research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-1-(4-bromo­phen­yl)-3-(2-methyl­phen­yl)prop-2-en-1-one

crossmark logo

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 14 August 2023; accepted 22 August 2023; online 30 August 2023)

In the title com­pound, C16H13BrO, the planes of the aromatic rings are inclined at an angle of 23.49 (15)°, and the configuration about the C=C bond is E. In the crystal, the mol­ecules are linked into chains by weak C—H⋯O inter­actions along the b axis. Successive chains form a zigzag structure along the c axis, and these chains are connected to each other by face-to-face ππ stacking inter­actions along the a axis. These layers, parallel to the (001) plane, are linked by van der Waals inter­actions, thus consolidating the crystal structure. Hirshfeld surface analysis showed that the most significant contacts in the structure are H⋯H (43.1%), C⋯H/H⋯C (17.4%), Br⋯H/H⋯Br (14.9%), C⋯C (11.9%) and O⋯H/H⋯O (9.8%).

1. Chemical context

Diverse C—C, C—N, C—S and C—O bond formations are fundamental and valuable conversions in modern organic chemistry (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, Gh., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262-270.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]). Chalcones are α,β-unsaturated ketones containing ar­yl–aryl or ar­yl–alkyl groups at both ends. They belong to the flavonoid family, and they possess a wide variety of biological activities. Many natural chalcones, such as echinatin, naringenin, isoliquiritigenin, butein, 4-hy­droxy­derricin, 4-hy­droxy­lonchocarpin, derricin, xanthoangelol, lonchocarpin, licochalcone A, licochalcone E, humulusol, munsericin, flavokawain A, isobavachalcone, mallotophilippen C, D and E, broussochalcone A, crotaorixin, pedicinin and nardoaristolone A have been isolated from plants (Rozmer & Perjési, 2016[Rozmer, Z. & Perjési, P. (2016). Phytochem. Rev. 15, 87-120.]; Çelik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]). Moreover, the enone moiety is a widespread structural motif often found in biologically active com­pounds possessing enzyme inhibitory, anti­cancer and anti­microbial activity (Poustforoosh et al., 2022[Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]; Sarkı et al., 2023[Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113.]). Herein, in continuation to our recent investigations (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]), we report the crystal structure and Hirshfeld surface analysis of (2E)-1-(4-bromo­phen­yl)-3-(2-methyl­phen­yl)prop-2-en-1-one.

[Scheme 1]

2. Structural commentary

The title com­pound (Fig. 1[link]) is com­posed of two aromatic rings, i.e. 2-methyl­phenyl (C4–C9) and 4-bromo­phenyl (C11–C16), which are linked by a –CO—CH=CH– E-configured enone bridge. The mol­ecule is approximately planar, as indicated by the torsion angles C10—C5—C4—C3 = 1.9 (5)°, C9—C4—C3—C2 = −4.4 (5)°, C4—C3—C2—C1 = −176.3 (3)°, C3—C2—C1—C11 = −168.2 (3)°, C2—C1—C11—C12 = 15.9 (4)° and Br1—C14—C15—C16 = 178.5 (2)°. The dihedral angle between the planes of the 2-methyl­phenyl and 4-bromo­phenyl rings is 23.49 (15)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked into C(5) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) by weak C—H⋯O inter­actions (Table 1[link] and Fig. 2[link]) along the a axis. Successive chains form a zigzag structure along the b axis (Fig. 3[link]) and these chains are connected to each other along the c axis by face-to-face ππ stacking inter­actions [Cg1⋯Cg1a = 3.942 (2) Å, slippage = 1.890 Å; Cg2⋯Cg2a = 3.9420 (18) Å, slippage = 1.942 Å; symmetry code: (a) x − 1, y, z; Cg1 and Cg2 are the centroids of the 2-methyl­phenyl (C4—C9) and 4-bromo­phenyl (C11–C16) rings, respectively]. They form layers parallel to the (001) plane through van der Waals inter­actions, thus consolidating the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.58 3.200 (3) 124
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the C—H⋯O hydrogen bonds and face-to-face ππ stacking inter­actions in the title com­pound along the c axis.
[Figure 3]
Figure 3
Zigzag packing of the title com­pound along the b axis.

CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to com­pute the Hirshfeld surfaces and the two-dimensional fingerprints of the title mol­ecule. The dnorm mappings for the title com­pound were performed in the range from −0.0627 to +1.1373 a.u., on the dnorm surfaces, allowing the location of the C—H⋯O inter­actions (Tables 1[link] and 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title com­pound

C3⋯H10B 2.85 x + 1, y, z
Br1⋯H7 3.17 x + [{3\over 2}], −y + 1, z − [{1\over 2}]
O1⋯H12 2.58 x + 1, y + [{1\over 2}], −z + [{1\over 2}]
H15⋯H9 2.45 x + 2, y + [{1\over 2}], −z + [{1\over 2}]
C10⋯H10A 3.10 x + [{1\over 2}], −y + [{3\over 2}], −z + 1

The fingerprint plots (Fig. 4[link]) show that H⋯H [Fig. 4[link](b); 43.1%], C⋯H/H⋯C [Fig. 4[link](c); 17.4%], Br⋯H/H⋯Br [Fig. 4[link](d); 14.9%], C⋯C [Fig. 4[link](e); 11.9%] and O⋯H/H⋯O [Fig. 4[link](f); 9.8%] inter­actions contribute the most to the surface contacts. The crystal packing is additionally influenced by Br⋯C/C⋯Br (2.0%), Br⋯Br (0.8%), N⋯N (2.6%) and O⋯C/C⋯O (0.2%) contacts. The Hirshfeld surface study confirms the significance of H-atom inter­actions in the packing formation. The large number of H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, C⋯C and O⋯H/H⋯O inter­actions indicates that van der Waals inter­actions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Br⋯H/H⋯Br, (e) C⋯C and (f) O⋯H/H⋯O inter­actions. de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface.

4. Database survey

Four related com­pounds were found as a result of a search for the `(2E)-1,3-di­phenyl­prop-2-en-1-one' unit in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. CSD refcodes KOCZUA (Bindya et al., 2019[Bindya, S., Chidan Kumar, C. S., Naveen, S., Siddaraju, B. P., Quah, C. K. & Raihan, M. A. (2019). Acta Cryst. E75, 264-267.]), RUCKIM (Spruce et al., 2020[Spruce, K. J., Hall, C. L., Potticary, J., Pridmore, N. E., Cremeens, M. E., D'ambruoso, G. D., Matsumoto, M., Warren, G. I., Warren, S. D. & Hall, S. R. (2020). Acta Cryst. E76, 72-76.]), XOLLOC (Çelikesir et al., 2019[Çelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942-945.]) and OBIYUW01 (Atioğlu et al., 2019[Atioğlu, Z., Bindya, S., Akkurt, M. & Chidan Kumar, C. S. (2019). Acta Cryst. E75, 146-149.]).

In the crystal of KOCZUA, the shortest inter­molecular contacts are Cl⋯O [3.173 (3) Å]; these link the mol­ecules to form a 21 helix propagating along the b-axis direction. The helices are linked by offset ππ inter­actions [inter­centroid distance = 3.983 (1) Å], forming layers lying parallel to the ab plane. In the crystal of RUCKIM, the mol­ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Weak inter­molecular C—H⋯π inter­actions are observed between the sheets. In the crystal of XOLLOC, mol­ecules are linked via pairs of C—H⋯O inter­actions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [101] via C—H⋯π inter­actions. In the crystal of OBIYUW01, mol­ecules are linked by C—H⋯π inter­actions between the bromo­phenyl and fluoro­phenyl rings, resulting in a two-dimensional layered structure parallel to the ab plane. The mol­ecular packing is consolidated by weak Br⋯H and F⋯H contacts.

5. Synthesis and crystallization

The title com­pound was synthesized using a reported procedure (Chithiraikumar et al., 2021[Chithiraikumar, C., Ponmuthu, K. V., Harikrishnan, M., Malini, N., Sepperumal, M. & Siva, A. (2021). Res. Chem. Intermed. 47, 895-909.]) and colourless crystals were obtained upon recrystallization from an ethanol/water (3:1 v/v) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in their geometrically calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C16H13BrO
Mr 301.17
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 3.942, 11.5915 (2), 28.0387 (4)
V3) 1281.19 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.23
Crystal size (mm) 0.35 × 0.09 × 0.07
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.251, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14537, 2657, 2627
Rint 0.025
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.14
No. of reflections 2657
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.42
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.53 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(2E)-1-(4-Bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one top
Crystal data top
C16H13BrODx = 1.561 Mg m3
Mr = 301.17Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 12560 reflections
a = 3.942 Åθ = 3.8–76.9°
b = 11.5915 (2) ŵ = 4.23 mm1
c = 28.0387 (4) ÅT = 100 K
V = 1281.19 (3) Å3Needle, colourless
Z = 40.35 × 0.09 × 0.07 mm
F(000) = 608
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
2627 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.025
φ and ω scansθmax = 77.1°, θmin = 3.2°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
h = 44
Tmin = 0.251, Tmax = 1.000k = 1414
14537 measured reflectionsl = 3534
2657 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0121P)2 + 1.3924P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.51 e Å3
2657 reflectionsΔρmin = 0.42 e Å3
165 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.53 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6338 (7)0.6732 (2)0.28488 (10)0.0156 (6)
C20.5186 (8)0.5849 (3)0.31975 (11)0.0179 (6)
H20.5762880.5061080.3152590.021*
C30.3333 (8)0.6169 (3)0.35751 (10)0.0167 (6)
H30.2722640.6961110.3590370.020*
C40.2138 (8)0.5441 (3)0.39673 (9)0.0162 (5)
C50.0419 (8)0.5941 (3)0.43586 (11)0.0199 (6)
C60.0614 (9)0.5231 (3)0.47322 (11)0.0243 (7)
H60.1746430.5561480.4998210.029*
C70.0025 (9)0.4050 (3)0.47241 (12)0.0260 (8)
H70.0755920.3583020.4982760.031*
C80.1629 (10)0.3552 (3)0.43386 (11)0.0244 (7)
H80.2028100.2743480.4331170.029*
C90.2691 (8)0.4245 (3)0.39655 (10)0.0200 (6)
H90.3820680.3902490.3701700.024*
C100.0317 (9)0.7216 (3)0.43748 (12)0.0225 (7)
H10A0.1556110.7398980.4668280.034*
H10B0.1695500.7432250.4098020.034*
H10C0.1822100.7646870.4368800.034*
C110.7811 (8)0.6341 (2)0.23829 (10)0.0151 (5)
C120.7419 (7)0.5219 (2)0.22102 (9)0.0170 (6)
H120.6292760.4657700.2399620.020*
C130.8664 (8)0.4916 (2)0.17629 (11)0.0180 (6)
H130.8398320.4153590.1644010.022*
C141.0295 (8)0.5750 (3)0.14959 (10)0.0170 (6)
C151.0768 (8)0.6869 (3)0.16597 (11)0.0178 (6)
H151.1935030.7422100.1471110.021*
C160.9500 (8)0.7159 (3)0.21041 (11)0.0172 (6)
H160.9780560.7922620.2220850.021*
Br11.19480 (8)0.53645 (3)0.08770 (2)0.02188 (9)
O10.6109 (6)0.77583 (19)0.29371 (8)0.0242 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (15)0.0168 (14)0.0164 (13)0.0005 (11)0.0014 (11)0.0006 (11)
C20.0207 (16)0.0164 (14)0.0165 (14)0.0013 (12)0.0014 (12)0.0001 (11)
C30.0164 (13)0.0177 (13)0.0160 (13)0.0015 (13)0.0028 (12)0.0018 (11)
C40.0129 (13)0.0224 (13)0.0134 (11)0.0004 (13)0.0030 (9)0.0003 (11)
C50.0137 (14)0.0316 (18)0.0145 (14)0.0011 (13)0.0031 (12)0.0034 (13)
C60.0193 (14)0.040 (2)0.0142 (13)0.0042 (16)0.0013 (11)0.0015 (14)
C70.0249 (18)0.038 (2)0.0153 (15)0.0111 (15)0.0042 (13)0.0066 (14)
C80.0264 (17)0.0242 (16)0.0226 (15)0.0024 (15)0.0079 (15)0.0043 (12)
C90.0205 (17)0.0229 (14)0.0166 (13)0.0004 (12)0.0016 (11)0.0005 (10)
C100.0194 (16)0.0280 (17)0.0203 (16)0.0003 (14)0.0009 (13)0.0072 (13)
C110.0128 (13)0.0171 (13)0.0155 (13)0.0022 (11)0.0008 (11)0.0023 (10)
C120.0162 (15)0.0178 (14)0.0170 (12)0.0007 (12)0.0021 (10)0.0043 (11)
C130.0200 (16)0.0151 (14)0.0190 (14)0.0005 (11)0.0005 (12)0.0003 (10)
C140.0133 (14)0.0253 (16)0.0123 (13)0.0024 (11)0.0009 (11)0.0012 (11)
C150.0160 (14)0.0194 (15)0.0181 (14)0.0021 (12)0.0007 (11)0.0042 (11)
C160.0172 (14)0.0151 (14)0.0194 (14)0.0023 (12)0.0019 (12)0.0009 (11)
Br10.02033 (14)0.03011 (16)0.01522 (13)0.00038 (13)0.00375 (12)0.00153 (13)
O10.0303 (14)0.0171 (11)0.0252 (11)0.0010 (9)0.0064 (10)0.0025 (9)
Geometric parameters (Å, º) top
C1—O11.218 (4)C8—H80.9500
C1—C21.487 (4)C9—H90.9500
C1—C111.500 (4)C10—H10A0.9800
C2—C31.339 (4)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
C3—C41.464 (4)C11—C121.396 (4)
C3—H30.9500C11—C161.398 (4)
C4—C91.404 (4)C12—C131.392 (4)
C4—C51.414 (4)C12—H120.9500
C5—C61.393 (5)C13—C141.381 (4)
C5—C101.507 (5)C13—H130.9500
C6—C71.388 (5)C14—C151.389 (4)
C6—H60.9500C14—Br11.907 (3)
C7—C81.389 (5)C15—C161.384 (4)
C7—H70.9500C15—H150.9500
C8—C91.384 (4)C16—H160.9500
O1—C1—C2121.1 (3)C4—C9—H9119.2
O1—C1—C11120.1 (3)C5—C10—H10A109.5
C2—C1—C11118.9 (3)C5—C10—H10B109.5
C3—C2—C1119.7 (3)H10A—C10—H10B109.5
C3—C2—H2120.1C5—C10—H10C109.5
C1—C2—H2120.1H10A—C10—H10C109.5
C2—C3—C4127.6 (3)H10B—C10—H10C109.5
C2—C3—H3116.2C12—C11—C16119.4 (3)
C4—C3—H3116.2C12—C11—C1122.8 (3)
C9—C4—C5118.8 (3)C16—C11—C1117.8 (3)
C9—C4—C3121.1 (3)C13—C12—C11120.6 (3)
C5—C4—C3120.1 (3)C13—C12—H12119.7
C6—C5—C4118.8 (3)C11—C12—H12119.7
C6—C5—C10120.0 (3)C14—C13—C12118.4 (3)
C4—C5—C10121.2 (3)C14—C13—H13120.8
C7—C6—C5121.4 (3)C12—C13—H13120.8
C7—C6—H6119.3C13—C14—C15122.5 (3)
C5—C6—H6119.3C13—C14—Br1119.2 (2)
C6—C7—C8120.1 (3)C15—C14—Br1118.3 (2)
C6—C7—H7119.9C16—C15—C14118.4 (3)
C8—C7—H7119.9C16—C15—H15120.8
C9—C8—C7119.3 (3)C14—C15—H15120.8
C9—C8—H8120.4C15—C16—C11120.7 (3)
C7—C8—H8120.4C15—C16—H16119.7
C8—C9—C4121.6 (3)C11—C16—H16119.7
C8—C9—H9119.2
O1—C1—C2—C312.0 (5)C3—C4—C9—C8178.7 (3)
C11—C1—C2—C3168.2 (3)O1—C1—C11—C12164.3 (3)
C1—C2—C3—C4176.3 (3)C2—C1—C11—C1215.9 (4)
C2—C3—C4—C94.4 (5)O1—C1—C11—C1612.6 (4)
C2—C3—C4—C5175.1 (3)C2—C1—C11—C16167.2 (3)
C9—C4—C5—C61.1 (5)C16—C11—C12—C130.6 (4)
C3—C4—C5—C6178.4 (3)C1—C11—C12—C13176.2 (3)
C9—C4—C5—C10178.6 (3)C11—C12—C13—C140.1 (4)
C3—C4—C5—C101.9 (5)C12—C13—C14—C150.8 (5)
C4—C5—C6—C70.8 (5)C12—C13—C14—Br1178.8 (2)
C10—C5—C6—C7178.9 (3)C13—C14—C15—C161.1 (5)
C5—C6—C7—C80.1 (6)Br1—C14—C15—C16178.5 (2)
C6—C7—C8—C90.3 (5)C14—C15—C16—C110.6 (5)
C7—C8—C9—C40.1 (5)C12—C11—C16—C150.3 (5)
C5—C4—C9—C80.7 (5)C1—C11—C16—C15176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.452.791 (4)101
C12—H12···O1i0.952.583.200 (3)124
Symmetry code: (i) x+1, y1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
C3···H10B2.85x+1, y, z
Br1···H73.17-x+3/2, -y+1, z-1/2
O1···H122.58-x+1, y+1/2, -z+1/2
H15···H92.45-x+2, y+1/2, -z+1/2
C10···H10A3.10x+1/2, -y+3/2, -z+1
 

Acknowledgements

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. Authors contributions are as follows: conceptualization by ANK and IGM; methodology by ANK, FNN and IGM; investigation by ANK, MA and FNN; writing (original draft) by MA and ANK; writing (review and editing of the manuscript) by MA and ANK; visualization by MA, ANK and IGM; funding acquisition by VNK, AB and ANK; resources by AB, VNK and KAA; supervision by ANK and MA.

References

First citationAfkhami, F. A., Mahmoudi, Gh., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.  CrossRef CAS Google Scholar
First citationAtioğlu, Z., Bindya, S., Akkurt, M. & Chidan Kumar, C. S. (2019). Acta Cryst. E75, 146–149.  CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBindya, S., Chidan Kumar, C. S., Naveen, S., Siddaraju, B. P., Quah, C. K. & Raihan, M. A. (2019). Acta Cryst. E75, 264–267.  CrossRef IUCr Journals Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationÇelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942–945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationChithiraikumar, C., Ponmuthu, K. V., Harikrishnan, M., Malini, N., Sepperumal, M. & Siva, A. (2021). Res. Chem. Intermed. 47, 895–909.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  CrossRef Google Scholar
First citationPoustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRozmer, Z. & Perjési, P. (2016). Phytochem. Rev. 15, 87–120.  CrossRef CAS Google Scholar
First citationSarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpruce, K. J., Hall, C. L., Potticary, J., Pridmore, N. E., Cremeens, M. E., D'ambruoso, G. D., Matsumoto, M., Warren, G. I., Warren, S. D. & Hall, S. R. (2020). Acta Cryst. E76, 72–76.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds