C51.389 (3)C14—C151.382 (3)
C4—C251.438 (3)C14—H140.9300
C23—C221.376 (3)C16—C171.353 (4)
C23—C241.381 (3)C16—C151.359 (4)
C23—H230.9300C16—H160.9300
C12—C111.379 (3)C17—H170.9300
C12—H120.9300C9—H90.9300
C3—C21.371 (3)C11—H110.9300
C3—H30.9300C15—H150.9300
N1—P1—C13106.12 (10)C6—C5—C4121.1 (2)
N1—P1—C19116.93 (10)C6—C5—H5119.4
C13—P1—C19105.39 (10)C4—C5—H5119.4
N1—P1—C7113.44 (10)N2—C25—C4178.9 (3)
C13—P1—C7105.97 (10)C22—C21—C20120.1 (2)
C19—P1—C7108.11 (10)C22—C21—H21120.0
C1—N1—P1131.35 (15)C20—C21—H21120.0
C14—C13—C18119.0 (2)C21—C22—C23120.2 (2)
C14—C13—P1119.19 (17)C21—C22—H22119.9
C18—C13—P1121.82 (18)C23—C22—H22119.9
N1—C1—C6117.10 (19)C23—C24—C19120.0 (2)
N1—C1—C2126.56 (18)C23—C24—H24120.0
C6—C1—C2116.34 (19)C19—C24—H24120.0
C24—C19—C20118.9 (2)C21—C20—C19120.7 (2)
C24—C19—P1122.49 (16)C21—C20—H20119.6
C20—C19—P1118.10 (17)C19—C20—H20119.6
C12—C7—C8119.2 (2)C11—C10—C9120.8 (3)
C12—C7—P1118.54 (18)C11—C10—H10119.6
C8—C7—P1122.10 (18)C9—C10—H10119.6
C5—C6—C1121.7 (2)C17—C18—C13119.9 (3)
C5—C6—H6119.1C17—C18—H18120.0
C1—C6—H6119.1C13—C18—H18120.0
C3—C4—C5118.1 (2)C13—C14—C15120.0 (2)
C3—C4—C25121.4 (2)C13—C14—H14120.0
C5—C4—C25120.5 (2)C15—C14—H14120.0
C22—C23—C24120.1 (2)C17—C16—C15120.1 (3)
C22—C23—H23120.0C17—C16—H16120.0
C24—C23—H23120.0C15—C16—H16120.0
C11—C12—C7120.5 (3)C16—C17—C18120.6 (3)
C11—C12—H12119.7C16—C17—H17119.7
C7—C12—H12119.7C18—C17—H17119.7
C2—C3—C4121.0 (2)C10—C9—C8119.9 (3)
C2—C3—H3119.5C10—C9—H9120.0
C4—C3—H3119.5C8—C9—H9120.0
C9—C8—C7119.9 (3)C10—C11—C12119.7 (3)
C9—C8—H8120.0C10—C11—H11120.2
C7—C8—H8120.0C12—C11—H11120.2
C3—C2—C1121.7 (2)C16—C15—C14120.4 (3)
C3—C2—H2119.1C16—C15—H15119.8
C1—C2—H2119.1C14—C15—H15119.8
C13—P1—N1—C1165.71 (19)P1—C7—C8—C9172.82 (19)
C19—P1—N1—C148.5 (2)C4—C3—C2—C10.3 (4)
C7—P1—N1—C178.4 (2)N1—C1—C2—C3179.9 (2)
N1—P1—C13—C1411.9 (2)C6—C1—C2—C30.4 (3)
C19—P1—C13—C14136.58 (18)C1—C6—C5—C40.5 (4)
C7—P1—C13—C14108.96 (19)C3—C4—C5—C60.5 (3)
N1—P1—C13—C18167.37 (18)C25—C4—C5—C6179.9 (2)
C19—P1—C13—C1842.7 (2)C3—C4—C25—N2161 (16)
C7—P1—C13—C1871.7 (2)C5—C4—C25—N219 (16)
P1—N1—C1—C6179.20 (17)C20—C21—C22—C230.8 (4)
P1—N1—C1—C21.1 (3)C24—C23—C22—C210.4 (4)
N1—P1—C19—C2499.06 (19)C22—C23—C24—C191.3 (3)
C13—P1—C19—C24143.36 (18)C20—C19—C24—C231.0 (3)
C7—P1—C19—C2430.4 (2)P1—C19—C24—C23170.75 (17)
N1—P1—C19—C2072.73 (19)C22—C21—C20—C191.1 (4)
C13—P1—C19—C2044.85 (19)C24—C19—C20—C210.2 (3)
C7—P1—C19—C20157.82 (17)P1—C19—C20—C21172.29 (18)
N1—P1—C7—C121.9 (2)C14—C13—C18—C170.7 (3)
C13—P1—C7—C12114.12 (19)P1—C13—C18—C17178.57 (19)
C19—P1—C7—C12133.29 (19)C18—C13—C14—C150.8 (4)
N1—P1—C7—C8176.75 (18)P1—C13—C14—C15178.5 (2)
C13—P1—C7—C860.7 (2)C15—C16—C17—C180.7 (4)
C19—P1—C7—C851.9 (2)C13—C18—C17—C160.0 (4)
N1—C1—C6—C5179.8 (2)C11—C10—C9—C80.6 (4)
C2—C1—C6—C50.0 (3)C7—C8—C9—C102.1 (4)
C8—C7—C12—C110.3 (4)C9—C10—C11—C121.1 (4)
P1—C7—C12—C11174.68 (19)C7—C12—C11—C101.2 (4)
C5—C4—C3—C20.1 (3)C17—C16—C15—C140.6 (4)
C25—C4—C3—C2179.5 (2)C13—C14—C15—C160.2 (4)
C12—C7—C8—C92.0 (4)
(II) (4-nitrophenylimino)triphenylphosphorane top
Crystal data top
C24H19N2O2PF(000) = 832
Mr = 398.38Dx = 1.311 Mg m3
Monoclinic, P21/cMelting point: 429 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.118 (2) ÅCell parameters from 25 reflections
b = 17.536 (4) Åθ = 7.3–20.6°
c = 14.245 (4) ŵ = 0.16 mm1
β = 117.591 (17)°T = 293 K
V = 2018.7 (9) Å3Block, yellow
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
θmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 100
non–profiled ω/2θ scansk = 2020
7417 measured reflectionsl = 1416
3544 independent reflections3 standard reflections every 60 min
2682 reflections with I > 2σ(I) intensity decay: none
Rint = 0.029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.4406P]
where P = (Fo2 + 2Fc2)/3
3544 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H19N2O2PV = 2018.7 (9) Å3
Mr = 398.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.118 (2) ŵ = 0.16 mm1
b = 17.536 (4) ÅT = 293 K
c = 14.245 (4) Å0.4 × 0.2 × 0.2 mm
β = 117.591 (17)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.029
7417 measured reflections3 standard reflections every 60 min
3544 independent reflections intensity decay: none
2682 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
3544 reflectionsΔρmin = 0.23 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.80080 (5)0.78963 (3)0.58028 (3)0.03526 (13)
N10.73119 (18)0.70578 (8)0.55612 (11)0.0418 (3)
N20.8160 (2)0.45880 (10)0.33750 (13)0.0570 (4)
O10.9106 (2)0.46478 (9)0.29796 (13)0.0757 (5)
O20.7330 (2)0.40142 (10)0.32761 (15)0.0825 (5)
C10.76256 (19)0.64704 (9)0.50511 (12)0.0364 (4)
C20.6770 (2)0.57812 (10)0.49483 (14)0.0431 (4)
H20.604 (2)0.5754 (9)0.5253 (14)0.041 (5)*
C30.6952 (2)0.51689 (11)0.44176 (14)0.0459 (4)
H30.636 (2)0.4689 (12)0.4367 (15)0.055 (5)*
C40.8005 (2)0.52228 (10)0.39704 (13)0.0437 (4)
C50.8893 (2)0.58782 (12)0.40714 (16)0.0503 (5)
H50.968 (3)0.5884 (11)0.3792 (15)0.059 (6)*
C60.8716 (2)0.64919 (11)0.46064 (16)0.0474 (4)
H60.936 (2)0.6938 (11)0.4686 (14)0.052 (5)*
C70.8161 (2)0.84050 (9)0.47454 (13)0.0383 (4)
C80.6741 (2)0.84891 (11)0.37896 (15)0.0477 (4)
H80.570 (3)0.8302 (11)0.3728 (15)0.057 (6)*
C90.6813 (3)0.88396 (12)0.29425 (16)0.0569 (5)
H90.580 (3)0.8884 (12)0.2307 (18)0.067 (6)*
C100.8281 (3)0.91072 (13)0.30305 (18)0.0597 (6)
H100.834 (3)0.9350 (12)0.2434 (18)0.069 (6)*
C110.9696 (3)0.90279 (14)0.39708 (19)0.0656 (6)
H111.072 (3)0.9180 (13)0.4020 (18)0.081 (7)*
C120.9641 (3)0.86772 (13)0.48232 (17)0.0550 (5)
H121.060 (3)0.8609 (11)0.5437 (17)0.063 (6)*
C130.65600 (19)0.84138 (10)0.60938 (12)0.0379 (4)
C140.5606 (3)0.80163 (13)0.64545 (17)0.0542 (5)
H140.572 (3)0.7504 (14)0.6501 (16)0.068 (7)*
C150.4519 (3)0.84009 (16)0.6712 (2)0.0698 (7)
H150.388 (3)0.8137 (14)0.6921 (19)0.085 (8)*
C160.4371 (3)0.91742 (14)0.66131 (18)0.0627 (6)
H160.357 (3)0.9453 (13)0.6780 (17)0.074 (7)*
C170.5303 (3)0.95740 (13)0.62579 (16)0.0562 (5)
H170.519 (3)1.0099 (13)0.6174 (16)0.067 (7)*
C180.6406 (2)0.91985 (11)0.60003 (15)0.0472 (5)
H180.706 (2)0.9471 (11)0.5778 (15)0.053 (6)*
C190.99999 (19)0.79739 (9)0.69589 (13)0.0368 (4)
C201.0721 (2)0.86755 (11)0.73786 (15)0.0448 (4)
H201.020 (2)0.9128 (11)0.7052 (15)0.053 (6)*
C211.2213 (2)0.87056 (13)0.82892 (16)0.0529 (5)
H211.266 (3)0.9201 (12)0.8563 (16)0.062 (6)*
C221.2988 (2)0.80472 (14)0.87911 (16)0.0590 (6)
H221.402 (3)0.8082 (12)0.9448 (18)0.071 (6)*
C231.2290 (3)0.73556 (14)0.83790 (18)0.0643 (6)
H231.276 (3)0.6887 (14)0.8691 (18)0.077 (7)*
C241.0799 (2)0.73122 (11)0.74648 (16)0.0505 (5)
H241.031 (2)0.6836 (12)0.7196 (15)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0332 (2)0.0380 (2)0.0353 (2)0.00004 (18)0.01650 (18)0.00197 (18)
N10.0446 (8)0.0408 (8)0.0440 (8)0.0049 (7)0.0239 (7)0.0064 (6)
N20.0564 (10)0.0552 (11)0.0543 (10)0.0147 (9)0.0213 (9)0.0070 (8)
O10.0932 (12)0.0724 (11)0.0816 (11)0.0216 (9)0.0576 (10)0.0048 (8)
O20.0785 (11)0.0612 (10)0.1073 (13)0.0095 (9)0.0426 (10)0.0372 (9)
C10.0323 (8)0.0406 (9)0.0330 (8)0.0011 (7)0.0125 (7)0.0000 (7)
C20.0420 (10)0.0467 (11)0.0450 (10)0.0039 (8)0.0240 (9)0.0034 (8)
C30.0457 (10)0.0403 (10)0.0485 (10)0.0037 (8)0.0190 (9)0.0040 (8)
C40.0435 (10)0.0434 (10)0.0394 (9)0.0087 (8)0.0153 (8)0.0026 (8)
C50.0508 (11)0.0541 (12)0.0575 (12)0.0057 (9)0.0348 (10)0.0018 (9)
C60.0478 (11)0.0423 (11)0.0605 (12)0.0038 (9)0.0322 (9)0.0024 (9)
C70.0422 (9)0.0380 (9)0.0392 (9)0.0013 (7)0.0228 (8)0.0025 (7)
C80.0453 (11)0.0544 (12)0.0425 (10)0.0011 (9)0.0197 (8)0.0003 (8)
C90.0647 (14)0.0595 (13)0.0422 (11)0.0126 (11)0.0211 (10)0.0060 (9)
C100.0803 (16)0.0583 (13)0.0550 (13)0.0072 (11)0.0436 (13)0.0087 (10)
C110.0658 (15)0.0776 (16)0.0700 (15)0.0097 (12)0.0455 (13)0.0041 (12)
C120.0459 (12)0.0729 (14)0.0495 (12)0.0045 (10)0.0249 (10)0.0040 (10)
C130.0330 (9)0.0455 (10)0.0328 (8)0.0031 (7)0.0133 (7)0.0027 (7)
C140.0597 (13)0.0519 (13)0.0653 (13)0.0047 (10)0.0410 (11)0.0023 (10)
C150.0709 (15)0.0782 (18)0.0866 (17)0.0036 (13)0.0588 (14)0.0010 (13)
C160.0518 (12)0.0776 (16)0.0654 (14)0.0145 (11)0.0330 (11)0.0071 (11)
C170.0554 (12)0.0518 (13)0.0564 (12)0.0146 (10)0.0218 (10)0.0026 (10)
C180.0454 (11)0.0461 (11)0.0506 (11)0.0039 (9)0.0225 (9)0.0005 (8)
C190.0326 (8)0.0416 (10)0.0376 (8)0.0025 (7)0.0176 (7)0.0022 (7)
C200.0425 (10)0.0422 (10)0.0460 (10)0.0020 (8)0.0174 (8)0.0047 (8)
C210.0441 (11)0.0583 (13)0.0510 (11)0.0053 (10)0.0175 (9)0.0141 (10)
C220.0376 (11)0.0800 (16)0.0475 (11)0.0012 (10)0.0095 (9)0.0012 (11)
C230.0467 (12)0.0626 (14)0.0670 (14)0.0095 (11)0.0123 (10)0.0186 (12)
C240.0410 (10)0.0440 (11)0.0585 (12)0.0016 (8)0.0164 (9)0.0018 (9)
Geometric parameters (Å, º) top
P1—N11.5752 (15)C4—C51.375 (3)
P1—C131.8015 (17)C20—C211.379 (3)
P1—C191.8051 (17)C20—H200.93 (2)
P1—C71.8107 (17)C24—C231.382 (3)
N1—C11.365 (2)C24—H240.94 (2)
C19—C241.382 (2)C9—C101.369 (3)
C19—C201.393 (2)C9—H90.95 (2)
C1—C61.405 (2)C22—C231.369 (3)
C1—C21.409 (2)C22—C211.369 (3)
C6—C51.371 (3)C22—H220.98 (2)
C2—H20.95 (2)C5—H50.96 (2)
C6—C51.371 (3)C12—C111.383 (3)
C6—H60.95 (2)C12—H120.91 (2)
C18—C131.383 (3)C21—H210.96 (2)
C18—C171.386 (3)C17—C161.367 (3)
C18—H180.93 (2)C17—H170.93 (2)
N2—O21.227 (2)C16—C151.364 (3)
N2—O11.234 (2)C16—H160.99 (2)
N2—C41.445 (2)C11—C101.370 (3)
C7—C81.385 (3)C11—H110.94 (3)
C7—C121.386 (3)C23—H230.94 (2)
C3—C41.380 (3)C14—C151.382 (3)
C3—H30.98 (2)C14—H140.90 (2)
C8—C91.382 (3)C15—H150.90 (3)
C8—H80.97 (2)C10—H100.97 (2)
C13—C141.386 (3)
N1—P1—C13104.86 (8)C21—C20—H20119.2 (12)
N1—P1—C19113.77 (8)C19—C20—H20120.7 (12)
C13—P1—C19106.68 (8)C19—C24—C23119.73 (19)
N1—P1—C7117.17 (8)C19—C24—H24119.9 (12)
C13—P1—C7106.88 (8)C23—C24—H24120.4 (12)
C19—P1—C7106.81 (8)C10—C9—C8120.8 (2)
C1—N1—P1131.16 (12)C10—C9—H9122.4 (13)
C24—C19—C20119.19 (16)C8—C9—H9116.7 (13)
C24—C19—P1118.49 (14)C23—C22—C21119.86 (19)
C20—C19—P1122.27 (13)C23—C22—H22121.2 (13)
N1—C1—C6125.88 (16)C21—C22—H22118.9 (13)
N1—C1—C2117.41 (15)C6—C5—C4119.93 (18)
C6—C1—C2116.71 (16)C6—C5—H5121.4 (12)
C3—C2—C1121.91 (17)C4—C5—H5118.6 (12)
C3—C2—H2120.3 (11)C11—C12—C7120.9 (2)
C1—C2—H2117.8 (10)C11—C12—H12119.6 (14)
C5—C6—C1121.31 (18)C7—C12—H12119.5 (14)
C5—C6—H6119.2 (12)C22—C21—C20120.3 (2)
C1—C6—H6119.5 (12)C22—C21—H21122.0 (13)
C13—C18—C17120.1 (2)C20—C21—H21117.6 (13)
C13—C18—H18119.4 (12)C16—C17—C18120.4 (2)
C17—C18—H18120.5 (12)C16—C17—H17120.6 (14)
O2—N2—O1122.77 (18)C18—C17—H17119.0 (14)
O2—N2—C4118.47 (18)C15—C16—C17120.0 (2)
O1—N2—C4118.76 (19)C15—C16—H16120.9 (14)
C8—C7—C12118.29 (17)C17—C16—H16119.1 (13)
C8—C7—P1118.23 (14)C10—C11—C12120.2 (2)
C12—C7—P1123.38 (14)C10—C11—H11119.8 (15)
C2—C3—C4119.34 (18)C12—C11—H11119.9 (15)
C2—C3—H3120.6 (12)C22—C23—C24120.8 (2)
C4—C3—H3120.1 (12)C22—C23—H23123.6 (14)
C9—C8—C7120.31 (19)C24—C23—H23115.6 (15)
C9—C8—H8120.8 (12)C15—C14—C13120.3 (2)
C7—C8—H8118.9 (12)C15—C14—H14122.5 (15)
C18—C13—C14118.86 (17)C13—C14—H14117.3 (15)
C18—C13—P1122.11 (14)C16—C15—C14120.5 (2)
C14—C13—P1119.00 (14)C16—C15—H15119.9 (17)
C5—C4—C3120.76 (17)C14—C15—H15119.6 (17)
C5—C4—N2119.49 (18)C9—C10—C11119.5 (2)
C3—C4—N2119.74 (17)C9—C10—H10121.1 (13)
C21—C20—C19120.11 (18)C11—C10—H10119.3 (13)
C13—P1—N1—C1161.58 (15)C7—P1—C13—C14149.19 (15)
C19—P1—N1—C182.24 (17)C2—C3—C4—C51.3 (3)
C7—P1—N1—C143.30 (19)C2—C3—C4—N2177.78 (16)
N1—P1—C19—C245.72 (17)O2—N2—C4—C5178.52 (18)
C13—P1—C19—C24120.84 (15)O1—N2—C4—C50.8 (3)
C7—P1—C19—C24125.14 (15)O2—N2—C4—C30.5 (3)
N1—P1—C19—C20171.69 (14)O1—N2—C4—C3179.87 (17)
C13—P1—C19—C2056.57 (16)C24—C19—C20—C210.1 (3)
C7—P1—C19—C2057.45 (16)P1—C23—C22—C211.8 (2)
P1—N1—C1—C60.2 (3)C20—C19—C24—C230.4 (3)
P1—N1—C1—C2179.05 (13)P1—C19—C24—C23177.11 (17)
N1—C1—C2—C3177.56 (16)C7—C8—C9—C100.2 (3)
C6—C1—C2—C31.8 (3)C1—C6—C5—C40.6 (3)
N1—C1—C6—C5177.31 (17)C3—C4—C5—C61.1 (3)
C2—C1—C6—C52.0 (3)N2—C4—C5—C6177.97 (17)
N1—P1—C7—C856.74 (16)C8—C7—C12—C110.4 (3)
C13—P1—C7—C860.45 (16)P1—C7—C12—C11176.69 (17)
C19—P1—C7—C8174.34 (14)C23—C22—C21—C200.9 (3)
N1—P1—C7—C12119.56 (16)C19—C20—C21—C220.5 (3)
C13—P1—C7—C12123.25 (16)C13—C18—C17—C160.5 (3)
C19—P1—C7—C129.36 (18)C18—C17—C16—C150.2 (3)
C1—C2—C3—C40.2 (3)C7—C12—C11—C100.4 (4)
C12—C7—C8—C90.3 (3)C21—C22—C23—C240.6 (4)
P1—C7—C8—C9176.77 (15)C19—C24—C23—C220.0 (4)
C17—C18—C13—C140.5 (3)C18—C13—C14—C150.2 (3)
C17—C18—C13—P1178.42 (14)P1—C13—C14—C15178.19 (18)
N1—P1—C13—C18157.90 (15)C17—C16—C15—C140.1 (4)
C19—P1—C13—C1881.11 (16)C13—C14—C15—C160.1 (4)
C7—P1—C13—C1832.86 (17)C8—C9—C10—C110.1 (3)
N1—P1—C13—C1424.15 (16)C12—C11—C10—C90.2 (3)
C19—P1—C13—C1496.83 (16)
(III) (3-nitrophenylimino)triphenylphosphorane top
Crystal data top
C24H19N2O2PZ = 2
Mr = 398.38F(000) = 416
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Melting point: 429 K
a = 9.001 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.770 (7) ÅCell parameters from 25 reflections
c = 12.098 (5) Åθ = 7.4–19.3°
α = 84.340 (4)°µ = 0.16 mm1
β = 78.190 (4)°T = 293 K
γ = 78.410 (3)°Block, orange
V = 1018.3 (9) Å30.4 × 0.4 × 0.4 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.7°
Graphite monochromatorh = 1010
non–profiled ω/2θ scansk = 1111
7180 measured reflectionsl = 1414
3590 independent reflections3 standard reflections every 60 min
3018 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3216P]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.21 e Å3
13 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H19N2O2Pγ = 78.410 (3)°
Mr = 398.38V = 1018.3 (9) Å3
Triclinic, P1Z = 2
a = 9.001 (2) ÅMo Kα radiation
b = 9.770 (7) ŵ = 0.16 mm1
c = 12.098 (5) ÅT = 293 K
α = 84.340 (4)°0.4 × 0.4 × 0.4 mm
β = 78.190 (4)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.016
7180 measured reflections3 standard reflections every 60 min
3590 independent reflections intensity decay: 1%
3018 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.03913 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3590 reflectionsΔρmin = 0.24 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.11748 (5)0.93176 (5)0.26596 (4)0.04422 (15)
N10.18530 (18)0.90157 (16)0.37674 (13)0.0509 (4)
N20.4414 (2)0.6488 (2)0.66603 (16)0.0748 (5)
O10.4945 (3)0.7528 (2)0.66954 (17)0.1075 (7)
O20.4677 (3)0.5446 (2)0.72744 (16)0.1083 (7)
C10.21429 (19)0.77612 (18)0.43984 (14)0.0457 (4)
C20.3075 (2)0.77048 (19)0.51926 (14)0.0482 (4)
H20.34690.84880.52810.058*
C30.3415 (2)0.6496 (2)0.58465 (15)0.0544 (5)
C40.2883 (3)0.5299 (2)0.57623 (18)0.0650 (5)
H40.31360.44920.62130.078*
C50.1964 (3)0.5345 (2)0.49873 (19)0.0669 (6)
H50.15800.45520.49080.080*
C60.1592 (2)0.6542 (2)0.43194 (17)0.0583 (5)
H60.09570.65380.38020.070*
C70.2521 (5)0.8573 (4)0.1441 (4)0.0433 (10)0.791 (3)
C80.3410 (4)0.7257 (3)0.1548 (2)0.0649 (8)0.791 (3)
H80.32940.67490.22420.078*0.791 (3)
C90.4465 (4)0.6687 (3)0.0644 (2)0.0773 (10)0.791 (3)
H90.50610.58030.07350.093*0.791 (3)
C100.4643 (7)0.7407 (5)0.0387 (5)0.0698 (14)0.791 (3)
H100.53670.70170.09910.084*0.791 (3)
C110.3760 (4)0.8700 (4)0.0529 (3)0.0754 (10)0.791 (3)
H110.38580.91770.12370.090*0.791 (3)
C120.2722 (4)0.9297 (3)0.0378 (3)0.0680 (10)0.791 (3)
H120.21491.01910.02820.082*0.791 (3)
C130.0832 (2)1.11816 (18)0.23561 (15)0.0479 (4)
C140.1737 (3)1.1979 (2)0.26952 (18)0.0645 (5)
H140.24851.15610.31140.077*
C150.1537 (3)1.3398 (2)0.2416 (2)0.0802 (7)
H150.21571.39330.26390.096*
C160.0430 (3)1.4019 (2)0.1812 (2)0.0840 (7)
H160.02971.49770.16260.101*
C170.0483 (3)1.3237 (3)0.1479 (2)0.0845 (7)
H170.12371.36660.10690.101*
C180.0291 (3)1.1824 (2)0.1748 (2)0.0676 (6)
H180.09171.12960.15220.081*
C190.0657 (2)0.87966 (19)0.27169 (17)0.0526 (4)
C200.1052 (3)0.8281 (2)0.1817 (2)0.0715 (6)
H200.03430.81330.11440.086*
C210.2532 (4)0.7986 (3)0.1930 (3)0.0933 (9)
H210.28160.76390.13310.112*
C220.3577 (3)0.8209 (3)0.2940 (3)0.0909 (9)
H220.45740.80420.30050.109*
C230.3159 (3)0.8670 (3)0.3834 (3)0.0845 (8)
H230.38590.87850.45140.101*
C240.1711 (2)0.8966 (2)0.3739 (2)0.0664 (5)
H240.14310.92790.43540.080*
C970.223 (3)0.8597 (16)0.1391 (16)0.0433 (10)0.209 (3)
C980.2473 (15)0.7198 (10)0.1333 (8)0.0649 (8)0.209 (3)
H980.19480.66630.19020.078*0.209 (3)
C990.3476 (16)0.6558 (12)0.0449 (9)0.0773 (10)0.209 (3)
H990.36010.55950.04070.093*0.209 (3)
C9100.429 (3)0.731 (2)0.037 (2)0.0698 (14)0.209 (3)
H9100.48600.68990.10240.084*0.209 (3)
C9110.4254 (18)0.8680 (16)0.0202 (11)0.0754 (10)0.209 (3)
H9110.49290.91780.06850.090*0.209 (3)
C9120.3211 (16)0.9322 (15)0.0683 (11)0.0680 (10)0.209 (3)
H9120.31781.02570.07920.082*0.209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0459 (3)0.0421 (3)0.0457 (3)0.01055 (18)0.01213 (19)0.00455 (18)
N10.0578 (9)0.0488 (8)0.0489 (8)0.0146 (7)0.0164 (7)0.0056 (7)
N20.0838 (13)0.0794 (13)0.0597 (11)0.0012 (11)0.0290 (10)0.0018 (10)
O10.1340 (17)0.1095 (15)0.1037 (15)0.0356 (13)0.0757 (14)0.0129 (12)
O20.1436 (18)0.0938 (13)0.0900 (13)0.0050 (12)0.0657 (13)0.0188 (11)
C10.0439 (9)0.0486 (10)0.0419 (9)0.0077 (7)0.0048 (7)0.0013 (7)
C20.0482 (10)0.0513 (10)0.0429 (9)0.0055 (8)0.0073 (7)0.0029 (7)
C30.0551 (11)0.0604 (12)0.0430 (10)0.0003 (9)0.0100 (8)0.0004 (8)
C40.0731 (13)0.0556 (12)0.0601 (12)0.0047 (10)0.0139 (10)0.0144 (9)
C50.0755 (14)0.0533 (12)0.0740 (14)0.0213 (10)0.0163 (11)0.0106 (10)
C60.0622 (12)0.0567 (11)0.0605 (12)0.0188 (9)0.0193 (9)0.0071 (9)
C70.041 (2)0.0447 (9)0.0469 (10)0.0078 (11)0.0162 (13)0.0015 (8)
C80.092 (2)0.0481 (13)0.0491 (13)0.0045 (14)0.0190 (14)0.0001 (10)
C90.102 (3)0.0562 (15)0.0638 (17)0.0205 (16)0.0227 (17)0.0138 (12)
C100.070 (4)0.0723 (17)0.0607 (13)0.0004 (16)0.0044 (18)0.0153 (12)
C110.086 (3)0.0753 (16)0.0485 (19)0.0023 (17)0.0003 (14)0.0121 (15)
C120.073 (2)0.0580 (13)0.0554 (19)0.0119 (15)0.0029 (13)0.0136 (13)
C130.0493 (10)0.0439 (9)0.0468 (9)0.0075 (8)0.0034 (8)0.0010 (7)
C140.0772 (14)0.0510 (11)0.0702 (13)0.0187 (10)0.0216 (11)0.0022 (9)
C150.1039 (19)0.0505 (12)0.0903 (17)0.0248 (12)0.0181 (15)0.0041 (11)
C160.0999 (19)0.0406 (11)0.0999 (19)0.0024 (12)0.0065 (15)0.0038 (11)
C170.0842 (17)0.0580 (14)0.1033 (19)0.0065 (12)0.0265 (15)0.0118 (13)
C180.0659 (13)0.0522 (11)0.0846 (15)0.0044 (9)0.0257 (11)0.0062 (10)
C190.0496 (10)0.0442 (9)0.0656 (12)0.0121 (8)0.0184 (9)0.0110 (8)
C200.0783 (14)0.0771 (15)0.0715 (14)0.0356 (12)0.0324 (12)0.0186 (11)
C210.106 (2)0.0900 (18)0.110 (2)0.0514 (16)0.0665 (19)0.0350 (16)
C220.0600 (14)0.0790 (17)0.138 (3)0.0301 (12)0.0334 (16)0.0388 (17)
C230.0558 (13)0.0720 (15)0.121 (2)0.0180 (11)0.0041 (14)0.0017 (15)
C240.0526 (11)0.0563 (12)0.0864 (15)0.0115 (9)0.0038 (10)0.0018 (10)
C970.041 (2)0.0447 (9)0.0469 (10)0.0078 (11)0.0162 (13)0.0015 (8)
C980.092 (2)0.0481 (13)0.0491 (13)0.0045 (14)0.0190 (14)0.0001 (10)
C990.102 (3)0.0562 (15)0.0638 (17)0.0205 (16)0.0227 (17)0.0138 (12)
C9100.070 (4)0.0723 (17)0.0607 (13)0.0004 (16)0.0044 (18)0.0153 (12)
C9110.086 (3)0.0753 (16)0.0485 (19)0.0023 (17)0.0003 (14)0.0121 (15)
C9120.073 (2)0.0580 (13)0.0554 (19)0.0119 (15)0.0029 (13)0.0136 (13)
Geometric parameters (Å, º) top
P1—N11.5622 (16)C20—C211.395 (3)
P1—C971.762 (13)C20—H200.9300
P1—C131.799 (2)C21—H210.9300
P1—C191.8071 (19)C16—C151.364 (4)
P1—C71.816 (3)C16—C171.367 (4)
C1—N11.386 (2)C16—H160.9300
C1—C21.389 (2)C15—H150.9300
C1—C61.398 (3)C23—H230.9300
C2—C31.373 (3)C17—H170.9300
C2—H20.9300C7—C81.381 (5)
C13—C141.377 (3)C7—C121.402 (5)
C13—C181.384 (3)C8—C91.375 (4)
O1—N21.214 (3)C8—H80.9300
C3—C41.369 (3)C9—C101.366 (6)
C3—N21.462 (3)C9—H90.9300
C19—C201.380 (3)C10—C111.367 (6)
C19—C241.398 (3)C10—H100.9300
C5—C41.364 (3)C11—C121.380 (4)
C5—C61.378 (3)C11—H110.9300
C5—H50.9300C12—H120.9300
N2—O21.213 (3)C97—C981.346 (14)
C6—H60.9300C97—C9121.353 (15)
C18—C171.372 (3)C98—C991.364 (12)
C18—H180.9300C98—H980.9300
C4—H40.9300C99—C9101.350 (15)
C24—C231.370 (3)C99—H990.9300
C24—H240.9300C910—C9111.369 (16)
C14—C151.378 (3)C910—H9100.9300
C14—H140.9300C911—C9121.381 (14)
C22—C231.358 (4)C911—H9110.9300
C22—C211.387 (4)C912—H9120.9300
C22—H220.9300
N1—P1—C97120.3 (9)C22—C21—C20119.8 (3)
N1—P1—C13107.72 (8)C22—C21—H21120.1
C97—P1—C13105.5 (6)C20—C21—H21120.1
N1—P1—C19116.08 (9)C15—C16—C17120.2 (2)
C97—P1—C19100.5 (8)C15—C16—H16119.9
C13—P1—C19105.43 (9)C17—C16—H16119.9
N1—P1—C7112.56 (18)C16—C15—C14120.1 (2)
C13—P1—C7106.09 (14)C16—C15—H15119.9
C19—P1—C7108.27 (16)C14—C15—H15119.9
N1—C1—C2116.93 (16)C22—C23—C24120.4 (3)
N1—C1—C6126.65 (17)C22—C23—H23119.8
C2—C1—C6116.42 (16)C24—C23—H23119.8
C1—N1—P1128.93 (13)C16—C17—C18120.3 (2)
C3—C2—C1120.19 (18)C16—C17—H17119.9
C3—C2—H2119.9C18—C17—H17119.9
C1—C2—H2119.9C8—C7—C12117.7 (3)
C14—C13—C18119.25 (18)C8—C7—P1120.0 (3)
C14—C13—P1119.66 (15)C12—C7—P1122.4 (3)
C18—C13—P1121.04 (15)C9—C8—C7121.0 (3)
C4—C3—C2123.30 (18)C9—C8—H8119.5
C4—C3—N2118.72 (18)C7—C8—H8119.5
C2—C3—N2117.97 (19)C10—C9—C8120.6 (3)
C20—C19—C24120.01 (19)C10—C9—H9119.7
C20—C19—P1123.72 (17)C8—C9—H9119.7
C24—C19—P1116.26 (16)C9—C10—C11120.0 (4)
C4—C5—C6121.4 (2)C9—C10—H10120.0
C4—C5—H5119.3C11—C10—H10120.0
C6—C5—H5119.3C10—C11—C12120.0 (3)
O2—N2—O1122.7 (2)C10—C11—H11120.0
O2—N2—C3118.7 (2)C12—C11—H11120.0
O1—N2—C3118.60 (19)C11—C12—C7120.8 (3)
C5—C6—C1121.74 (19)C11—C12—H12119.6
C5—C6—H6119.1C7—C12—H12119.6
C1—C6—H6119.1C98—C97—C912118.5 (13)
C17—C18—C13120.1 (2)C98—C97—P1118.0 (11)
C17—C18—H18120.0C912—C97—P1119.5 (12)
C13—C18—H18120.0C97—C98—C99120.6 (11)
C5—C4—C3116.95 (18)C97—C98—H98119.7
C5—C4—H4121.5C99—C98—H98119.7
C3—C4—H4121.5C910—C99—C98120.8 (12)
C23—C24—C19120.0 (2)C910—C99—H99119.6
C23—C24—H24120.0C98—C99—H99119.6
C19—C24—H24120.0C99—C910—C911118.2 (16)
C13—C14—C15120.1 (2)C99—C910—H910120.9
C13—C14—H14119.9C911—C910—H910120.9
C15—C14—H14119.9C910—C911—C912119.7 (14)
C23—C22—C21120.6 (2)C910—C911—H911120.1
C23—C22—H22119.7C912—C911—H911120.1
C21—C22—H22119.7C97—C912—C911120.3 (13)
C19—C20—C21119.1 (2)C97—C912—H912119.9
C19—C20—H20120.4C911—C912—H912119.9
C21—C20—H20120.4
C2—C1—N1—P1165.37 (14)C24—C19—C20—C212.4 (3)
C6—C1—N1—P114.7 (3)P1—C19—C20—C21176.32 (17)
C97—P1—N1—C167.0 (7)C23—C22—C21—C202.2 (4)
C13—P1—N1—C1172.32 (15)C19—C20—C21—C220.1 (4)
C19—P1—N1—C154.46 (19)C17—C16—C15—C140.1 (4)
C7—P1—N1—C171.1 (2)C13—C14—C15—C160.7 (4)
N1—C1—C2—C3179.84 (16)C21—C22—C23—C242.2 (4)
C6—C1—C2—C30.2 (3)C19—C24—C23—C220.1 (4)
N1—P1—C13—C1429.15 (18)C15—C16—C17—C180.1 (4)
C97—P1—C13—C14100.5 (9)C13—C18—C17—C160.2 (4)
C19—P1—C13—C14153.69 (16)N1—P1—C7—C840.5 (4)
C7—P1—C13—C1491.6 (2)C97—P1—C7—C8115 (4)
N1—P1—C13—C18153.33 (16)C13—P1—C7—C8158.1 (3)
C97—P1—C13—C1877.1 (9)C19—P1—C7—C889.1 (4)
C19—P1—C13—C1828.79 (19)N1—P1—C7—C12138.4 (3)
C7—P1—C13—C1885.9 (2)C97—P1—C7—C1266 (4)
C1—C2—C3—C40.2 (3)C13—P1—C7—C1220.8 (4)
C1—C2—C3—N2179.35 (16)C19—P1—C7—C1292.0 (4)
N1—P1—C19—C20144.50 (17)C12—C7—C8—C90.6 (6)
C97—P1—C19—C2013.1 (7)P1—C7—C8—C9178.3 (3)
C13—P1—C19—C2096.38 (18)C7—C8—C9—C100.7 (6)
C7—P1—C19—C2016.8 (2)C8—C9—C10—C110.6 (7)
N1—P1—C19—C2436.72 (18)C9—C10—C11—C122.1 (7)
C97—P1—C19—C24168.2 (7)C10—C11—C12—C72.2 (6)
C13—P1—C19—C2482.40 (16)C8—C7—C12—C110.9 (6)
C7—P1—C19—C24164.4 (2)P1—C7—C12—C11179.8 (3)
C4—C3—N2—O23.7 (3)N1—P1—C97—C9867 (2)
C2—C3—N2—O2177.2 (2)C13—P1—C97—C98171.2 (17)
C4—C3—N2—O1176.5 (2)C19—P1—C97—C9862 (2)
C2—C3—N2—O12.7 (3)C7—P1—C97—C9893 (5)
C4—C5—C6—C10.4 (3)N1—P1—C97—C91290.3 (19)
N1—C1—C6—C5179.55 (18)C13—P1—C97—C91231 (2)
C2—C1—C6—C50.5 (3)C19—P1—C97—C912140.9 (18)
C14—C13—C18—C170.7 (3)C7—P1—C97—C91264 (4)
P1—C13—C18—C17176.84 (18)C912—C97—C98—C9912 (3)
C6—C5—C4—C30.1 (3)P1—C97—C98—C99169.9 (13)
C2—C3—C4—C50.4 (3)C97—C98—C99—C9102 (3)
N2—C3—C4—C5179.50 (19)C98—C99—C910—C9119 (4)
C20—C19—C24—C232.5 (3)C99—C910—C911—C91211 (4)
P1—C19—C24—C23176.36 (17)C98—C97—C912—C91111 (3)
C18—C13—C14—C150.9 (3)P1—C97—C912—C911168.1 (13)
P1—C13—C14—C15176.63 (18)C910—C911—C912—C971 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC25H19N2PC24H19N2O2PC24H19N2O2P
Mr378.39398.38398.38
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cTriclinic, P1
Temperature (K)293293293
a, b, c (Å)8.581 (3), 13.862 (1), 17.170 (4)9.118 (2), 17.536 (4), 14.245 (4)9.001 (2), 9.770 (7), 12.098 (5)
α, β, γ (°)90, 104.53 (2), 9090, 117.591 (17), 9084.340 (4), 78.190 (4), 78.410 (3)
V3)1977.1 (9)2018.7 (9)1018.3 (9)
Z442
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.150.160.16
Crystal size (mm)0.4 × 0.2 × 0.20.4 × 0.2 × 0.20.4 × 0.4 × 0.4
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf–Nonius CAD4
diffractometer
Enraf–Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7279, 3481, 2198 7417, 3544, 2682 7180, 3590, 3018
Rint0.0410.0290.016
(sin θ/λ)max1)0.5950.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.01 0.032, 0.089, 1.02 0.039, 0.110, 1.04
No. of reflections348135443590
No. of parameters253338281
No. of restraints0013
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.230.21, 0.230.21, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, °). top
(I)(II)(III)
C1—N11.372 (3)1.365 (2)1.386 (2)
P1—N11.5729 (18)1.5752 (15)1.5622 (16)
P1—C71.808 (2)1.8107 (17)1.816 (3)
P1—C131.803 (2)1.8015 (17)1.799 (2)
P1—C191.803 (2)1.8051 (17)1.8071 (19)
C1—N1—P1131.35 (15)131.16 (12)128.93 (13)
N1—P1—C7113.44 (10)117.17 (8)112.56 (18)
N1—P1—C13106.12 (10)104.86 (9)107.72 (8)
N1—P1—C19116.93 (10)113.77 (8)116.88 (9)
C6—C1—N1—P11.1 (3)0.2 (3)14.7 (3)
C1—N1—P1—C778.4 (2)43.30 (19)70.9 (3)
C1—N1—P1—C13165.70 (19)161.58 (16)172.31 (16)
C1—N1—P1—C1948.5 (2)82.24 (17)54.45 (19)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds