Download citation
Download citation
link to html
In the title compound, [Mo(C7H7NO2S)2Cl2(C4H10O2)], the Mo-Cl bond lengths are 2.3730 (8) and 2.3842 (8) Å, the former being the shortest within the series of analogous structurally characterized bis­(imido) Mo complexes. This fact clearly explains the very strong Lewis acidity of the metal centre in this complex and, as a result, its synthetic versatility as a nitrene transfer reagent towards different phosphanes and strained cyclo­olefins.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105042484/ty1010sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105042484/ty1010Isup2.hkl
Contains datablock I

CCDC reference: 231399

Comment top

The title compound, (I), was first reported in 1999 (Korn et al., 1999). The authors reported its reaction with P(CH3)3, when one tosylimide group is transferred to the P atom. We have recently found that compound (I) reacts readily with different alkyl- and arylphosphanes and also with some strained cycloalkenes, easily transferring the nitrene group (Rufanov, in preparation). Analogous bis(arylimido) complexes do not react in this way. In order to explain such reactivity of (I), we have studied its crystal structure (Fig. 1) and present the results here.

We assumed that the reactivity of bis(imido) complexes in nitrene transfer strongly depends on the Lewis acidity of the Mo centre. As the `probe' for this, we have used the range of the Mo—Cl bond lengths. For the title Mo complex, we found values of 2.3730 (8) and 2.3842 (7) Å, which are almost equal to the Mo—Cl bond lengths in the structure of the mixed oxo–imido Mo complex (C6F5N)Mo(O)Cl2(dme) [2.3770 (9) and 2.3876 (9) Å; dme is ? Please define; Rufanov et al., 2001] and very close to the values of 2.347 (4) and 2.340 Å found in the molecular structure of the dioxo analogue MoO2Cl2(dme) (Kamenar et al., 1982). Comparison of this parameter with the known structures of similar bis(arylimido) Mo complexes confirms that the Mo—Cl bond lengths in (I) are the shortest in the whole series (Fig. 2). Therefore, we have confirmed our initial assumption about the role of the Lewis acidity of the Mo centre for the reactivity of bis(imido) Mo complexes in the nitrene transfer reaction. We have found that the title complex has the highest Lewis acidity within this series of complexes, i.e. comparable with Mo–oxo complexes, which are well known as efficient oxo-group transfer reagents. This clearly explains the high reactivity of (I) and its versatility as a nitrene transfer reagent.

Experimental top

The title compound was synthesized by the published procedure of Korn et al. (1999). Crystallization was achieved by very slow cooling of a saturated hot toluene solution down to room temperature.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C). [Please check added text and correct as necessary.]

Computing details top

Data collection: IPDS (Stoe & Cie, 1997); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A series of Mo complexes, with Mo—Cl bond length used as the probe for comparison of molybdenum Lewis acidity in this series.
Dichloro(dimethoxyethano)bis(para-toluenesulfonimino-N)molybdenum(VI) top
Crystal data top
[Mo(C7H7NO2S)2Cl2(C4H10O2)]F(000) = 1208
Mr = 595.35Dx = 1.682 Mg m3
Monoclinic, P21/nMelting point: 431(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.895 (2) ÅCell parameters from 5000 reflections
b = 13.124 (2) Åθ = 2.5–25.0°
c = 15.564 (3) ŵ = 1.00 mm1
β = 104.66 (2)°T = 150 K
V = 2350.7 (7) Å3Block, dark yellow
Z = 40.60 × 0.32 × 0.16 mm
Data collection top
Stoe IPDS
diffractometer
4329 independent reflections
Radiation source: fine-focus sealed X-ray tube3598 reflections with I > 2σ(I)
Planar graphite monochromatorRint = 0.047
Detector resolution: 6.667 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ oscillation scans, increment 1.2°, 200 exposuresh = 1414
Absorption correction: part of the refinement model (ΔF)
[ABSCOR (Higashi, 1995), a modification of DIFABS (Walker & Stuart, 1983). In contrast with DIFABS, ABSCOR loads F2 values instead of F values.
k = 1515
Tmin = 0.585, Tmax = 0.856l = 1818
15274 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max = 0.009
284 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Mo(C7H7NO2S)2Cl2(C4H10O2)]V = 2350.7 (7) Å3
Mr = 595.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.895 (2) ŵ = 1.00 mm1
b = 13.124 (2) ÅT = 150 K
c = 15.564 (3) Å0.60 × 0.32 × 0.16 mm
β = 104.66 (2)°
Data collection top
Stoe IPDS
diffractometer
4329 independent reflections
Absorption correction: part of the refinement model (ΔF)
[ABSCOR (Higashi, 1995), a modification of DIFABS (Walker & Stuart, 1983). In contrast with DIFABS, ABSCOR loads F2 values instead of F values.
3598 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.856Rint = 0.047
15274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4329 reflectionsΔρmin = 0.67 e Å3
284 parameters
Special details top

Experimental. During data collection the crystal was in cold N2 gas of the Cryostream Cooler (Oxford Cryosystems) mounted on a ϕ-axis diffractometer supplied with an area detector.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6940 (2)0.13230 (17)0.14901 (18)0.0198 (5)
H1A0.63950.18920.12760.024*
H1B0.70780.12730.21430.024*
C20.8059 (2)0.14973 (18)0.12423 (18)0.0210 (6)
H2A0.84630.21030.15550.025*
H2B0.79140.16100.05940.025*
C30.5308 (2)0.0203 (2)0.1177 (2)0.0251 (6)
H3A0.49900.04220.08630.030*
H3B0.53390.01320.18090.030*
H3C0.48090.07810.09300.030*
C40.9893 (2)0.0730 (2)0.1351 (2)0.0315 (7)
H4A1.03580.01140.15350.038*
H4B0.98160.08560.07190.038*
H4C1.02770.13130.16980.038*
C51.1324 (2)0.21414 (17)0.21251 (17)0.0169 (5)
C61.1769 (2)0.24703 (18)0.29933 (18)0.0191 (5)
H61.13410.29280.32620.023*
C71.2850 (2)0.21162 (18)0.34598 (18)0.0213 (5)
H71.31650.23370.40530.026*
C81.3480 (2)0.14439 (19)0.30742 (19)0.0231 (6)
C91.3010 (2)0.1132 (2)0.2194 (2)0.0282 (6)
H91.34370.06780.19220.034*
C101.1939 (2)0.1476 (2)0.17192 (19)0.0247 (6)
H101.16250.12610.11240.030*
C111.4649 (3)0.1049 (2)0.3583 (2)0.0366 (8)
H11A1.48740.13810.41660.044*
H11B1.52290.11990.32520.044*
H11C1.46030.03110.36630.044*
C120.6101 (2)0.36535 (17)0.02044 (17)0.0180 (5)
C130.7172 (2)0.41280 (19)0.05305 (19)0.0233 (6)
H130.76670.39330.10860.028*
C140.7497 (2)0.48890 (19)0.0028 (2)0.0262 (6)
H140.82280.52150.02420.031*
C150.6775 (2)0.51890 (18)0.07880 (19)0.0231 (6)
C160.5711 (2)0.47082 (18)0.10896 (18)0.0227 (6)
H160.52070.49130.16380.027*
C170.5366 (2)0.39306 (17)0.06049 (18)0.0203 (5)
H170.46410.35960.08230.024*
C180.7155 (3)0.6007 (2)0.1328 (2)0.0354 (7)
H18A0.77650.64210.09420.042*
H18B0.64910.64420.16010.042*
H18C0.74590.56930.17950.042*
Cl10.76868 (5)0.07833 (5)0.27309 (4)0.02152 (14)
Cl20.77646 (5)0.04753 (4)0.02576 (4)0.01998 (14)
N10.91039 (19)0.16030 (15)0.14497 (15)0.0198 (5)
N20.67056 (18)0.18394 (14)0.09599 (14)0.0172 (4)
O10.64683 (14)0.03763 (12)0.10716 (12)0.0168 (4)
O20.87559 (14)0.05933 (12)0.15031 (12)0.0179 (4)
O31.00179 (18)0.27723 (16)0.06098 (14)0.0338 (5)
O40.95861 (17)0.33796 (14)0.19963 (15)0.0324 (5)
O50.57487 (17)0.30603 (14)0.17357 (13)0.0280 (4)
O60.46045 (16)0.22640 (13)0.03554 (13)0.0262 (4)
S10.99668 (5)0.25869 (4)0.15044 (5)0.01905 (15)
S20.56679 (5)0.27101 (4)0.08504 (4)0.01804 (14)
Mo0.778965 (17)0.092021 (14)0.123240 (14)0.01209 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (14)0.0141 (11)0.0207 (14)0.0031 (10)0.0029 (12)0.0042 (10)
C20.0259 (14)0.0140 (11)0.0213 (15)0.0011 (10)0.0022 (12)0.0022 (10)
C30.0128 (12)0.0296 (14)0.0333 (17)0.0017 (10)0.0062 (12)0.0070 (12)
C40.0165 (13)0.0328 (15)0.045 (2)0.0099 (11)0.0084 (14)0.0007 (13)
C50.0131 (11)0.0174 (11)0.0191 (14)0.0031 (9)0.0021 (11)0.0014 (10)
C60.0184 (13)0.0198 (12)0.0202 (15)0.0002 (10)0.0069 (12)0.0026 (10)
C70.0203 (13)0.0229 (12)0.0183 (14)0.0024 (10)0.0004 (12)0.0043 (10)
C80.0176 (13)0.0218 (12)0.0283 (16)0.0006 (10)0.0029 (12)0.0047 (11)
C90.0207 (14)0.0320 (14)0.0317 (18)0.0041 (11)0.0057 (13)0.0129 (12)
C100.0202 (14)0.0297 (14)0.0227 (16)0.0022 (11)0.0028 (12)0.0101 (11)
C110.0221 (15)0.0389 (16)0.043 (2)0.0058 (12)0.0034 (15)0.0107 (14)
C120.0182 (13)0.0154 (11)0.0190 (14)0.0028 (9)0.0020 (12)0.0009 (9)
C130.0212 (13)0.0230 (12)0.0227 (15)0.0017 (10)0.0003 (12)0.0025 (11)
C140.0178 (13)0.0257 (13)0.0332 (17)0.0041 (11)0.0029 (13)0.0033 (12)
C150.0204 (13)0.0193 (12)0.0303 (16)0.0020 (10)0.0077 (13)0.0010 (11)
C160.0225 (14)0.0218 (12)0.0210 (15)0.0039 (10)0.0006 (12)0.0014 (10)
C170.0171 (13)0.0179 (12)0.0224 (15)0.0020 (9)0.0012 (12)0.0013 (10)
C180.0280 (16)0.0316 (15)0.047 (2)0.0027 (12)0.0101 (16)0.0071 (13)
Cl10.0226 (3)0.0275 (3)0.0134 (3)0.0007 (2)0.0024 (3)0.0012 (2)
Cl20.0215 (3)0.0245 (3)0.0146 (3)0.0010 (2)0.0058 (3)0.0007 (2)
N10.0169 (11)0.0241 (11)0.0180 (12)0.0047 (8)0.0035 (10)0.0024 (9)
N20.0193 (11)0.0167 (10)0.0146 (11)0.0021 (8)0.0027 (10)0.0010 (8)
O10.0135 (8)0.0166 (8)0.0201 (10)0.0001 (7)0.0037 (8)0.0029 (7)
O20.0136 (8)0.0163 (8)0.0230 (11)0.0035 (7)0.0028 (8)0.0018 (7)
O30.0264 (10)0.0476 (12)0.0239 (12)0.0088 (9)0.0000 (10)0.0122 (9)
O40.0232 (10)0.0247 (10)0.0428 (14)0.0049 (8)0.0037 (10)0.0096 (9)
O50.0354 (11)0.0295 (10)0.0196 (11)0.0092 (8)0.0081 (9)0.0021 (8)
O60.0189 (9)0.0267 (9)0.0302 (12)0.0008 (8)0.0008 (9)0.0048 (8)
S10.0149 (3)0.0185 (3)0.0213 (4)0.0032 (2)0.0000 (3)0.0011 (2)
S20.0177 (3)0.0179 (3)0.0173 (3)0.0046 (2)0.0021 (3)0.0005 (2)
Mo0.01015 (11)0.01176 (11)0.01350 (13)0.00024 (7)0.00142 (9)0.00009 (7)
Geometric parameters (Å, º) top
C1—O11.448 (3)C11—H11C0.9800
C1—C21.494 (3)C12—C171.388 (4)
C1—H1A0.9900C12—C131.393 (4)
C1—H1B0.9900C12—S21.752 (3)
C2—O21.445 (3)C13—C141.383 (4)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.398 (4)
C3—O11.449 (3)C14—H140.9500
C3—H3A0.9800C15—C161.385 (4)
C3—H3B0.9800C15—C181.503 (4)
C3—H3C0.9800C16—C171.392 (4)
C4—O21.442 (3)C16—H160.9500
C4—H4A0.9800C17—H170.9500
C4—H4B0.9800C18—H18A0.9800
C4—H4C0.9800C18—H18B0.9800
C5—C61.389 (4)C18—H18C0.9800
C5—C101.390 (3)Cl1—Mo2.3730 (8)
C5—S11.758 (3)Cl2—Mo2.3842 (8)
C6—C71.387 (4)N1—S11.638 (2)
C6—H60.9500N1—Mo1.759 (2)
C7—C81.389 (4)N2—S21.659 (2)
C7—H70.9500N2—Mo1.738 (2)
C8—C91.403 (4)O1—Mo2.2868 (16)
C8—C111.507 (4)O2—Mo2.2802 (16)
C9—C101.378 (4)O3—S11.430 (2)
C9—H90.9500O4—S11.431 (2)
C10—H100.9500O5—S21.4324 (19)
C11—H11A0.9800O6—S21.429 (2)
C11—H11B0.9800
O1—C1—C2106.53 (19)C13—C14—C15121.4 (2)
O1—C1—H1A110.4C13—C14—H14119.3
C2—C1—H1A110.4C15—C14—H14119.3
O1—C1—H1B110.4C16—C15—C14118.6 (2)
C2—C1—H1B110.4C16—C15—C18121.0 (3)
H1A—C1—H1B108.6C14—C15—C18120.4 (2)
O2—C2—C1106.66 (18)C15—C16—C17121.3 (3)
O2—C2—H2A110.4C15—C16—H16119.3
C1—C2—H2A110.4C17—C16—H16119.3
O2—C2—H2B110.4C12—C17—C16118.6 (2)
C1—C2—H2B110.4C12—C17—H17120.7
H2A—C2—H2B108.6C16—C17—H17120.7
O1—C3—H3A109.5C15—C18—H18A109.5
O1—C3—H3B109.5C15—C18—H18B109.5
H3A—C3—H3B109.5H18A—C18—H18B109.5
O1—C3—H3C109.5C15—C18—H18C109.5
H3A—C3—H3C109.5H18A—C18—H18C109.5
H3B—C3—H3C109.5H18B—C18—H18C109.5
O2—C4—H4A109.5S1—N1—Mo157.85 (15)
O2—C4—H4B109.5S2—N2—Mo171.85 (14)
H4A—C4—H4B109.5C1—O1—C3110.85 (18)
O2—C4—H4C109.5C1—O1—Mo114.31 (14)
H4A—C4—H4C109.5C3—O1—Mo121.26 (14)
H4B—C4—H4C109.5C4—O2—C2110.29 (19)
C6—C5—C10121.5 (2)C4—O2—Mo121.87 (15)
C6—C5—S1120.13 (19)C2—O2—Mo115.90 (14)
C10—C5—S1118.3 (2)O3—S1—O4119.63 (13)
C7—C6—C5118.7 (2)O3—S1—N1105.31 (12)
C7—C6—H6120.7O4—S1—N1108.77 (12)
C5—C6—H6120.7O3—S1—C5109.40 (12)
C6—C7—C8121.1 (3)O4—S1—C5108.58 (12)
C6—C7—H7119.4N1—S1—C5104.03 (11)
C8—C7—H7119.4O6—S2—O5118.99 (12)
C7—C8—C9118.8 (2)O6—S2—N2107.89 (11)
C7—C8—C11121.2 (3)O5—S2—N2104.79 (11)
C9—C8—C11120.0 (2)O6—S2—C12109.18 (12)
C10—C9—C8120.9 (2)O5—S2—C12111.55 (12)
C10—C9—H9119.5N2—S2—C12103.09 (11)
C8—C9—H9119.5N2—Mo—N1105.17 (10)
C9—C10—C5118.9 (3)N2—Mo—O2163.31 (8)
C9—C10—H10120.5N1—Mo—O291.51 (8)
C5—C10—H10120.5N2—Mo—O192.45 (8)
C8—C11—H11A109.5N1—Mo—O1162.36 (8)
C8—C11—H11B109.5O2—Mo—O170.88 (6)
H11A—C11—H11B109.5N2—Mo—Cl194.17 (7)
C8—C11—H11C109.5N1—Mo—Cl196.54 (8)
H11A—C11—H11C109.5O2—Mo—Cl184.34 (5)
H11B—C11—H11C109.5O1—Mo—Cl181.15 (5)
C17—C12—C13121.4 (2)N2—Mo—Cl296.13 (7)
C17—C12—S2119.78 (19)N1—Mo—Cl295.94 (7)
C13—C12—S2118.8 (2)O2—Mo—Cl281.26 (5)
C14—C13—C12118.6 (3)O1—Mo—Cl282.66 (5)
C14—C13—H13120.7Cl1—Mo—Cl2161.14 (2)
C12—C13—H13120.7
O1—C1—C2—O254.8 (3)C10—C5—S1—N173.7 (2)
C10—C5—C6—C70.3 (4)C17—C12—S2—O67.1 (2)
S1—C5—C6—C7179.02 (18)C13—C12—S2—O6174.55 (19)
C5—C6—C7—C80.2 (4)C17—C12—S2—O5126.5 (2)
C6—C7—C8—C90.7 (4)C13—C12—S2—O551.9 (2)
C6—C7—C8—C11179.3 (2)C17—C12—S2—N2121.6 (2)
C7—C8—C9—C100.6 (4)C13—C12—S2—N260.0 (2)
C11—C8—C9—C10179.4 (3)S1—N1—Mo—N27.8 (4)
C8—C9—C10—C50.1 (4)S1—N1—Mo—O2171.5 (4)
C6—C5—C10—C90.4 (4)S1—N1—Mo—O1174.6 (2)
S1—C5—C10—C9179.1 (2)S1—N1—Mo—Cl1104.0 (4)
C17—C12—C13—C140.1 (4)S1—N1—Mo—Cl290.2 (4)
S2—C12—C13—C14178.5 (2)C4—O2—Mo—N2149.1 (3)
C12—C13—C14—C150.4 (4)C2—O2—Mo—N210.0 (4)
C13—C14—C15—C160.2 (4)C4—O2—Mo—N128.8 (2)
C13—C14—C15—C18179.1 (3)C2—O2—Mo—N1167.90 (17)
C14—C15—C16—C171.0 (4)C4—O2—Mo—O1152.2 (2)
C18—C15—C16—C17178.2 (2)C2—O2—Mo—O113.09 (15)
C13—C12—C17—C160.7 (4)C4—O2—Mo—Cl1125.2 (2)
S2—C12—C17—C16177.63 (19)C2—O2—Mo—Cl195.67 (15)
C15—C16—C17—C121.3 (4)C4—O2—Mo—Cl266.99 (19)
C2—C1—O1—C3172.7 (2)C2—O2—Mo—Cl272.12 (15)
C2—C1—O1—Mo46.0 (2)C1—O1—Mo—N2162.14 (16)
C1—C2—O2—C4175.4 (2)C3—O1—Mo—N225.16 (19)
C1—C2—O2—Mo40.9 (2)C1—O1—Mo—N115.5 (3)
Mo—N1—S1—O375.6 (4)C3—O1—Mo—N1152.4 (3)
Mo—N1—S1—O453.8 (4)C1—O1—Mo—O218.75 (15)
Mo—N1—S1—C5169.3 (4)C3—O1—Mo—O2155.7 (2)
C6—C5—S1—O3140.3 (2)C1—O1—Mo—Cl168.29 (15)
C10—C5—S1—O338.4 (2)C3—O1—Mo—Cl168.68 (18)
C6—C5—S1—O48.2 (2)C1—O1—Mo—Cl2102.00 (15)
C10—C5—S1—O4170.56 (19)C3—O1—Mo—Cl2121.03 (18)
C6—C5—S1—N1107.6 (2)

Experimental details

Crystal data
Chemical formula[Mo(C7H7NO2S)2Cl2(C4H10O2)]
Mr595.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.895 (2), 13.124 (2), 15.564 (3)
β (°) 104.66 (2)
V3)2350.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.60 × 0.32 × 0.16
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionPart of the refinement model (ΔF)
[ABSCOR (Higashi, 1995), a modification of DIFABS (Walker & Stuart, 1983). In contrast with DIFABS, ABSCOR loads F2 values instead of F values.
Tmin, Tmax0.585, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
15274, 4329, 3598
Rint0.047
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.05
No. of reflections4329
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.67

Computer programs: IPDS (Stoe & Cie, 1997), IPDS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 1999), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds