Download citation
Download citation
link to html
The title compound, C20H12N8, (I), has been prepared by the reaction of 1,4-dihydrazinophthalazine and pyridine-2-carbox­aldehyde, followed by an oxidative cyclization by treatment with bromine. In the solid state, the mol­ecules of (I) are discrete, comprising a fused and twisted four-ring system with an overall helical appearance. The distance between the two intramolecular pyridyl N atoms is 3.075 (2) Å, this short contact distance suggesting a [pi]-[pi] interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016737/tr1093sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016737/tr1093Isup2.hkl
Contains datablock I

CCDC reference: 251324

Comment top

As a building block towards construction of polyheterocyclic ring systems of pharmaceutical interest, 1,4-dihydrazinophthalazine has attracted attention because it exhibits antihypertensive properties (Newkome & Paudler, 1982; Amer & Zimmer, 1983; Amer et al., 1987). Many of its metabolites or derivatives are important because of their antibacterial and antitumor activities (Reece, 1981; Schneider et al., 1988).

As a derivative of 1,4-dihydrazinophthalazine, the structure of the title compound, (I), is interesting because two triazole rings are annealed to a parent phthalazine skeleton and two pendant pyridyl moieties are further connected to the triazole rings. If (I) is without a C6 ring, the remaining 4,4'-bis-1,2,4-triazole skeleton, (II), is that of a group of well known spin-crossover coordination complexes (Garcia et al., 2001; Boillot et al., 2002; Enachescu et al., 2003).

A view of (I), with the numbering scheme, is shown in Fig. 1, and selected geometric parameters are given in Table 1. Compound (I) is helical in that the two triazole rings are twisted in different directions, one up and one down, in relation to the similarly twisted plane of the fused four-ring system. The molecular symmetry of (I) in the crystalline states conforms to the chemical point group C2. The bond lengths are in accordance with anticipated values (Orpen et al., 1994).

The skeleton of (II) has two perpendicular triazole rings connected through a N—N bond (Domiano, 1977). Table 2 gives the C3—N4—N4'—C3' torsion angles for some 3,3'-disubstituted-4,4'-bis-1,2,4-triazoles (Sadybakasov et al., 1977; Carlsen et al., 1992). This torsion angle does not stay at 90° with 3,3'-Me or Ph substituents. Clearly, the torsion angle decreases with increasing size of the substituents. The nature of the driving force is believed to be electronically attractive rather than sterically repulsive, as illustrated by, for example, ππ interactions (Sinnokrot, et al., 2002) in the case of 3-Ph,3'-Ph (IIc).

When annealing with pyridazine or phthalazine, the constrained bis-1,2,4-triazole skeleton is expected to be planar. With substituents on the 3,3'-positions of the bis-1,2,4-triazole moiety, the C3—N4—N4'—C3' torsion angle deviates from 0° and increases with increasing steric bulkiness of the substituents (e.g. IIIa < IIIb < IIIc), as shown in Table 2 (Sadybakasov et al., 1977a-c). The C3—N4—N4'—C3' torsion angle is a convenient parameter for the measurement of planarity. This torsion angle in (I), having two pyridyl groups, corresponds well to that of (IIIc), having two phenyl groups. The deviation from planarity is attributed to the bulkiness of the substituents.

However, the shortest distance between the two pyridyl groups in (I) has been found to be between atoms N22 and N32, only 3.075 (2) Å apart. As a pyridyl group is generally regarded as a dipole and the two pyridyl rings in (I) are positioned with the two negative N atoms in close proximity, the short N···N contact is considered part of the more important, attractive, ππ interactions rather than the negative dipole interactions. As a reference point, the shortest distance between the two phenyl rings in (IIIc) is 3.246 (2) Å, between the two ipso C atoms. The distance between the two ortho C atoms is 3.718 (2) Å.

The C—N bonds in bis-1,2,4-triazole are classified into localized single bonds (e.g. N1—C10 and N1—C13) and double bonds (e.g. N11=C10 and N12=C13). The N1—C13 single bond is associated with a larger endo angle, N1—C13—C21, whereas the N12=C13 double bond has a smaller exo angle, N12=C13—C21.

The intermolecular short contacts are mostly due to C—H···π or C—H···N interactions. Also noticable are the ππ interactions between two inversion-symmetry-related molecules [e.g. C10a···C10b = 3.362 (2) Å, C10a···N11b = 3.327 (2) Å and N11a···C10b = 3.327 (2) Å].

Experimental top

Compound (I) was prepared by the reaction of 1,4-dihydrazinophthalazine with pyridine-2-carboxaldehyde, followed by an oxidative cyclization with bromine in the presence of acetic acid/sodium acetate buffer. The preparative method employed is an extension of a literature procedure (Pollak & Tisler, 1966). Single crystals for X-ray structure determination were obtained from dichloromethane/hexane by slow evaporation.

Refinement top

H atoms bonded to C atoms were treated as riding atoms (C—H = 0.93 Å).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with labelling of non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
3,6-Bis(2-pyridyl)di-1,2,4-triazolo[3,4 − a:4',3'-c]phthalazine top
Crystal data top
C20H12N8F(000) = 752
Mr = 364.38Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.1968 (12) Åθ = 5.8–18.5°
b = 12.390 (2) ŵ = 0.10 mm1
c = 16.409 (5) ÅT = 293 K
β = 91.23 (2)°Prism, light brown
V = 1666.1 (6) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
non–profiled ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.969, Tmax = 0.981l = 1919
3147 measured reflections3 standard reflections every 60 min
2929 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.04P)2 + 0.3394P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2929 reflectionsΔρmax = 0.14 e Å3
254 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (13)
Crystal data top
C20H12N8V = 1666.1 (6) Å3
Mr = 364.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1968 (12) ŵ = 0.10 mm1
b = 12.390 (2) ÅT = 293 K
c = 16.409 (5) Å0.4 × 0.3 × 0.2 mm
β = 91.23 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2101 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.969, Tmax = 0.9813 standard reflections every 60 min
3147 measured reflections intensity decay: 1%
2929 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2929 reflectionsΔρmin = 0.15 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.01910 (16)0.84254 (11)0.58191 (7)0.0362 (3)
N20.01094 (16)0.85012 (11)0.66450 (7)0.0367 (3)
N110.13455 (18)0.89263 (13)0.46880 (8)0.0496 (4)
N120.03278 (19)0.80564 (13)0.45265 (8)0.0501 (4)
N140.05590 (19)0.89496 (13)0.79008 (9)0.0512 (4)
N150.09433 (19)0.84524 (13)0.78929 (8)0.0503 (4)
N220.09507 (18)0.61730 (13)0.59863 (8)0.0467 (4)
N320.35555 (17)0.79389 (12)0.61635 (8)0.0448 (4)
C30.1035 (2)0.89927 (14)0.71459 (10)0.0407 (4)
C40.2364 (2)0.96101 (13)0.68143 (10)0.0393 (4)
C50.3548 (2)1.00964 (15)0.73134 (11)0.0482 (5)
H50.35700.99680.78720.058*
C60.4676 (2)1.07630 (17)0.69763 (12)0.0554 (5)
H60.54771.10800.73070.066*
C70.4637 (2)1.09698 (17)0.61491 (13)0.0597 (5)
H70.53961.14410.59310.072*
C80.3489 (2)1.04882 (16)0.56413 (12)0.0517 (5)
H80.34751.06300.50850.062*
C90.2353 (2)0.97871 (14)0.59715 (10)0.0403 (4)
C100.1275 (2)0.91271 (14)0.54713 (10)0.0399 (4)
C130.0324 (2)0.77310 (14)0.52089 (9)0.0393 (4)
C160.1377 (2)0.82081 (14)0.71403 (9)0.0394 (4)
C210.1209 (2)0.67138 (14)0.52889 (9)0.0391 (4)
C230.1693 (2)0.52197 (17)0.60461 (11)0.0545 (5)
H230.15440.48320.65270.065*
C240.2666 (2)0.47728 (17)0.54405 (12)0.0568 (5)
H240.31500.41020.55120.068*
C250.2906 (2)0.53393 (17)0.47285 (11)0.0546 (5)
H250.35620.50600.43100.066*
C260.2159 (2)0.63285 (16)0.46458 (10)0.0473 (5)
H260.22910.67280.41690.057*
C310.3006 (2)0.77931 (13)0.69284 (10)0.0392 (4)
C330.5062 (2)0.75735 (17)0.59940 (12)0.0532 (5)
H330.54660.76480.54630.064*
C340.6051 (2)0.70944 (16)0.65571 (13)0.0545 (5)
H340.70870.68480.64090.065*
C350.5465 (2)0.69901 (17)0.73456 (13)0.0575 (5)
H350.61140.66890.77440.069*
C360.3919 (2)0.73348 (16)0.75362 (11)0.0505 (5)
H360.34920.72620.80630.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0412 (7)0.0434 (8)0.0242 (7)0.0003 (7)0.0040 (5)0.0008 (6)
N20.0423 (8)0.0433 (8)0.0246 (6)0.0014 (6)0.0024 (6)0.0012 (6)
N110.0535 (9)0.0633 (10)0.0322 (8)0.0080 (8)0.0056 (7)0.0020 (7)
N120.0551 (9)0.0647 (10)0.0308 (8)0.0069 (8)0.0054 (7)0.0038 (7)
N140.0594 (10)0.0619 (10)0.0324 (8)0.0103 (8)0.0011 (7)0.0043 (7)
N150.0587 (10)0.0603 (10)0.0320 (8)0.0103 (8)0.0047 (7)0.0037 (7)
N220.0517 (9)0.0516 (9)0.0364 (8)0.0013 (7)0.0045 (7)0.0003 (7)
N320.0443 (8)0.0523 (9)0.0378 (8)0.0041 (7)0.0038 (6)0.0029 (7)
C30.0465 (10)0.0437 (10)0.0316 (8)0.0006 (8)0.0017 (7)0.0040 (7)
C40.0412 (9)0.0392 (9)0.0375 (9)0.0032 (8)0.0003 (7)0.0013 (7)
C50.0513 (11)0.0512 (11)0.0417 (10)0.0010 (9)0.0050 (8)0.0011 (8)
C60.0505 (11)0.0564 (12)0.0588 (12)0.0088 (10)0.0071 (9)0.0032 (10)
C70.0546 (12)0.0591 (13)0.0655 (13)0.0159 (10)0.0034 (10)0.0070 (10)
C80.0549 (11)0.0538 (12)0.0463 (11)0.0049 (9)0.0029 (9)0.0095 (9)
C90.0419 (9)0.0394 (9)0.0395 (9)0.0038 (8)0.0012 (7)0.0007 (7)
C100.0398 (9)0.0468 (10)0.0332 (9)0.0024 (8)0.0032 (7)0.0047 (7)
C130.0408 (9)0.0502 (10)0.0268 (8)0.0036 (8)0.0003 (7)0.0042 (7)
C160.0474 (10)0.0427 (9)0.0282 (8)0.0002 (8)0.0067 (7)0.0005 (7)
C210.0395 (9)0.0478 (10)0.0301 (8)0.0035 (8)0.0015 (7)0.0052 (7)
C230.0644 (13)0.0529 (12)0.0459 (11)0.0041 (10)0.0069 (9)0.0055 (9)
C240.0659 (13)0.0515 (11)0.0528 (12)0.0083 (10)0.0037 (10)0.0031 (9)
C250.0594 (12)0.0641 (13)0.0401 (10)0.0100 (10)0.0049 (9)0.0110 (9)
C260.0543 (11)0.0567 (12)0.0309 (9)0.0006 (9)0.0027 (8)0.0036 (8)
C310.0454 (10)0.0381 (9)0.0344 (9)0.0022 (8)0.0071 (7)0.0018 (7)
C330.0488 (11)0.0611 (12)0.0495 (11)0.0083 (10)0.0036 (9)0.0002 (9)
C340.0424 (10)0.0495 (11)0.0718 (14)0.0022 (9)0.0048 (9)0.0047 (10)
C350.0572 (12)0.0552 (12)0.0608 (13)0.0093 (10)0.0167 (10)0.0039 (10)
C360.0568 (11)0.0553 (12)0.0397 (10)0.0058 (9)0.0090 (8)0.0036 (8)
Geometric parameters (Å, º) top
N1—C101.376 (2)C7—H70.9300
N1—C131.380 (2)C8—C91.392 (2)
N1—N21.3857 (17)C8—H80.9300
N2—C31.376 (2)C9—C101.446 (2)
N2—C161.382 (2)C13—C211.461 (2)
N11—C101.312 (2)C16—C311.465 (2)
N11—N121.385 (2)C21—C261.383 (2)
N12—C131.314 (2)C23—C241.377 (3)
N14—C31.308 (2)C23—H230.9300
N14—N151.377 (2)C24—C251.374 (3)
N15—C161.313 (2)C24—H240.9300
N22—C231.333 (2)C25—C261.378 (3)
N22—C211.339 (2)C25—H250.9300
N32—C311.337 (2)C26—H260.9300
N32—C331.339 (2)C31—C361.382 (2)
C3—C41.446 (2)C33—C341.376 (3)
C4—C51.394 (2)C33—H330.9300
C4—C91.400 (2)C34—C351.376 (3)
C5—C61.366 (3)C34—H340.9300
C5—H50.9300C35—C361.367 (3)
C6—C71.381 (3)C35—H350.9300
C6—H60.9300C36—H360.9300
C7—C81.379 (3)N22—N323.075 (2)
C10—N1—C13106.46 (13)N12—C13—N1107.66 (15)
C10—N1—N2119.52 (13)N12—C13—C21123.55 (15)
C13—N1—N2133.95 (14)N1—C13—C21128.13 (14)
C3—N2—C16106.07 (13)N15—C16—N2107.49 (15)
C3—N2—N1118.75 (13)N15—C16—C31122.08 (15)
C16—N2—N1135.17 (13)N2—C16—C31130.21 (14)
C10—N11—N12107.22 (14)N22—C21—C26123.75 (17)
C13—N12—N11109.27 (14)N22—C21—C13116.02 (14)
C3—N14—N15107.13 (14)C26—C21—C13120.10 (15)
C16—N15—N14109.65 (14)N22—C23—C24124.14 (18)
C23—N22—C21116.25 (15)N22—C23—H23117.9
C31—N32—C33116.12 (16)C24—C23—H23117.9
N14—C3—N2109.51 (15)C25—C24—C23118.60 (19)
N14—C3—C4128.35 (16)C25—C24—H24120.7
N2—C3—C4121.22 (14)C23—C24—H24120.7
C5—C4—C9120.15 (16)C24—C25—C26118.83 (17)
C5—C4—C3121.87 (16)C24—C25—H25120.6
C9—C4—C3117.75 (15)C26—C25—H25120.6
C6—C5—C4119.51 (17)C25—C26—C21118.42 (17)
C6—C5—H5120.2C25—C26—H26120.8
C4—C5—H5120.2C21—C26—H26120.8
C5—C6—C7120.58 (18)N32—C31—C36123.80 (16)
C5—C6—H6119.7N32—C31—C16117.55 (15)
C7—C6—H6119.7C36—C31—C16118.54 (15)
C8—C7—C6120.98 (19)N32—C33—C34124.05 (18)
C8—C7—H7119.5N32—C33—H33118.0
C6—C7—H7119.5C34—C33—H33118.0
C7—C8—C9119.23 (17)C35—C34—C33118.25 (18)
C7—C8—H8120.4C35—C34—H34120.9
C9—C8—H8120.4C33—C34—H34120.9
C8—C9—C4119.49 (16)C36—C35—C34119.24 (18)
C8—C9—C10122.53 (16)C36—C35—H35120.4
C4—C9—C10117.57 (15)C34—C35—H35120.4
N11—C10—N1109.21 (15)C35—C36—C31118.49 (18)
N11—C10—C9128.61 (16)C35—C36—H36120.8
N1—C10—C9120.93 (14)C31—C36—H36120.8
C10—N1—N2—C322.1 (2)C5—C6—C7—C81.7 (3)
C10—N1—N2—C16156.20 (17)H6—C6—C7—H71.7
C13—N1—N2—C3154.54 (17)H6—C6—C7—C8178.28
C13—N1—N2—C1627.2 (3)C6—C7—C8—H8179.77
N2—N1—C10—N11178.70 (13)C6—C7—C8—C90.2 (3)
N2—N1—C10—C913.0 (2)H7—C7—C8—H80.2
C13—N1—C10—N113.83 (18)H7—C7—C8—C9179.77
C13—N1—C10—C9164.48 (15)C7—C8—C9—C42.0 (3)
N2—N1—C13—N12178.71 (15)C7—C8—C9—C10170.39 (18)
N2—N1—C13—C2110.5 (3)H8—C8—C9—C4178.02
C10—N1—C13—N124.35 (18)H8—C8—C9—C109.6
C10—N1—C13—C21166.47 (16)C4—C9—C10—N16.1 (2)
N1—N2—C3—N14177.73 (14)C4—C9—C10—N11159.77 (17)
N1—N2—C3—C412.3 (2)C8—C9—C10—N1178.56 (16)
C16—N2—C3—N143.52 (18)C8—C9—C10—N1112.7 (3)
C16—N2—C3—C4166.38 (15)N1—C13—C21—N2228.8 (3)
N1—N2—C16—N15177.71 (15)N1—C13—C21—C26155.25 (17)
N1—N2—C16—C317.7 (3)N12—C13—C21—N22140.68 (17)
C3—N2—C16—N153.85 (18)N12—C13—C21—C2635.3 (3)
C3—N2—C16—C31170.74 (17)N2—C16—C31—N3218.1 (3)
C10—N11—N12—C130.94 (19)N2—C16—C31—C36165.71 (17)
N12—N11—C10—N11.85 (18)N15—C16—C31—N32155.82 (16)
N12—N11—C10—C9165.29 (17)N15—C16—C31—C3620.4 (3)
N11—N12—C13—N13.32 (18)N22—C21—C26—C251.0 (3)
N11—N12—C13—C21168.02 (15)N22—C21—C26—H26178.98
C3—N14—N15—C160.66 (19)C13—C21—C26—C25176.64 (16)
N15—N14—C3—N21.84 (19)C13—C21—C26—H263.4
N15—N14—C3—C4167.14 (17)N22—C23—C24—H24179.56
N14—N15—C16—N22.84 (19)N22—C23—C24—C250.4 (3)
N14—N15—C16—C31172.28 (15)H23—C23—C24—H240.5
C23—N22—C21—C13176.85 (16)H23—C23—C24—C25179.55
C23—N22—C21—C261.1 (3)C23—C24—C25—H25179.66
C21—N22—C23—H23179.22C23—C24—C25—C260.3 (3)
C21—N22—C23—C240.8 (3)H24—C24—C25—H250.3
C33—N32—C31—C16178.47 (16)H24—C24—C25—C26179.66
C33—N32—C31—C362.5 (3)C24—C25—C26—C210.6 (3)
C31—N32—C33—H33178.45C24—C25—C26—H26179.39
C31—N32—C33—C341.6 (3)H25—C25—C26—C21179.39
N2—C3—C4—C5178.85 (16)H25—C25—C26—H260.6
N2—C3—C4—C96.5 (2)N32—C31—C36—C351.3 (3)
N14—C3—C4—C513.3 (3)N32—C31—C36—H36178.73
N14—C3—C4—C9161.29 (18)C16—C31—C36—C35177.22 (17)
C3—C4—C5—H56.8C16—C31—C36—H362.8
C3—C4—C5—C6173.16 (17)N32—C33—C34—H34179.45
C9—C4—C5—H5178.69N32—C33—C34—C350.5 (3)
C9—C4—C5—C61.3 (3)H33—C33—C34—H340.5
C3—C4—C9—C8171.93 (16)H33—C33—C34—C35179.45
C3—C4—C9—C1015.3 (2)C33—C34—C35—H35178.18
C5—C4—C9—C82.8 (3)C33—C34—C35—C361.8 (3)
C5—C4—C9—C10169.99 (16)H34—C34—C35—H351.8
C4—C5—C6—H6179.07H34—C34—C35—C36178.17
C4—C5—C6—C70.9 (3)C34—C35—C36—C311.0 (3)
H5—C5—C6—H60.9C34—C35—C36—H36179.02
H5—C5—C6—C7179.08H35—C35—C36—C31179.02
C5—C6—C7—H7178.29H35—C35—C36—H361.0

Experimental details

Crystal data
Chemical formulaC20H12N8
Mr364.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1968 (12), 12.390 (2), 16.409 (5)
β (°) 91.23 (2)
V3)1666.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3147, 2929, 2101
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.02
No. of reflections2929
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—C101.376 (2)N22—C231.333 (2)
N1—C131.380 (2)N22—C211.339 (2)
N1—N21.3857 (17)N32—C311.337 (2)
N2—C31.376 (2)N32—C331.339 (2)
N2—C161.382 (2)C3—C41.446 (2)
N11—C101.312 (2)C4—C91.400 (2)
N11—N121.385 (2)C9—C101.446 (2)
N12—C131.314 (2)C13—C211.461 (2)
N14—C31.308 (2)C16—C311.465 (2)
N14—N151.377 (2)N22—N323.075 (2)
N15—C161.313 (2)
C10—N1—C13106.46 (13)N2—C3—C4121.22 (14)
C10—N1—N2119.52 (13)C9—C4—C3117.75 (15)
C13—N1—N2133.95 (14)C4—C9—C10117.57 (15)
C3—N2—C16106.07 (13)N11—C10—N1109.21 (15)
C3—N2—N1118.75 (13)N11—C10—C9128.61 (16)
C16—N2—N1135.17 (13)N1—C10—C9120.93 (14)
C10—N11—N12107.22 (14)N12—C13—N1107.66 (15)
C13—N12—N11109.27 (14)N12—C13—C21123.55 (15)
C3—N14—N15107.13 (14)N1—C13—C21128.13 (14)
C16—N15—N14109.65 (14)N15—C16—N2107.49 (15)
N14—C3—N2109.51 (15)N15—C16—C31122.08 (15)
N14—C3—C4128.35 (16)N2—C16—C31130.21 (14)
C10—N1—N2—C322.1 (2)N1—C13—C21—N2228.8 (3)
C10—N1—N2—C16156.20 (17)N1—C13—C21—C26155.25 (17)
C13—N1—N2—C3154.54 (17)N12—C13—C21—N22140.68 (17)
C13—N1—N2—C1627.2 (3)N12—C13—C21—C2635.3 (3)
N2—N1—C13—N12178.71 (15)N2—C16—C31—N3218.1 (3)
N2—N1—C13—C2110.5 (3)N2—C16—C31—C36165.71 (17)
N1—N2—C16—N15177.71 (15)N15—C16—C31—N32155.82 (16)
N1—N2—C16—C317.7 (3)N15—C16—C31—C3620.4 (3)
Table 2. Torsion angle C3-N4-N4'-C3' in (I), (II) &amp; (III). top
Table 2. Torsion angle C3-N4-N4'-C3' in (I), (II) & (III).
CompoundTorsion angle (°)Substituents on R1, R2
Ia27.2 (3)py, py
IIb91.9 (5)H, H
IIac84.1 (2)Me, Me
IIbd74.3 (5)Me, Ph
IIcc64.1 (2)Ph, Ph
IIIae7.8 (5)Me, Me
IIIbf20.7 (5)Me, Ph
IIIcg27.5 (5)Ph, Ph
Notes: (a) this work; (b) Domiano (1977); (c) Carlsen et al. (1992); (d) Sadibakasov et al. (1977); (e) Sadibakasov et al. (1977a); (f) Sadibakasov et al. (1977b); (g) Sadibakasov et al. (1977c).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds