research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-cyano-N-[(4-cyano­phen­yl)sulfon­yl]-N-[2-(5-methyl­furan-2-yl)phen­yl]benzene­sulfonamide

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, cZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 5 July 2023; accepted 17 July 2023; online 21 July 2023)

In the title compound, C25H17N3O5S2, intra­molecular ππ inter­actions [centroid-to-centroid distance = 3.5640 (9) Å] are observed between the furan and benzene rings of the 4-cyano­phenyl group. In the crystal, mol­ecules are connected via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane. These layers are inter­connected by C—H⋯π inter­actions and weak van der Waals inter­actions. Hirshfeld surface analysis indicates that H⋯H (30.2%), N⋯H/H⋯N (22.3%), C⋯H/H⋯C (17.9%) and O⋯H/H⋯O (15.4%) inter­actions make the most significant contributions to the crystal packing.

1. Chemical context

The famous Hinsberg reaction, first described by Oscar Hinsberg in 1890 (Hinsberg, 1890[Hinsberg, O. (1890). Ber. Dtsch. Chem. Ges. 23, 2962-2965.]; Hinsberg & Kessler, 1905[Hinsberg, O. & Kessler, J. (1905). Ber. Dtsch. Chem. Ges. 38, 906-911.]), is a laboratory test used for the detection of primary, secondary and tertiary amines. In this reaction, the corres­ponding amine is shaken with benzyl or p-tolyl­sulfonyl chloride in the presence of an aqueous base. Reactions with ammonia, and primary and secondary amines are the most widespread. A primary amine will form a soluble sulfonamide salt in the presence of aqueous alkali (either KOH or NaOH). A secondary amine in the same reaction forms an insoluble sulfonamide. The most widely used sulfonyl­amide is sulfanil­amide, an anti­bacterial drug that was first obtained in 1908 by the Austrian chemist Paul Josef Jakob Gelmo while he was trying to synthesize a dye for textile materials (Gelmo, 1908[Gelmo, P. (1908). J. Prakt. Chem. 77, 369-382.]). Moreover, sulfonyl­amides are active against seizures (Thiry et al., 2008[Thiry, A., Dogné, J.-M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661-671.]), and inhibit various enzymes such as human leukocyte elastase, cathespin G and HIV-1 protease (Supuran et al., 2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]). Sulfonamides are also used in fungicidal (Chohan et al., 2006[Chohan, Z. H., Shaikh, U., Rauf, A. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 741-748.], 2010[Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189-1199.]) and insecticidal mixtures (Beesley & Peters, 1971[Beesley, V. N. & Peters, W. (1971). J. Econ. Entomol. 64, 897-899.]). The number of donor and acceptor groups is a fundamental mol­ecular descriptor to predict the oral bioavailability as well as biocatalytic activity of small drug candidates (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.], 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]). Continuing our research in the improved multiple displacement amplification (IMDA) reaction field (Mammadova et al., 2023[Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 499-503.]; Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]; Yarovaya et al., 2021[Yarovaya, O. I., Kovaleva, K. S., Zaykovskaya, A. A., Yashina, L. N., Scherbakova, N. S., Scherbakov, D. N., Borisevich, S. S., Zubkov, F. I., Antonova, A. S., Peshkov, R. Y., Eltsov, I. V., Pyankov, O. V., Maksyutov, R. A. & Salakhutdinov, N. F. (2021). Bioorg. Med. Chem. Lett. 40, 127926.]), in this work we have studied the inter­action of 2-(α-fur­yl)aniline with sulfochloride containing an electron-withdrawing 4-cyano­phenyl group. Unexpectedly, under mild reaction conditions, the product of a double sulfaryl­ation was isolated in good yield from the reaction mixture (Fig. 1[link]). The formation of such double sulfonamide was previously observed in the presence of strong bases (Bartsch et al., 1977[Bartsch, R. A., Allaway, J. R., Yandell, R. B., Lee, J. G. & McCann, D. W. (1977). J. Chem. Eng. Data, 22, 453.]; Li et al., 2022[Li, D., Bao, X., Pang, J., Hu, X., Wang, L., Wang, J., Yang, Z., Xu, L., Wang, S., Weng, Q., Cui, S. & Hou, T. (2022). J. Med. Chem. 65, 15710-15724.]).

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme showing the one-pot synthesis of the title compound.

2. Structural commentary

In the title compound (Fig. 2[link]), the angle between the planes of the phenyl rings (C12–C17 and C19–C24) of the (4-cyano­phen­yl)sulfonyl groups is 47.90 (7)°. The furan ring (O1/C7–C10) is inclined at angles of 39.05 (8) and 17.38 (8)° with respect to the C12–C17 and C19–C24 phenyl rings of the (4-cyano­phen­yl)sulfonyl groups, while it makes a dihedral angle of 20.21 (8)° with the plane of the phenyl ring (C1–C6) attached to the furan ring. The latter phenyl ring makes dihedral angles of 26.28 (7) and 36.40 (7)°, respectively, with the phenyl rings of the (4-cyano­phen­yl)sulfonyl groups. All geometric parameters are normal and consistent with those of related compounds listed in the Database survey (Section 4).

[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level.

Intra­molecular ππ stacking inter­actions [Cg1⋯Cg4 = 3.5640 (9) Å; Cg1 and Cg4 are the centroids of the furan (O1/C7–C10) and benzene rings (C19–C24), respectively, of one of the two 4-cyano­phen­yl)sulfonyl groups, respectively; slippage = 0.793 Å], ensures the stability of the mol­ecular configuration.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane (Table 1[link]; Fig. 3[link]). These layers are inter­connected by C—H⋯π inter­actions and weak van der Waals inter­actions, thus ensuring crystal cohesion.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.56 3.3639 (17) 142
C6—H6⋯O5ii 0.95 2.56 3.3744 (17) 143
C11—H11B⋯N3iii 0.98 2.67 3.616 (2) 163
C16—H16⋯O4iv 0.95 2.55 3.2115 (18) 127
C21—H21⋯N3iii 0.95 2.54 3.433 (2) 156
C14—H14⋯Cg2v 0.95 2.85 3.4945 (16) 126
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z]; (iv) [-x+1, -y, -z+1]; (v) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
Crystal packing of the title compound along the b axis showing the C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π and ππ inter­actions.

Hirshfeld surfaces were generated for the mol­ecule of the title compound using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm mappings was performed in the range −0.3260 to +1.4294 a.u. The C—H⋯O and C—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 4[link]). Fingerprint plots (Fig. 5[link]) reveal that while H⋯H inter­actions (30.2%) make the largest contributions to surface contacts (Tables 1[link] and 2[link]), N⋯H/H⋯N (22.3%), C⋯H/H⋯C (17.9%) and O⋯H/H⋯O (15.4%) contacts are also important. Other, less notable inter­actions are O⋯C/C⋯O (6.0%), C⋯C (5.0%), N⋯N (1.2%), O⋯O (1.1%), N⋯C/C⋯N (0.5%), S⋯H/H⋯S (0.1%) and S⋯O/O⋯S (0.1%).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
C25⋯H11C 2.91 −1 + x, y, z
H20⋯H4 2.37 x, −1 + y, z
H11E⋯N2 2.76 2 − x, −y, 1 − z
H20⋯H16 2.44 1 − x, −y, 1 − z
H6⋯O5 2.56 1 − x, 1 − y, 1 − z
H21⋯N3 2.54 1 − x, −y, −z
H8⋯N3 2.73 1 − x, 1 − y, −z
H13⋯H13 2.40 2 − x, 1 − y, 1 − z
H11D⋯H11D 2.02 2 − x, −y, −z
[Figure 4]
Figure 4
Front (a) and back (b) views of the three-dimensional Hirshfeld surface for the title compound. Some inter­molecular C—H⋯O and C—H⋯N inter­actions are shown.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Ten related compounds were found as a result of the search for `N-(methane­sulfon­yl)-N-methyl­methane­sulfonamide' in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. PIMGUR (Mammadova et al., 2023[Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 499-503.]), JOBTIF (Kim, 2014[Kim, S.-G. (2014). Acta Cryst. E70, o660.]), CEGMIM (Mughal et al., 2012a[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012a). Acta Cryst. E68, o2973.]), CEGSUE (Mughal et al., 2012b[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012b). Acta Cryst. E68, o3013.]), YAXKAL (Taher & Smith, 2012a[Taher, A. & Smith, V. J. (2012a). Acta Cryst. E68, o1136.]), EFASUB (Taher & Smith, 2012b[Taher, A. & Smith, V. J. (2012b). Acta Cryst. E68, o3362.]), OCABUR (Abbassi et al., 2011[Abbassi, N., Rakib, E. M., Hannioui, A. & Zouihri, H. (2011). Acta Cryst. E67, o3304.]), AYUPUG (Arshad et al., 2011[Arshad, M. N., Khan, I. U., Holman, K. T., Asiri, A. M. & Rafique, H. M. (2011). Acta Cryst. E67, o2356.]), PONZIC (Rizzoli et al., 2009[Rizzoli, C., Vicini, P. & Incerti, M. (2009). Acta Cryst. E65, o416-o417.]) and ROGJON (Li & Song, 2008[Li, X.-Y. & Song, Z.-W. (2008). Acta Cryst. E64, o1906.]).

In PIMGUR (space group P21/n), C—H⋯O hydrogen bonds link adjacent mol­ecules in a three-dimensional network, while ππ stacking inter­actions [centroid–centroid distance = 3.8745 (9) Å] between the furan and a phenyl ring of one of the two (3-nitro­phen­yl)sulfonyl groups result in chains parallel to the a axis. In JOBTIF (space group P21/n), mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. In CEGMIM (space group Pbca), mol­ecules are connected by C—H⋯O inter­actions into sheets in the ab plane. In the crystal of CEGSUE (space group P[\overline{1}]), the only directional inter­actions are very weak C—H⋯π inter­actions and very weak ππ stacking between parallel methyl­phenyl rings. In YAXKAL (space group P[\overline{1}]), mol­ecules associate via pairs of N—H⋯N hydrogen bonds, forming a centrosymmetric eight-membered {⋯HNCN}2 synthon. In EFASUB (space group C2/c), mol­ecules associate via N—H⋯N and N—H⋯O hydrogen bonds, forming extended hydrogen-bonded sheets that lie parallel to the bc plane. The N—H⋯N hydrogen bonds propagate along the b-axis direction, while the N—H⋯O hydrogen bonds propagate along the c-axis direction. The crystal structure of OCABUR (space group P21/c) features C—H⋯O hydrogen bonds. In the crystal structure of AYUPUG (space group P21/c), weak C—H⋯O inter­actions connect the mol­ecules in a zigzag manner along the a-axis direction. In the crystal of PONZIC (space group P[\overline{1}]), mol­ecules are linked into chains parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions. In ROGJON (space group Pbca), the crystal structure features weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and ππ inter­actions.

5. Synthesis and crystallization

p-Cyano­benzene­sulphonyl chloride (2.33 g, 0.0115 mol) was added gradually to a solution of 2-(5-methyl-2-fur­yl)aniline (1.00 g, 0.00577 mol) in pyridine (7 mL) under stirring and cooling in an ice–water bath. The mixture was stirred for 7 h at r.t. and after completion of the reaction [thin-layer chromatography (TLC) monitoring; sorbfil, hexa­ne/ethyl acetate 4:1], the mixture was poured into hydro­chloric acid (6 M, 90 mL). The separated oil was washed with water until its crystallization. The obtained crystals were filtered off, dried, and recrystallized from an ethanol/di­methyl­formamide (DMF) mixture to give the target disulfonamide as a colourless solid. Single crystals were obtained by slow crystallization from an EtOH/DMF mixture (yield 64%, 1.86 g; m.p. 507–508 K). IR (KBr), ν (cm−1): 1156 (νs SO2), 1329 (νas SO2), 2237 (CN). 1H NMR (600.2 MHz, DMSO-d6) (J, Hz): δ 8.08 (d, J = 8.6 Hz, 4H), 7.90 (d, J = 8.6 Hz, 4H), 7.72 (dd, J = 8.1, 1.5 Hz, 1H), 7.56 (dt, J = 8.6, 1.5 Hz, 1H), 7.36 (dt, J = 8.1, 1.5 Hz, 1H), 7.04 (dd, J = 8.1, 1.5 Hz, 1H), 6.61 (d, J = 3.5 Hz, 1H), 5.93 (br.d, J = 3.5 Hz, 1H), 1.96 (s, 3H); 13C{1H} NMR (150.9 MHz, DMSO-d6): δ 153.2, 147.9 (2C), 142.9, 134.0 (4C), 133.7, 132.2, 132.0, 129.6 (4C), 128.8, 128.7, 128.6, 117.9 (2C), 117.4 (2C), 112.0, 108.6, 13.4; MS (ESI) m/z: [M + H]+ 504. Elemental analysis calculated (%) for C25H17N3O5S2 %: C 59.63, H 3.40, N 8.34, S 12.74; found: C 60.00, H 3.27, N 8.56, S 13.03.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for methyl groups). The hydrogen atoms of the methyl group containing the C11 atom were disordered over two positions with equal occupancies.

Table 3
Experimental details

Crystal data
Chemical formula C25H17N3O5S2
Mr 503.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.4542 (1), 9.5111 (2), 16.4378 (3)
α, β, γ (°) 88.838 (4), 81.644 (1), 81.414 (1)
V3) 1140.11 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.50
Crystal size (mm) 0.29 × 0.22 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.481, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29936, 4841, 4675
Rint 0.051
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.08
No. of reflections 4841
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.60
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXL2016/6 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4-Cyano-N-[(4-cyanophenyl)sulfonyl]-N-[2-(5-methylfuran-2-yl)phenyl]benzenesulfonamide top
Crystal data top
C25H17N3O5S2Z = 2
Mr = 503.53F(000) = 520
Triclinic, P1Dx = 1.467 Mg m3
a = 7.4542 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5111 (2) ÅCell parameters from 21520 reflections
c = 16.4378 (3) Åθ = 2.7–77.6°
α = 88.838 (4)°µ = 2.50 mm1
β = 81.644 (1)°T = 100 K
γ = 81.414 (1)°Prism, colourless
V = 1140.11 (4) Å30.29 × 0.22 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4841 independent reflections
Radiation source: micro-focus sealed X-ray tube4675 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.051
φ and ω scansθmax = 77.9°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 89
Tmin = 0.481, Tmax = 1.000k = 1212
29936 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4479P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4841 reflectionsΔρmax = 0.76 e Å3
316 parametersΔρmin = 0.60 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.87131 (4)0.20718 (3)0.37143 (2)0.01631 (10)
S20.47488 (4)0.28580 (3)0.36436 (2)0.01531 (10)
O10.86050 (14)0.27336 (10)0.19206 (6)0.0209 (2)
O20.85236 (14)0.07100 (10)0.34200 (6)0.0224 (2)
O31.02688 (13)0.27486 (11)0.34195 (6)0.0214 (2)
O40.47897 (13)0.15314 (11)0.40679 (6)0.0207 (2)
O50.35697 (13)0.40880 (11)0.39862 (6)0.0208 (2)
N10.68945 (15)0.32549 (12)0.35205 (7)0.0154 (2)
N20.7640 (2)0.22944 (17)0.80753 (9)0.0376 (3)
N30.3238 (2)0.18901 (15)0.04558 (8)0.0301 (3)
C10.71285 (17)0.47104 (14)0.33138 (8)0.0166 (3)
C20.76977 (18)0.51151 (15)0.25007 (9)0.0190 (3)
C30.7802 (2)0.65682 (16)0.23618 (10)0.0244 (3)
H30.8190300.6879610.1820710.029*
C40.7355 (2)0.75524 (15)0.29928 (10)0.0261 (3)
H40.7427880.8527070.2878720.031*
C50.67996 (19)0.71301 (16)0.37940 (10)0.0238 (3)
H50.6499040.7808980.4226870.029*
C60.66904 (18)0.57071 (15)0.39520 (9)0.0196 (3)
H60.6315850.5406820.4496860.024*
C70.81504 (19)0.41619 (15)0.17921 (9)0.0201 (3)
C80.8215 (2)0.44092 (18)0.09722 (10)0.0294 (3)
H80.7966250.5306020.0714310.035*
C90.8728 (2)0.30600 (19)0.05734 (9)0.0308 (3)
H90.8880020.2886690.0001440.037*
C100.8957 (2)0.20782 (17)0.11670 (9)0.0242 (3)
C110.9513 (2)0.05141 (18)0.11806 (10)0.0320 (4)
H11A0.9511120.0192450.1750880.048*0.5
H11B0.8647180.0047420.0925820.048*0.5
H11C1.0746970.0269440.0874120.048*0.5
H11D0.9759060.0147090.0616330.048*0.5
H11E1.0623000.0292120.1441400.048*0.5
H11F0.8523210.0070100.1493090.048*0.5
C120.85015 (18)0.20354 (14)0.47982 (8)0.0176 (3)
C130.91148 (19)0.31300 (14)0.51825 (9)0.0197 (3)
H130.9673890.3835520.4864940.024*
C140.88981 (19)0.31752 (15)0.60333 (9)0.0208 (3)
H140.9282020.3925130.6305800.025*
C150.81124 (19)0.21113 (15)0.64858 (9)0.0206 (3)
C160.75614 (19)0.09909 (15)0.60938 (9)0.0225 (3)
H160.7066670.0254660.6409540.027*
C170.77392 (19)0.09578 (15)0.52430 (9)0.0204 (3)
H170.7347580.0212870.4969280.025*
C180.7855 (2)0.21874 (17)0.73718 (10)0.0265 (3)
C190.43219 (17)0.26331 (14)0.26310 (8)0.0161 (3)
C200.47823 (19)0.12911 (15)0.22776 (9)0.0201 (3)
H200.5315850.0513670.2577550.024*
C210.4455 (2)0.10992 (15)0.14829 (9)0.0223 (3)
H210.4731800.0183980.1235140.027*
C220.37117 (19)0.22685 (16)0.10504 (8)0.0203 (3)
C230.3246 (2)0.36132 (16)0.14114 (9)0.0234 (3)
H230.2723630.4395590.1111710.028*
C240.3553 (2)0.37968 (15)0.22120 (9)0.0212 (3)
H240.3242520.4703770.2468720.025*
C250.3437 (2)0.20666 (16)0.02113 (9)0.0242 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01287 (16)0.01633 (16)0.01966 (17)0.00131 (11)0.00276 (12)0.00148 (12)
S20.01201 (16)0.01925 (17)0.01516 (16)0.00367 (11)0.00191 (11)0.00204 (12)
O10.0234 (5)0.0214 (5)0.0178 (5)0.0057 (4)0.0000 (4)0.0028 (4)
O20.0235 (5)0.0175 (5)0.0260 (5)0.0012 (4)0.0044 (4)0.0049 (4)
O30.0134 (5)0.0265 (5)0.0241 (5)0.0030 (4)0.0020 (4)0.0003 (4)
O40.0192 (5)0.0256 (5)0.0193 (5)0.0086 (4)0.0045 (4)0.0028 (4)
O50.0143 (4)0.0260 (5)0.0215 (5)0.0012 (4)0.0015 (4)0.0081 (4)
N10.0119 (5)0.0163 (5)0.0184 (5)0.0034 (4)0.0024 (4)0.0002 (4)
N20.0433 (9)0.0437 (8)0.0247 (7)0.0043 (7)0.0037 (6)0.0032 (6)
N30.0361 (7)0.0327 (7)0.0207 (6)0.0003 (6)0.0065 (5)0.0033 (5)
C10.0133 (6)0.0157 (6)0.0214 (6)0.0023 (4)0.0044 (5)0.0007 (5)
C20.0155 (6)0.0206 (6)0.0220 (7)0.0040 (5)0.0055 (5)0.0013 (5)
C30.0247 (7)0.0229 (7)0.0279 (7)0.0066 (5)0.0095 (6)0.0056 (6)
C40.0239 (7)0.0174 (6)0.0393 (9)0.0028 (5)0.0129 (6)0.0026 (6)
C50.0187 (7)0.0204 (7)0.0333 (8)0.0010 (5)0.0080 (6)0.0072 (6)
C60.0148 (6)0.0214 (7)0.0231 (7)0.0017 (5)0.0049 (5)0.0037 (5)
C70.0170 (6)0.0225 (7)0.0211 (7)0.0046 (5)0.0021 (5)0.0018 (5)
C80.0334 (8)0.0322 (8)0.0208 (7)0.0011 (6)0.0024 (6)0.0030 (6)
C90.0332 (8)0.0394 (9)0.0178 (7)0.0019 (7)0.0002 (6)0.0035 (6)
C100.0222 (7)0.0302 (8)0.0195 (7)0.0065 (6)0.0029 (5)0.0076 (6)
C110.0368 (9)0.0291 (8)0.0276 (8)0.0056 (6)0.0054 (7)0.0087 (6)
C120.0139 (6)0.0173 (6)0.0218 (6)0.0001 (5)0.0056 (5)0.0002 (5)
C130.0186 (6)0.0180 (6)0.0236 (7)0.0041 (5)0.0055 (5)0.0016 (5)
C140.0190 (7)0.0196 (6)0.0244 (7)0.0010 (5)0.0071 (5)0.0005 (5)
C150.0159 (6)0.0225 (7)0.0227 (7)0.0009 (5)0.0047 (5)0.0025 (5)
C160.0184 (7)0.0223 (7)0.0276 (7)0.0042 (5)0.0055 (5)0.0056 (5)
C170.0177 (6)0.0180 (6)0.0269 (7)0.0034 (5)0.0072 (5)0.0012 (5)
C180.0242 (7)0.0271 (7)0.0279 (8)0.0023 (6)0.0050 (6)0.0039 (6)
C190.0116 (6)0.0210 (6)0.0164 (6)0.0038 (5)0.0022 (5)0.0020 (5)
C200.0202 (7)0.0196 (6)0.0195 (6)0.0001 (5)0.0027 (5)0.0007 (5)
C210.0243 (7)0.0214 (7)0.0205 (7)0.0006 (5)0.0028 (5)0.0055 (5)
C220.0167 (6)0.0277 (7)0.0169 (6)0.0042 (5)0.0026 (5)0.0022 (5)
C230.0257 (7)0.0223 (7)0.0224 (7)0.0004 (5)0.0078 (5)0.0012 (5)
C240.0224 (7)0.0197 (6)0.0217 (7)0.0014 (5)0.0058 (5)0.0029 (5)
C250.0239 (7)0.0272 (7)0.0206 (7)0.0008 (6)0.0027 (5)0.0022 (6)
Geometric parameters (Å, º) top
S1—O21.4253 (10)C10—C111.484 (2)
S1—O31.4287 (10)C11—H11A0.9800
S1—N11.6914 (11)C11—H11B0.9800
S1—C121.7657 (14)C11—H11C0.9800
S2—O51.4262 (10)C11—H11D0.9800
S2—O41.4277 (10)C11—H11E0.9800
S2—N11.6807 (11)C11—H11F0.9800
S2—C191.7625 (13)C12—C171.3895 (19)
O1—C71.3699 (17)C12—C131.3946 (19)
O1—C101.3711 (17)C13—C141.385 (2)
N1—C11.4484 (16)C13—H130.9500
N2—C181.148 (2)C14—C151.393 (2)
N3—C251.147 (2)C14—H140.9500
C1—C61.3979 (19)C15—C161.398 (2)
C1—C21.4062 (19)C15—C181.443 (2)
C2—C31.408 (2)C16—C171.386 (2)
C2—C71.459 (2)C16—H160.9500
C3—C41.382 (2)C17—H170.9500
C3—H30.9500C19—C241.3863 (19)
C4—C51.392 (2)C19—C201.3877 (19)
C4—H40.9500C20—C211.384 (2)
C5—C61.385 (2)C20—H200.9500
C5—H50.9500C21—C221.396 (2)
C6—H60.9500C21—H210.9500
C7—C81.359 (2)C22—C231.395 (2)
C8—C91.427 (2)C22—C251.4442 (19)
C8—H80.9500C23—C241.387 (2)
C9—C101.348 (2)C23—H230.9500
C9—H90.9500C24—H240.9500
O2—S1—O3121.57 (6)C10—C11—H11B109.5
O2—S1—N1108.74 (6)H11A—C11—H11B109.5
O3—S1—N1104.43 (6)C10—C11—H11C109.5
O2—S1—C12109.39 (6)H11A—C11—H11C109.5
O3—S1—C12107.41 (6)H11B—C11—H11C109.5
N1—S1—C12103.85 (6)H11D—C11—H11E109.5
O5—S2—O4120.18 (6)H11D—C11—H11F109.5
O5—S2—N1106.78 (6)H11E—C11—H11F109.5
O4—S2—N1106.87 (6)C17—C12—C13121.92 (13)
O5—S2—C19108.34 (6)C17—C12—S1120.72 (11)
O4—S2—C19109.55 (6)C13—C12—S1117.36 (11)
N1—S2—C19103.90 (6)C14—C13—C12119.13 (13)
C7—O1—C10107.60 (11)C14—C13—H13120.4
C1—N1—S2117.35 (9)C12—C13—H13120.4
C1—N1—S1119.89 (9)C13—C14—C15119.42 (13)
S2—N1—S1122.51 (7)C13—C14—H14120.3
C6—C1—C2121.38 (13)C15—C14—H14120.3
C6—C1—N1117.08 (12)C14—C15—C16120.97 (14)
C2—C1—N1121.49 (12)C14—C15—C18118.91 (14)
C1—C2—C3116.84 (13)C16—C15—C18120.11 (13)
C1—C2—C7125.48 (12)C17—C16—C15119.79 (13)
C3—C2—C7117.67 (13)C17—C16—H16120.1
C4—C3—C2121.64 (14)C15—C16—H16120.1
C4—C3—H3119.2C16—C17—C12118.71 (13)
C2—C3—H3119.2C16—C17—H17120.6
C3—C4—C5120.66 (14)C12—C17—H17120.6
C3—C4—H4119.7N2—C18—C15177.81 (17)
C5—C4—H4119.7C24—C19—C20122.18 (13)
C6—C5—C4119.13 (14)C24—C19—S2119.24 (10)
C6—C5—H5120.4C20—C19—S2118.57 (10)
C4—C5—H5120.4C21—C20—C19119.19 (13)
C5—C6—C1120.35 (14)C21—C20—H20120.4
C5—C6—H6119.8C19—C20—H20120.4
C1—C6—H6119.8C20—C21—C22119.10 (13)
C8—C7—O1109.22 (13)C20—C21—H21120.5
C8—C7—C2131.86 (14)C22—C21—H21120.5
O1—C7—C2118.92 (12)C23—C22—C21121.32 (13)
C7—C8—C9106.68 (14)C23—C22—C25120.03 (13)
C7—C8—H8126.7C21—C22—C25118.65 (13)
C9—C8—H8126.7C24—C23—C22119.37 (13)
C10—C9—C8107.01 (13)C24—C23—H23120.3
C10—C9—H9126.5C22—C23—H23120.3
C8—C9—H9126.5C19—C24—C23118.81 (13)
C9—C10—O1109.49 (13)C19—C24—H24120.6
C9—C10—C11135.03 (14)C23—C24—H24120.6
O1—C10—C11115.47 (13)N3—C25—C22179.03 (16)
C10—C11—H11A109.5
O5—S2—N1—C133.62 (11)C8—C9—C10—O10.37 (18)
O4—S2—N1—C1163.42 (10)C8—C9—C10—C11178.47 (17)
C19—S2—N1—C180.78 (11)C7—O1—C10—C90.20 (16)
O5—S2—N1—S1140.59 (8)C7—O1—C10—C11178.89 (13)
O4—S2—N1—S110.79 (9)O2—S1—C12—C1716.82 (13)
C19—S2—N1—S1105.01 (8)O3—S1—C12—C17150.62 (11)
O2—S1—N1—C1145.42 (10)N1—S1—C12—C1799.12 (12)
O3—S1—N1—C114.26 (11)O2—S1—C12—C13163.63 (10)
C12—S1—N1—C198.17 (11)O3—S1—C12—C1329.83 (12)
O2—S1—N1—S240.51 (9)N1—S1—C12—C1380.43 (11)
O3—S1—N1—S2171.67 (7)C17—C12—C13—C142.4 (2)
C12—S1—N1—S275.89 (9)S1—C12—C13—C14177.14 (10)
S2—N1—C1—C677.49 (14)C12—C13—C14—C151.5 (2)
S1—N1—C1—C696.87 (13)C13—C14—C15—C160.8 (2)
S2—N1—C1—C299.91 (13)C13—C14—C15—C18178.59 (13)
S1—N1—C1—C285.72 (14)C14—C15—C16—C172.2 (2)
C6—C1—C2—C30.1 (2)C18—C15—C16—C17177.20 (13)
N1—C1—C2—C3177.24 (12)C15—C16—C17—C121.3 (2)
C6—C1—C2—C7178.78 (13)C13—C12—C17—C161.0 (2)
N1—C1—C2—C71.5 (2)S1—C12—C17—C16178.51 (10)
C1—C2—C3—C40.4 (2)O5—S2—C19—C2423.09 (13)
C7—C2—C3—C4178.39 (13)O4—S2—C19—C24155.90 (11)
C2—C3—C4—C50.6 (2)N1—S2—C19—C2490.20 (12)
C3—C4—C5—C60.3 (2)O5—S2—C19—C20157.37 (11)
C4—C5—C6—C10.2 (2)O4—S2—C19—C2024.55 (13)
C2—C1—C6—C50.4 (2)N1—S2—C19—C2089.35 (11)
N1—C1—C6—C5177.05 (12)C24—C19—C20—C210.5 (2)
C10—O1—C7—C80.07 (16)S2—C19—C20—C21180.00 (11)
C10—O1—C7—C2179.71 (12)C19—C20—C21—C221.6 (2)
C1—C2—C7—C8158.84 (16)C20—C21—C22—C231.9 (2)
C3—C2—C7—C819.9 (2)C20—C21—C22—C25177.80 (13)
C1—C2—C7—O120.9 (2)C21—C22—C23—C241.0 (2)
C3—C2—C7—O1160.40 (12)C25—C22—C23—C24178.67 (13)
O1—C7—C8—C90.29 (17)C20—C19—C24—C230.4 (2)
C2—C7—C8—C9179.45 (15)S2—C19—C24—C23179.11 (11)
C7—C8—C9—C100.40 (19)C22—C23—C24—C190.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.563.3639 (17)142
C6—H6···O5ii0.952.563.3744 (17)143
C11—H11B···N3iii0.982.673.616 (2)163
C13—H13···O30.952.562.9146 (18)102
C16—H16···O4iv0.952.553.2115 (18)127
C21—H21···N3iii0.952.543.433 (2)156
C24—H24···O50.952.592.9371 (18)102
C14—H14···Cg2v0.952.853.4945 (16)126
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+2, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
C25···H11C2.91-1 + x, y, z
H20···H42.37x, -1 + y, z
H11E···N22.762 - x, -y, 1 - z
H20···H162.441 - x, -y, 1 - z
H6···O52.561 - x, 1 - y, 1 - z
H21···N32.541 - x, -y, -z
H8···N32.731 - x, 1 - y, -z
H13···H132.402 - x, 1 - y, 1 - z
H11D···H11D2.022 - x, -y, -z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, EDY and GMB; X-ray analysis, GZM, VNK, MA, and STÇ; writing (review and editing of the manuscript) MA and AB; funding acquisition, GZM; supervision, MA and AB.

Funding information

GMZ thanks Baku State University for financial support.

References

First citationAbbassi, N., Rakib, E. M., Hannioui, A. & Zouihri, H. (2011). Acta Cryst. E67, o3304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Holman, K. T., Asiri, A. M. & Rafique, H. M. (2011). Acta Cryst. E67, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartsch, R. A., Allaway, J. R., Yandell, R. B., Lee, J. G. & McCann, D. W. (1977). J. Chem. Eng. Data, 22, 453.  CrossRef Web of Science Google Scholar
First citationBeesley, V. N. & Peters, W. (1971). J. Econ. Entomol. 64, 897–899.  CrossRef CAS Google Scholar
First citationChohan, Z. H., Shaikh, U., Rauf, A. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 741–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189–1199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGelmo, P. (1908). J. Prakt. Chem. 77, 369–382.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHinsberg, O. (1890). Ber. Dtsch. Chem. Ges. 23, 2962–2965.  CrossRef Google Scholar
First citationHinsberg, O. & Kessler, J. (1905). Ber. Dtsch. Chem. Ges. 38, 906–911.  CrossRef CAS Google Scholar
First citationKim, S.-G. (2014). Acta Cryst. E70, o660.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationLi, D., Bao, X., Pang, J., Hu, X., Wang, L., Wang, J., Yang, Z., Xu, L., Wang, S., Weng, Q., Cui, S. & Hou, T. (2022). J. Med. Chem. 65, 15710–15724.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X.-Y. & Song, Z.-W. (2008). Acta Cryst. E64, o1906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 499–503.  CSD CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012a). Acta Cryst. E68, o2973.  CSD CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012b). Acta Cryst. E68, o3013.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRizzoli, C., Vicini, P. & Incerti, M. (2009). Acta Cryst. E65, o416–o417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaher, A. & Smith, V. J. (2012a). Acta Cryst. E68, o1136.  CSD CrossRef IUCr Journals Google Scholar
First citationTaher, A. & Smith, V. J. (2012b). Acta Cryst. E68, o3362.  CSD CrossRef IUCr Journals Google Scholar
First citationThiry, A., Dogné, J.-M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661–671.  Web of Science PubMed CAS Google Scholar
First citationYarovaya, O. I., Kovaleva, K. S., Zaykovskaya, A. A., Yashina, L. N., Scherbakova, N. S., Scherbakov, D. N., Borisevich, S. S., Zubkov, F. I., Antonova, A. S., Peshkov, R. Y., Eltsov, I. V., Pyankov, O. V., Maksyutov, R. A. & Salakhutdinov, N. F. (2021). Bioorg. Med. Chem. Lett. 40, 127926.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds