Download citation
Download citation
link to html
In the crystal structures of the title compounds, C20H23N3OS, (II), and C20H21N3OS, (III), significant differences occur in the conformation of, respectively, the phenyl­piperidine and phenyl­tetra­hydro­pyridine substituents at the 2-position of the iso­thiazolo­pyridine system. The piperidine ring adopts a chair conformation, while the tetra­hydro­pyridine ring assumes a half-chair form. The phenyl­piperidine and phenyl­tetra­hydro­pyridine fragments exhibit different conformations resulting from the steric and conjugation effects in the phenyl ring, respectively. Theoretical calculations show that both conformations are energetically stable and correspond to a minimum of energy for the analyzed systems. The mol­ecular packing in (II) is influenced by [pi]-[pi] inter­actions of the iso­thiazolo­pyridine systems, with a shortest centroid-to-centroid separation of 3.5843 (11) Å between pyridine rings. In the crystal structure of (III), the mol­ecules are linked by C-H...O hydrogen bonds and C-H...[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107031071/tr3017sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107031071/tr3017IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107031071/tr3017IIIsup3.hkl
Contains datablock III

CCDC references: 659138; 659139

Comment top

The 4-arylpiperazinyl group is known to constitute part of the pharmacophore for many pharmacologically active heterocycles (Barlocco et al., 2001; Viaud et al., 1995). In previous papers, we have described the synthesis of 2-[(4-arylpiperazin-1-yl)methyl]isothiazolo[5,4-b]pyridin-3(2H)-one compounds and detailed the evolution of their analgesic properties (Malinka et al., 2001, 2005). The results of the bioanalyses showed that the unsubstituted parent compound (Ia) was inactive in analgesic tests. A systematic modification of (Ia) by a substitution (R) on the aromatic ring of the 4-phenylpiperazinyl system showed that the presence of electron-withdrawing substituents [2-Cl in (Ib), 2-F in (Ic), 3-CF3 in (Id) and 4-NO2 in (Ie)] led to isothiazolopyridines active in this assay. In contrast, the use of electron-donating groups [2-OCH3 in (If) and 2-CH3 in (Ig)] reduced analgesic action.

The X-ray crystallographic data of isothiazolopyridines (I) (Karczmarzyk & Malinka, 2005) showed that for the unsubstituted compound (Ia) and its derivatives with electron-withdrawing substituents 3-CF3, (Id) and 4-NO2, (Ie), a lone pair on the 4-N piperazine atom forms part of a 4-N–aromatic ring π system. The near coplanarity of the piperazine and phenyl rings observed in (Ia), (Id) and (Ie) is constrained by the occurrence of this effect. In ortho-substituted compounds [2-Cl in (Ib), 2-OCH3 in (If), 5-Cl-2-CH3 in (Ih), 2-OC2H5 in (Ii) and 2-CH3 in (Ig)], the 4-N–Ar conjugation is very weak or not present. The nearly perpendicular orientation of the piperazine and aromatic rings within these compounds is the result of an ortho steric hindrance effect. X-ray data also indicated that a chair conformation of the piperazine ring might be considered as a pharmacophoric conformation for analgesic isothiazolopyridines of type (I).

To find out whether replacement of the 4-N atom of the piperazine ring by a methylene or a vinyl C atom in the inactive compound (Ia) induces analgesic action, we prepared the analogues (II) and (III) and determined the conformation of the piperidine rings and the effect of the Ar–piperidine conjugation for these compounds. In pharmacological investigation, compound (III), to our surprise, exhibited significant analgesic action (Malinka et al., 2005). Evaluation of the analgesic activity of (II) is in progress.

The geometry (bond lengths, angles and planarity) of the isothiazolopyridine rings is very similar in (II) and (III) and the related structures (Ia), (Ib) and (Id)–(Ii). The conformation of the phenylpiperidine and phenyltetrahydropyridine substituents is described by the torsion angles S1—N2—C12—N21 of 56.69 (18) and 25.74 (16)°, N2—C12—N21—C22 of 69.03 (19) and 78.47 (16)°, and N2—C12—N21—C26 of -168.97 (16) and -157.01 (13)° for (II) and (III), respectively. Comparison of these torsion angles with those found in (Ia) [24.5 (2), 77.9 (2) and -159.4 (2)°, respectively] shows nearly the same transgauchetrans conformation of the substituent in (Ia) and (III) and a somewhat different gauchegauchetrans conformation in (II) (Fig. 3).

The piperidine ring in (II) adopts a chair conformation, while the occurrence of the double bond in the tetrahydropyridinyl ring of (III) favours a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are Q = 0.581 (2) Å and θ = 179.5 (2)° for the piperidine ring, and Q = 0.515 (1) Å, θ = 128.2 (2)° and ϕ = -157.1 (2)° for the tetrahydropyridinyl ring. The bond lengths and angles in the phenylpiperidine system of (II) are normal, and the conjugation effect between the electron systems of the piperidine and phenyl rings characteristic for (Ia) does not occur. The mutual, nearly perpendicular, orientation of the piperidine and phenyl rings, described by the C23—C24—C31—C32 torsion angle of -71.9 (2)°, is constrained by steric interaction of the H atoms of the methylene and methine groups. In (III), a weak conjugation of the vinyl bond C24C25 in the tetrahydropyridinyl ring with the π-electron system of the phenyl ring is observed. The double bond of 1.344 (2) Å is longer than expected for a Csp2Csp2 bond in cyclohexene [1.326 (12) Å; Allen et al., 1987], and the C25—C24—C31—C32 torsion angle of 175.07 (16)° confirms the occurrence of this conjugation, while the C24—C31 bond length of 1.489 (2) Å, comparable to an average Csp2—Car (CC—Car; unconjugated) single bond of 1.488 (12) Å (Allen et al., 1987), is more characteristic for an unconjugated system.

Because the orientation of the piperidine ring in (II), the tetrahydropyridine ring in (III) and the piperazine ring in (Ia) with respect to the phenyl ring is strictly connected with the steric and conjugation effects, the energy for the free-rotation on the N24—C31 or C24—C31 bond, taking account of the one degree of freedom described by the C23—N(C)24—C31—C32 torsion angle (ψ), was calculated for isolated molecules of (Ia), (II) and (III) using the AM1 semiempirical SCF-MO method (Dewar et al., 1985) implemented in the program package WINMOPAC (Shchepin & Litvinov, 1998). The differences in heat of formation, ΔH, of the conformations were calculated after energy minimization and optimization of all geometrical parameters for each rotation, with a 10° increment from -180 to +180° of ψ (Fig. 4). The calculation showed that the energy differences between rotamers, of about 1.0, 2.0 and 1.5 kcal mol-1 for (Ia), (II) and (III), respectively, are relatively low, but certain tendencies in the energy minima distributions are visible. The conjugation of the vinyl bond in the tetrahydropyridine ring and the lone pair at the N atom of the piperazine ring with the π-electron system of the phenyl ring gives the minimum of energy for ψ close to 0° in (Ia) and -30° in (III). The lack of the mentioned conjugation in the phenylpiperidine system in (II) moves the minimum of energy to a ψ value of about 60°. The calculated conformations with minima of energy are in good agreement with those observed in the crystalline state of the investigated molecules.

There are no classical hydrogen bonds present in the crystal structure of (II). The molecular packing in the crystal is influenced by the presence of the weak ππ interactions (Spek, 2003). The pyridine rings of the isotriazolopyridine systems belonging to the inversion- and translation-related molecules overlap each other, forming molecular stacks in the [010] direction, with centroid-to-centroid separations of 3.5843 (11) Å [3.5850 in abstract] between the pyridine rings at (x, y, z) and (-x, -y + 1, -z + 1) and 3.6498 (11) Å for the pyridine rings at (x, y, z) and (-x, -y + 2, -z + 1) (Fig. 5). The ππ distances are 3.405 and 3.555 Å, respectively, and they are comparable to a van der Waals distance of about 3.4 Å for the overlapping π aromatic ring systems. The packing of the molecules in the crystal structure of (III) is governed by C—H···O hydrogen bonds, linking the molecules into molecular chains parallel to the [010] direction, and C—H···π interactions (Table 1). In conclusion, (i) the small difference in rotation energy within the arylpiperazine(piperidine) systems of isothiazolopyridines (Ia), (II) and (III) allows the side chain to adopt any spatial shape under physiological conditions, and (ii) the analgesic activity of piperidine derivative (III) suggests that the 4-N piperazine atom of analgesic isothiazolopyridines (I) is not protonated in the bioactive form of these compounds. Therefore, an electrostatic potential on the piperazine N atoms cannot be ruled out when analysing the biological properties of the compounds of series (I).

Related literature top

For related literature, see: Allen et al. (1987); Barlocco et al. (2001); Cremer & Pople (1975); Dewar et al. (1985); Karczmarzyk & Malinka (2005); Malinka et al. (2001, 2005); Shchepin & Litvinov (1998); Spek (2003); Viaud et al. (1995).

Experimental top

Compound (III) was prepared from 2-hydroxymethyl-4,6-dimethylisothiazolo[5,4-b]pyridin-3(2H)-one and commercially available 4-phenyl-1,2,3,6-tetrahydropyridine according to the method described by Malinka et al. (2005). Compound (II) was obtained similarly. The chemical experimental data for the preparation of (II), along with its physicochemical and spectral data (1H NMR), are given in supporting material, available on request. [Do you wish to include any of this in the _exptl_special_details section of the CIF, so that it is available online?] Crystals suitable for X-ray diffraction analysis were grown by slow evaporation from a hexane solution.

Refinement top

All H atoms in (II) were treated as riding on their parent C atoms, with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3), 0.97 Å (CH2) and 0.98 Å (CH) and Uiso(H) values of 1.5Ueq(C). In (III), the H atoms were located in a difference Fourier map and their coordinates refined isotropically [C—H = 0.88 (3)–1.02 (3) Å and Uiso(H) = 1.5Ueq(C)].

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL-Plus (Sheldrick, 1989); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of (III), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Overlay of molecules (a) (Ia) and (II) and (b) (Ia) and (III) by least-squares fitting of the isothiazolopyridine ring systems [the average deviation of atoms is 0.029 and 0.004 Å for (a) and (b), respectively].
[Figure 4] Fig. 4. The energy effect upon C(N)24—C31 rotation as calculated with the AM1 semi-empirical method.
[Figure 5] Fig. 5. A view of part of the crystal structure of (II) along (a) [100] and (b) [010], showing the formation of a column of stacked pyridine rings.
(II) 4,6-Dimethyl-2-[(4-phenylpiperidin-1-yl)methyl]isothiazolo[5,4-b]pyridin-3(2H)-one top
Crystal data top
C20H23N3OSF(000) = 1504
Mr = 353.47Dx = 1.277 Mg m3
Monoclinic, C2/cMelting point = 409–411 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 29.384 (6) ÅCell parameters from 197 reflections
b = 7.146 (1) Åθ = 12.2–78.1°
c = 21.750 (4) ŵ = 1.66 mm1
β = 126.39 (3)°T = 293 K
V = 3676.4 (18) Å3Prism, colourless
Z = 80.55 × 0.42 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3471 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 70.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 3535
Tmin = 0.498, Tmax = 0.733k = 78
19486 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3471 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H23N3OSV = 3676.4 (18) Å3
Mr = 353.47Z = 8
Monoclinic, C2/cCu Kα radiation
a = 29.384 (6) ŵ = 1.66 mm1
b = 7.146 (1) ÅT = 293 K
c = 21.750 (4) Å0.55 × 0.42 × 0.20 mm
β = 126.39 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3267 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.733Rint = 0.020
19486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
3471 reflectionsΔρmin = 0.29 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.615694 (18)0.82018 (6)0.02092 (3)0.0738 (3)
O30.47843 (6)0.8666 (2)0.17815 (7)0.0779 (4)
N20.57161 (6)0.8642 (2)0.07479 (8)0.0670 (4)
N70.56421 (6)0.73655 (19)0.08589 (8)0.0651 (4)
N210.63434 (6)0.76397 (18)0.10415 (8)0.0618 (4)
C30.51432 (7)0.8450 (2)0.10962 (9)0.0603 (4)
C40.45661 (7)0.76738 (19)0.05809 (9)0.0591 (4)
C50.46279 (8)0.7242 (2)0.00865 (10)0.0646 (4)
H510.43070.70300.00670.097*
C60.51601 (8)0.71173 (19)0.07879 (9)0.0629 (4)
C80.55749 (7)0.77848 (18)0.02127 (9)0.0580 (4)
C90.50663 (6)0.79560 (17)0.05054 (8)0.0553 (4)
C100.39929 (8)0.7828 (3)0.13291 (11)0.0796 (5)
H1010.37100.78550.12400.119*
H1020.39290.67690.16430.119*
H1030.39720.89570.15830.119*
C110.52233 (10)0.6679 (3)0.15074 (12)0.0803 (5)
H1110.54840.75430.19000.121*
H1120.53640.54270.16670.121*
H1130.48630.67860.14170.121*
C120.59612 (8)0.9110 (2)0.11472 (11)0.0712 (4)
H1210.56620.92660.16880.107*
H1220.61661.02830.09520.107*
C220.60240 (7)0.5935 (2)0.14499 (10)0.0662 (4)
H2210.57540.62120.19890.099*
H2220.58150.55240.12590.099*
C230.64138 (7)0.4387 (2)0.13468 (10)0.0631 (4)
H2310.61920.32930.16320.095*
H2320.66650.40460.08110.095*
C240.67629 (6)0.5000 (2)0.16220 (8)0.0593 (4)
H2410.64940.53230.21640.089*
C250.70756 (8)0.6791 (2)0.12048 (14)0.0768 (5)
H2510.72810.72410.13960.115*
H2520.73470.65300.06640.115*
C260.66676 (9)0.8292 (2)0.13154 (13)0.0743 (5)
H2610.68770.94100.10380.111*
H2620.64100.86090.18530.111*
C310.71325 (7)0.3446 (2)0.15737 (9)0.0586 (4)
C320.76106 (8)0.2820 (3)0.08768 (10)0.0719 (4)
H3210.77130.33810.04250.108*
C330.79364 (8)0.1364 (3)0.08508 (11)0.0782 (5)
H3310.82540.09620.03810.117*
C340.77960 (8)0.0514 (3)0.15060 (11)0.0729 (5)
H3410.8030 (12)0.041 (4)0.1533 (16)0.109*
C350.73202 (8)0.1109 (3)0.21990 (10)0.0747 (5)
H3510.72180.05380.26490.112*
C360.69957 (7)0.2557 (2)0.22252 (9)0.0677 (4)
H3610.66760.29400.26960.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0575 (4)0.0857 (4)0.0738 (4)0.01057 (16)0.0366 (3)0.01170 (17)
O30.0757 (8)0.0934 (8)0.0581 (7)0.0018 (6)0.0361 (6)0.0034 (5)
N20.0666 (8)0.0703 (8)0.0715 (8)0.0079 (6)0.0450 (7)0.0027 (6)
N70.0680 (8)0.0573 (7)0.0628 (7)0.0042 (5)0.0348 (6)0.0064 (5)
N210.0655 (8)0.0558 (7)0.0746 (8)0.0012 (5)0.0473 (7)0.0018 (5)
C30.0677 (9)0.0509 (7)0.0635 (9)0.0028 (6)0.0396 (8)0.0058 (5)
C40.0619 (8)0.0473 (7)0.0632 (8)0.0054 (5)0.0345 (7)0.0105 (5)
C50.0708 (9)0.0513 (7)0.0752 (10)0.0091 (6)0.0452 (8)0.0069 (6)
C60.0763 (10)0.0441 (7)0.0685 (9)0.0026 (6)0.0432 (8)0.0009 (5)
C80.0634 (8)0.0449 (6)0.0634 (8)0.0036 (5)0.0363 (7)0.0007 (5)
C90.0612 (8)0.0413 (6)0.0603 (8)0.0001 (5)0.0343 (7)0.0064 (5)
C100.0592 (10)0.0981 (13)0.0679 (10)0.0126 (8)0.0304 (8)0.0152 (8)
C110.0980 (14)0.0702 (10)0.0811 (12)0.0016 (8)0.0576 (11)0.0100 (8)
C120.0819 (11)0.0607 (8)0.0865 (11)0.0072 (7)0.0584 (10)0.0063 (7)
C220.0628 (9)0.0603 (8)0.0844 (10)0.0057 (6)0.0485 (8)0.0009 (7)
C230.0677 (9)0.0571 (8)0.0758 (9)0.0041 (6)0.0487 (8)0.0029 (6)
C240.0623 (8)0.0616 (8)0.0599 (7)0.0020 (6)0.0396 (7)0.0079 (6)
C250.0746 (11)0.0661 (10)0.1100 (15)0.0112 (7)0.0658 (11)0.0039 (8)
C260.0817 (12)0.0577 (9)0.1052 (14)0.0090 (7)0.0673 (11)0.0000 (7)
C310.0598 (8)0.0635 (8)0.0603 (8)0.0004 (6)0.0398 (7)0.0065 (6)
C320.0672 (10)0.0878 (11)0.0590 (9)0.0085 (8)0.0365 (8)0.0030 (7)
C330.0684 (11)0.0924 (12)0.0713 (10)0.0159 (8)0.0401 (9)0.0126 (8)
C340.0728 (10)0.0734 (10)0.0868 (11)0.0071 (7)0.0551 (9)0.0081 (8)
C350.0815 (11)0.0772 (10)0.0764 (10)0.0001 (8)0.0528 (9)0.0058 (8)
C360.0678 (9)0.0764 (10)0.0602 (9)0.0033 (7)0.0386 (8)0.0053 (7)
Geometric parameters (Å, º) top
S1—N21.7061 (17)C22—C231.510 (2)
S1—C81.7403 (16)C22—H2210.9700
O3—C31.222 (2)C22—H2220.9700
N2—C31.383 (2)C23—C241.527 (2)
N2—C121.458 (2)C23—H2310.9700
N7—C81.332 (2)C23—H2320.9700
N7—C61.342 (2)C24—C311.513 (2)
N21—C121.453 (2)C24—C251.522 (2)
N21—C261.467 (2)C24—H2410.9800
N21—C221.471 (2)C25—C261.518 (2)
C3—C91.473 (2)C25—H2510.9700
C4—C91.394 (2)C25—H2520.9700
C4—C51.387 (2)C26—H2610.9700
C4—C101.498 (3)C26—H2620.9700
C5—C61.396 (3)C31—C321.394 (2)
C5—H510.9300C31—C361.377 (2)
C6—C111.495 (3)C32—C331.393 (3)
C8—C91.385 (2)C32—H3210.9300
C10—H1010.9600C33—C341.368 (3)
C10—H1020.9600C33—H3310.9300
C10—H1030.9600C34—C351.381 (3)
C11—H1110.9600C34—H3410.98 (3)
C11—H1120.9600C35—C361.385 (3)
C11—H1130.9600C35—H3510.9300
C12—H1210.9700C36—H3610.9300
C12—H1220.9700
N2—S1—C890.01 (8)C23—C22—H221109.4
C3—N2—C12124.55 (15)N21—C22—H222109.4
C3—N2—S1116.50 (12)C23—C22—H222109.4
C12—N2—S1118.90 (13)H221—C22—H222108.0
C8—N7—C6115.00 (14)C22—C23—C24111.01 (12)
C12—N21—C26109.47 (13)C22—C23—H231109.4
C12—N21—C22110.29 (13)C24—C23—H231109.4
C26—N21—C22110.67 (13)C22—C23—H232109.4
O3—C3—N2123.01 (16)C24—C23—H232109.4
O3—C3—C9128.78 (16)H231—C23—H232108.0
N2—C3—C9108.22 (14)C31—C24—C23112.58 (12)
C9—C4—C5115.79 (15)C31—C24—C25114.92 (13)
C9—C4—C10123.02 (15)C23—C24—C25108.40 (13)
C5—C4—C10121.19 (16)C31—C24—H241106.8
C4—C5—C6121.60 (16)C23—C24—H241106.8
C4—C5—H51119.2C25—C24—H241106.8
C6—C5—H51119.2C24—C25—C26111.05 (15)
N7—C6—C5122.59 (15)C24—C25—H251109.4
N7—C6—C11116.08 (17)C26—C25—H251109.4
C5—C6—C11121.33 (18)C24—C25—H252109.4
N7—C8—C9126.50 (15)C26—C25—H252109.4
N7—C8—S1120.81 (12)H251—C25—H252108.0
C9—C8—S1112.69 (12)N21—C26—C25110.70 (13)
C4—C9—C8118.50 (14)N21—C26—H261109.5
C4—C9—C3128.95 (14)C25—C26—H261109.5
C8—C9—C3112.54 (14)N21—C26—H262109.5
C4—C10—H101109.5C25—C26—H262109.5
C4—C10—H102109.5H261—C26—H262108.1
H101—C10—H102109.5C32—C31—C36117.48 (16)
C4—C10—H103109.5C32—C31—C24121.98 (14)
H101—C10—H103109.5C36—C31—C24120.52 (14)
H102—C10—H103109.5C31—C32—C33120.58 (16)
C6—C11—H111109.5C31—C32—H321119.7
C6—C11—H112109.5C33—C32—H321119.7
H111—C11—H112109.5C34—C33—C32120.95 (17)
C6—C11—H113109.5C34—C33—H331119.5
H111—C11—H113109.5C32—C33—H331119.5
H112—C11—H113109.5C33—C34—C35118.98 (17)
N21—C12—N2110.39 (13)C33—C34—H341125.0 (16)
N21—C12—H121109.6C35—C34—H341115.7 (16)
N2—C12—H121109.6C36—C35—C34120.10 (16)
N21—C12—H122109.6C36—C35—H351120.0
N2—C12—H122109.6C34—C35—H351120.0
H121—C12—H122108.1C35—C36—C31121.91 (16)
N21—C22—C23111.15 (13)C35—C36—H361119.0
N21—C22—H221109.4C31—C36—H361119.0
C8—S1—N2—C31.86 (12)N2—C3—C9—C81.27 (16)
C8—S1—N2—C12179.35 (13)C26—N21—C12—N2168.97 (16)
C12—N2—C3—O30.3 (2)C22—N21—C12—N269.03 (18)
S1—N2—C3—O3177.61 (12)C3—N2—C12—N21120.58 (17)
C12—N2—C3—C9179.45 (13)S1—N2—C12—N2156.69 (18)
S1—N2—C3—C92.11 (16)C12—N21—C22—C23179.94 (12)
C9—C4—C5—C60.5 (2)C26—N21—C22—C2358.77 (18)
C10—C4—C5—C6179.24 (14)N21—C22—C23—C2457.61 (18)
C8—N7—C6—C51.5 (2)C22—C23—C24—C31176.43 (13)
C8—N7—C6—C11178.94 (13)C22—C23—C24—C2555.30 (18)
C4—C5—C6—N71.4 (2)C31—C24—C25—C26177.45 (14)
C4—C5—C6—C11179.08 (15)C23—C24—C25—C2655.62 (19)
C6—N7—C8—C90.9 (2)C12—N21—C26—C25179.42 (16)
C6—N7—C8—S1178.57 (10)C22—N21—C26—C2558.8 (2)
N2—S1—C8—N7178.55 (12)C24—C25—C26—N2158.2 (2)
N2—S1—C8—C91.00 (11)C23—C24—C31—C3271.9 (2)
C5—C4—C9—C80.12 (19)C25—C24—C31—C3252.9 (2)
C10—C4—C9—C8179.86 (14)C23—C24—C31—C36106.23 (16)
C5—C4—C9—C3179.18 (13)C25—C24—C31—C36129.00 (17)
C10—C4—C9—C30.6 (2)C36—C31—C32—C330.7 (3)
N7—C8—C9—C40.1 (2)C24—C31—C32—C33178.84 (17)
S1—C8—C9—C4179.42 (10)C31—C32—C33—C340.0 (3)
N7—C8—C9—C3179.51 (13)C32—C33—C34—C350.7 (3)
S1—C8—C9—C30.01 (14)C33—C34—C35—C360.6 (3)
O3—C3—C9—C42.2 (2)C34—C35—C36—C310.1 (3)
N2—C3—C9—C4178.06 (13)C32—C31—C36—C350.7 (3)
O3—C3—C9—C8178.43 (15)C24—C31—C36—C35178.93 (16)
(III) 4,6-dimethyl-2-[(4-phenyl-1,2,3,6-tetrahydropyridin-1- yl)methyl]isothiazolo[5,4-b]-3(2H)-one top
Crystal data top
C20H21N3OSF(000) = 744
Mr = 351.46Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point = 427–429 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 17.548 (3) ÅCell parameters from 110 reflections
b = 11.007 (2) Åθ = 12.6–79.5°
c = 9.033 (2) ŵ = 1.75 mm1
β = 93.83 (3)°T = 293 K
V = 1740.8 (6) Å3Prism, colourless
Z = 40.35 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube3192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 70.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002).
h = 2121
Tmin = 0.635, Tmax = 0.845k = 1313
19164 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.114Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.2252P]
where P = (Fo2 + 2Fc2)/3
3279 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H21N3OSV = 1740.8 (6) Å3
Mr = 351.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.548 (3) ŵ = 1.75 mm1
b = 11.007 (2) ÅT = 293 K
c = 9.033 (2) Å0.35 × 0.13 × 0.10 mm
β = 93.83 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002).
3192 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.845Rint = 0.017
19164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114Only H-atom coordinates refined
S = 1.05Δρmax = 0.24 e Å3
3279 reflectionsΔρmin = 0.21 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.223073 (19)0.88960 (3)0.41064 (4)0.05327 (15)
O30.07750 (6)0.73055 (10)0.63600 (14)0.0645 (3)
N20.17753 (7)0.77445 (11)0.49554 (14)0.0520 (3)
N70.17484 (7)1.11331 (11)0.47690 (14)0.0522 (3)
N210.27824 (6)0.65014 (10)0.42501 (12)0.0479 (3)
C30.11699 (7)0.80549 (13)0.57721 (15)0.0482 (3)
C40.06261 (7)1.01377 (13)0.65557 (14)0.0477 (3)
C50.07163 (8)1.13713 (14)0.63717 (17)0.0529 (3)
H510.0400 (12)1.189 (2)0.683 (2)0.079*
C60.12766 (8)1.18421 (13)0.54919 (16)0.0520 (3)
C80.16477 (7)0.99394 (13)0.49440 (14)0.0468 (3)
C90.11156 (7)0.93859 (12)0.57973 (14)0.0456 (3)
C100.00421 (9)0.96340 (16)0.75291 (19)0.0566 (3)
H1010.0294 (13)0.924 (2)0.837 (3)0.085*
H1020.0322 (13)0.904 (2)0.701 (2)0.085*
H1030.0272 (12)1.021 (2)0.783 (2)0.085*
C110.13811 (12)1.31869 (16)0.5341 (2)0.0692 (4)
H1110.0925 (16)1.353 (2)0.506 (3)0.104*
H1120.1540 (14)1.354 (2)0.632 (3)0.104*
H1130.1716 (16)1.330 (3)0.468 (3)0.104*
C120.20008 (8)0.64929 (14)0.46635 (19)0.0530 (3)
H1210.1698 (12)0.6181 (19)0.384 (2)0.079*
H1220.1905 (12)0.6023 (19)0.553 (2)0.079*
C220.33429 (8)0.66203 (16)0.55178 (16)0.0552 (3)
H2210.3176 (12)0.727 (2)0.616 (2)0.083*
H2220.3385 (12)0.583 (2)0.610 (2)0.083*
C230.41175 (9)0.69089 (16)0.49752 (18)0.0584 (4)
H2310.4507 (13)0.694 (2)0.575 (2)0.088*
H2320.4088 (13)0.779 (2)0.467 (2)0.088*
C240.43179 (8)0.61487 (11)0.36950 (15)0.0474 (3)
C250.37742 (9)0.54603 (14)0.29922 (17)0.0579 (4)
H2510.3900 (12)0.488 (2)0.229 (2)0.087*
C260.29633 (9)0.54355 (15)0.3389 (2)0.0595 (4)
H2610.2664 (13)0.541 (2)0.250 (3)0.089*
H2620.2882 (13)0.468 (2)0.389 (2)0.089*
C310.51106 (8)0.62121 (12)0.32073 (16)0.0503 (3)
C320.56435 (10)0.69992 (16)0.3883 (2)0.0664 (4)
H3210.5496 (14)0.751 (2)0.463 (3)0.100*
C330.63761 (10)0.71086 (18)0.3396 (2)0.0743 (5)
H3310.6733 (15)0.774 (3)0.388 (3)0.112*
C340.65891 (10)0.64276 (19)0.2214 (2)0.0718 (5)
H3410.7093 (15)0.654 (3)0.188 (3)0.108*
C350.60747 (10)0.56346 (19)0.1544 (2)0.0717 (5)
H3510.6249 (14)0.511 (3)0.071 (3)0.108*
C360.53452 (9)0.55159 (17)0.20241 (17)0.0619 (4)
H3610.5013 (13)0.492 (2)0.154 (2)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0479 (2)0.0533 (2)0.0609 (2)0.00166 (13)0.02087 (16)0.00107 (13)
O30.0534 (6)0.0548 (6)0.0885 (7)0.0040 (4)0.0273 (5)0.0092 (5)
N20.0455 (6)0.0483 (6)0.0638 (7)0.0009 (5)0.0168 (5)0.0014 (5)
N70.0463 (6)0.0522 (7)0.0592 (7)0.0032 (5)0.0130 (5)0.0049 (5)
N210.0439 (6)0.0496 (6)0.0507 (6)0.0006 (5)0.0069 (5)0.0056 (5)
C30.0384 (6)0.0530 (7)0.0538 (7)0.0012 (5)0.0080 (5)0.0029 (6)
C40.0367 (6)0.0560 (7)0.0507 (7)0.0001 (5)0.0062 (5)0.0020 (5)
C50.0460 (7)0.0548 (8)0.0592 (8)0.0036 (6)0.0121 (6)0.0002 (6)
C60.0466 (7)0.0518 (7)0.0582 (7)0.0004 (6)0.0079 (6)0.0026 (6)
C80.0390 (6)0.0531 (7)0.0488 (6)0.0010 (5)0.0069 (5)0.0027 (5)
C90.0356 (6)0.0522 (7)0.0493 (7)0.0013 (5)0.0053 (5)0.0030 (5)
C100.0453 (7)0.0599 (8)0.0666 (8)0.0011 (6)0.0190 (6)0.0033 (7)
C110.0712 (11)0.0531 (9)0.0859 (12)0.0009 (7)0.0244 (9)0.0044 (8)
C120.0471 (7)0.0499 (7)0.0627 (8)0.0028 (6)0.0106 (6)0.0039 (6)
C220.0508 (7)0.0674 (9)0.0478 (7)0.0011 (6)0.0067 (6)0.0075 (6)
C230.0475 (7)0.0718 (9)0.0562 (8)0.0007 (7)0.0051 (6)0.0151 (7)
C240.0480 (7)0.0456 (7)0.0492 (7)0.0061 (5)0.0066 (5)0.0009 (5)
C250.0570 (8)0.0557 (8)0.0624 (8)0.0015 (6)0.0132 (7)0.0144 (6)
C260.0528 (8)0.0584 (8)0.0675 (9)0.0043 (7)0.0073 (7)0.0170 (7)
C310.0483 (7)0.0500 (7)0.0531 (7)0.0095 (5)0.0070 (6)0.0050 (5)
C320.0547 (8)0.0628 (9)0.0833 (11)0.0007 (7)0.0176 (8)0.0109 (8)
C330.0543 (9)0.0705 (10)0.0999 (13)0.0012 (8)0.0174 (9)0.0000 (9)
C340.0530 (9)0.0842 (11)0.0804 (11)0.0164 (8)0.0208 (8)0.0206 (9)
C350.0614 (10)0.0936 (13)0.0616 (9)0.0245 (9)0.0144 (7)0.0024 (8)
C360.0550 (8)0.0740 (10)0.0570 (8)0.0141 (7)0.0061 (6)0.0040 (7)
Geometric parameters (Å, º) top
S1—N21.7074 (12)C12—H1220.96 (2)
S1—C81.7440 (14)C22—C231.509 (2)
O3—C31.2213 (17)C22—H2210.98 (2)
N2—C31.3764 (17)C22—H2221.01 (2)
N2—C121.4622 (19)C23—C241.4884 (19)
N7—C81.3366 (19)C23—H2310.94 (2)
N7—C61.3389 (19)C23—H2321.01 (2)
N21—C121.4454 (18)C24—C251.344 (2)
N21—C261.4544 (18)C24—C311.489 (2)
N21—C221.4647 (18)C25—C261.491 (2)
C3—C91.468 (2)C25—H2510.93 (2)
C4—C51.378 (2)C26—H2610.93 (2)
C4—C91.4038 (19)C26—H2620.96 (2)
C4—C101.5004 (19)C31—C321.386 (2)
C5—C61.404 (2)C31—C361.399 (2)
C5—H510.92 (2)C32—C331.391 (2)
C6—C111.499 (2)C32—H3210.92 (2)
C8—C91.3905 (18)C33—C341.377 (3)
C10—H1010.96 (2)C33—H3311.02 (3)
C10—H1021.01 (2)C34—C351.368 (3)
C10—H1030.89 (2)C34—H3410.96 (3)
C11—H1110.90 (3)C35—C361.385 (2)
C11—H1120.99 (3)C35—H3511.02 (3)
C11—H1130.88 (3)C36—H3610.96 (3)
C12—H1210.95 (2)
N2—S1—C889.33 (6)H121—C12—H122109.0 (17)
C3—N2—C12123.95 (11)N21—C22—C23109.71 (12)
C3—N2—S1117.24 (10)N21—C22—H221108.6 (13)
C12—N2—S1118.55 (9)C23—C22—H221110.7 (13)
C8—N7—C6115.11 (12)N21—C22—H222110.4 (12)
C12—N21—C26112.19 (11)C23—C22—H222108.2 (12)
C12—N21—C22113.44 (11)H221—C22—H222109.2 (17)
C26—N21—C22109.34 (12)C24—C23—C22113.49 (13)
O3—C3—N2123.10 (13)C24—C23—H231113.6 (14)
O3—C3—C9128.89 (12)C22—C23—H231112.9 (13)
N2—C3—C9108.01 (11)C24—C23—H232110.0 (12)
C5—C4—C9116.29 (12)C22—C23—H232105.0 (13)
C5—C4—C10121.54 (13)H231—C23—H232100.6 (18)
C9—C4—C10122.16 (13)C25—C24—C31122.31 (13)
C4—C5—C6121.48 (13)C25—C24—C23119.14 (13)
C4—C5—H51119.1 (13)C31—C24—C23118.52 (12)
C6—C5—H51119.5 (13)C24—C25—C26123.76 (13)
N7—C6—C5122.69 (14)C24—C25—H251120.7 (14)
N7—C6—C11116.62 (13)C26—C25—H251115.1 (14)
C5—C6—C11120.69 (14)N21—C26—C25111.08 (12)
N7—C8—C9126.53 (13)N21—C26—H261110.6 (14)
N7—C8—S1120.67 (10)C25—C26—H261106.7 (14)
C9—C8—S1112.77 (11)N21—C26—H262113.7 (13)
C8—C9—C4117.88 (13)C25—C26—H262107.6 (14)
C8—C9—C3112.45 (11)H261—C26—H262106.8 (18)
C4—C9—C3129.66 (11)C32—C31—C36117.02 (15)
C4—C10—H101109.7 (14)C32—C31—C24121.02 (13)
C4—C10—H102113.7 (13)C36—C31—C24121.93 (14)
H101—C10—H102108.8 (18)C31—C32—C33121.70 (16)
C4—C10—H103112.2 (14)C31—C32—H321119.1 (16)
H101—C10—H103109.9 (18)C33—C32—H321119.0 (16)
H102—C10—H103102.3 (18)C34—C33—C32120.15 (19)
C6—C11—H111108.8 (17)C34—C33—H331120.9 (15)
C6—C11—H112109.5 (15)C32—C33—H331118.8 (15)
H111—C11—H112106 (2)C35—C34—C33119.04 (17)
C6—C11—H113107.4 (18)C35—C34—H341122.6 (16)
H111—C11—H113112 (2)C33—C34—H341118.3 (16)
H112—C11—H113113 (2)C34—C35—C36121.21 (17)
N21—C12—N2108.27 (11)C34—C35—H351118.0 (14)
N21—C12—H121106.9 (13)C36—C35—H351120.7 (14)
N2—C12—H121109.8 (13)C35—C36—C31120.86 (17)
N21—C12—H122115.7 (13)C35—C36—H361117.8 (13)
N2—C12—H122107.1 (13)C31—C36—H361121.3 (13)
C8—S1—N2—C34.07 (11)N2—C3—C9—C4175.58 (13)
C8—S1—N2—C12178.45 (11)C26—N21—C12—N2157.01 (13)
C12—N2—C3—O31.8 (2)C22—N21—C12—N278.47 (16)
S1—N2—C3—O3175.85 (11)C3—N2—C12—N21160.29 (13)
C12—N2—C3—C9179.00 (13)S1—N2—C12—N2125.74 (16)
S1—N2—C3—C94.96 (15)C12—N21—C22—C23167.08 (13)
C9—C4—C5—C61.0 (2)C26—N21—C22—C2366.87 (16)
C10—C4—C5—C6178.28 (14)N21—C22—C23—C2444.96 (19)
C8—N7—C6—C50.0 (2)C22—C23—C24—C2511.3 (2)
C8—N7—C6—C11179.05 (15)C22—C23—C24—C31170.76 (13)
C4—C5—C6—N70.8 (2)C31—C24—C25—C26175.94 (14)
C4—C5—C6—C11178.20 (15)C23—C24—C25—C261.9 (2)
C6—N7—C8—C90.6 (2)C12—N21—C26—C25179.36 (13)
C6—N7—C8—S1178.62 (10)C22—N21—C26—C2552.60 (17)
N2—S1—C8—N7176.47 (12)C24—C25—C26—N2118.9 (2)
N2—S1—C8—C91.81 (10)C25—C24—C31—C32175.07 (16)
N7—C8—C9—C40.3 (2)C23—C24—C31—C322.8 (2)
S1—C8—C9—C4178.49 (9)C25—C24—C31—C362.8 (2)
N7—C8—C9—C3178.73 (13)C23—C24—C31—C36179.29 (14)
S1—C8—C9—C30.57 (14)C36—C31—C32—C330.9 (3)
C5—C4—C9—C80.48 (18)C24—C31—C32—C33177.07 (16)
C10—C4—C9—C8178.80 (13)C31—C32—C33—C340.1 (3)
C5—C4—C9—C3179.36 (13)C32—C33—C34—C350.9 (3)
C10—C4—C9—C30.1 (2)C33—C34—C35—C360.6 (3)
O3—C3—C9—C8177.52 (14)C34—C35—C36—C310.4 (3)
N2—C3—C9—C83.35 (15)C32—C31—C36—C351.2 (2)
O3—C3—C9—C43.5 (2)C24—C31—C36—C35176.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H103···O3i0.89 (2)2.59 (2)3.450 (2)160.9 (18)
C10—H102···CgAii1.01 (2)2.783 (19)3.4919 (19)127.7 (15)
C22—H222···CgBiii1.01 (2)2.88 (2)3.831 (2)155.4 (16)
C26—H261···CgCiv0.93 (2)2.90 (3)3.784 (2)159.1 (18)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z3/2.

Experimental details

(II)(III)
Crystal data
Chemical formulaC20H23N3OSC20H21N3OS
Mr353.47351.46
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)29.384 (6), 7.146 (1), 21.750 (4)17.548 (3), 11.007 (2), 9.033 (2)
β (°) 126.39 (3) 93.83 (3)
V3)3676.4 (18)1740.8 (6)
Z84
Radiation typeCu KαCu Kα
µ (mm1)1.661.75
Crystal size (mm)0.55 × 0.42 × 0.200.35 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002).
Tmin, Tmax0.498, 0.7330.635, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
19486, 3471, 3267 19164, 3279, 3192
Rint0.0200.017
(sin θ/λ)max1)0.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.207, 1.00 0.039, 0.114, 1.05
No. of reflections34713279
No. of parameters229289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.21, 0.290.24, 0.21

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL-Plus (Sheldrick, 1989), SHELXL97 and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C10—H103···O3i0.89 (2)2.59 (2)3.450 (2)160.9 (18)
C10—H102···CgAii1.01 (2)2.783 (19)3.4919 (19)127.7 (15)
C22—H222···CgBiii1.01 (2)2.88 (2)3.831 (2)155.4 (16)
C26—H261···CgCiv0.93 (2)2.90 (3)3.784 (2)159.1 (18)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds