Download citation
Download citation
link to html
The structure of the title compound, [Pt(C6H5)2(C6H12N3P)2] or [Pt(Ph)2(PTA)2] (where Ph is phenyl and PTA is 1,3,5-tri­aza-7-phosphaadamantane), is discussed. Selected geom­etric parameters are: Pt-P = 2.2888 (16) and 2.2944 (17) Å, Pt-C = 2.052 (5) and 2.064 (6) Å, C-Pt-C = 84.6 (2)° and P-Pt-P = 99.28 (6)°. The effective cone angle for the PTA ligands was calculated as 113°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104009096/tr1089sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104009096/tr1089Isup2.hkl
Contains datablock I

CCDC reference: 243579

Comment top

The 1,3,5-triaza-7-phosphaadamantane ligand (PTA) has attracted much attention, due to its unique characteristic of enabling the preparation of water-soluble complexes without the complication of introducing a charged species to the complex. Numerous PTA complexes exhibiting catalytic activity have been reported (Darensbourg et al., 1997, 1999; Alyea et al., 1993; Joó et al., 1996).

We report here the structure of the title cis-diphenyl-bis(PTA)platinum(II) complex, (I), as part of our systematic investigation into the basic coordination modes and solution properties of these complexes. Compound (I) is the first example of a PtII square-planar bisphenyl complex, with a cis geometry containing non-bridged phosphine ligands (Cambridge Structural Database, Version 5.25, 2004; Allen, 2002). Similar diphenyl platinum complexes with a trans conformation are known (Incarvito et al., 1999; Ertl et al., 1982). The formation of the cis complex may either be ascribed to different synthetic routes or to the small steric demand of the PTA ligand (Daigle et al., 1998; Otto & Roodt, 2001), which enables the more sterically demanding cis conformation typically found for two strong cis ligands.

The Pt atom of (I) lies on a general position in the asymmetric unit and the coordination polyhedron shows a slightly distorted square-planar arrangement (Table 1). The phenyl rings are almost perpendicular to the coordination plane of the Pt atom [dihedral angles 85.2 (2)° for the C41-phenyl and 86.1 (2)° for the C31-phenyl]. This perpendicular conformation allows more space for the PTA ligands, resulting in quite a small bite angle of 84.6 (2)° for C41—Pt—C31, compared with 99.28 (6)° for P1—Pt—P2.

The orientation of the PTA ligands is best described by the torsion angles, which were calculated using the methylene substituent on the phosphine closest to the metal coordination plane. Two significantly different values, of 28.8 (3)° for C41—Pt—P1—C12 and 15.5 (3)° for C31—Pt—P2—C22, were obtained and may possibly be the result of steric and packing effects.

The most widely used method for determining ligand steric behaviour at a metal centre utilizes the Tolman cone angle (Tolman, 1977), using an M—P bond distance of 2.28 Å, a C—H bond distance of 0.97 Å and 1.2 Å as the van der Waals radius of H. For the calculation of effective cone angles, the Pt—P bond distances, as determined from the crystallographic data, were used (Otto et al., 2000). The value of 113° obtained from effective cone-angle calculations is in agreement with the previous values, again illustrating the rigidness of PTA (Meij et al., 2002).

High Ueq(max)/Ueq(min) values are observed for atoms lying on the periphery of the molecule in both phenyl and phosphine parts, indicating some freedom of packing in these regions. This may also explain some observed short C—C distances (Albertsson et al., 1980).

Relatively few structures of the form cis-[M(X)2(PTA)2] (where M is Pd or Pt and X is an anionic substituent) are known. These are compared with (I) in Table 2, clearly showing the higher steric demand of Cl than the C6H5 ligand, with ca 5° differences for both the P—M—P and X—M—X angles. Larger effective cone angles (ΘE) are noted for the chloro complexes, indicating the weaker trans influence of Cl compared with PTA. This can also be correlated with the respective M—X and M—P bond distances.

It is interesting to note that, in a comparison with other substituted aryl ligands (Table 3), the C—M—C angles do not differ significantly, even though phosphines with various steric demands were used. The exception is the case of the strongly electron-withdrawing (and bulky) C6F5 group, where ca 5° differences for both the P—M—P and X—M—X angles were again noted.

Experimental top

Pt(Ph)2(cod) (cod is η4-1,5-cyclooctadiene) was prepared according to the literature procedures of Clark & Manzer (1973). To a solution of [Pt(Ph)2(cod)] (50 mg, 0.11 mmol) in dichloromethane (10 ml) was added PTA (34 mg, 0.22 mmol) dissolved in methanol (10 ml). Crystals of (I) suitable for X-ray analysis separated from the solution over a few hours in quantitative yield. Spectroscopic data: 31P{H} NMR (CDCl3): −77.2 p.p.m. (1JPt—P = 1560 Hz).

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and with displacement ellipsoids at the 30% probability level.
cis-Diphenylbis(1,3,5-triaza-7-phosphaadamantane-κP)platinum(II) top
Crystal data top
[Pt(C6H5)2(C6H12N3P)2]Z = 2
Mr = 663.6F(000) = 656
Triclinic, P1Dx = 1.782 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.616 (5) ÅCell parameters from 3164 reflections
b = 10.395 (5) Åθ = 2–24°
c = 12.477 (5) ŵ = 5.83 mm1
α = 86.112 (5)°T = 293 K
β = 83.778 (5)°Needles, colourless
γ = 88.080 (5)°0.22 × 0.06 × 0.04 mm
V = 1236.5 (10) Å3
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
7326 independent reflections
Radiation source: rotating anode4483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 31.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.69, Tmax = 0.77k = 1215
12595 measured reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 0.88Δρmax = 0.99 e Å3
7326 reflectionsΔρmin = 0.72 e Å3
298 parameters
Crystal data top
[Pt(C6H5)2(C6H12N3P)2]γ = 88.080 (5)°
Mr = 663.6V = 1236.5 (10) Å3
Triclinic, P1Z = 2
a = 9.616 (5) ÅMo Kα radiation
b = 10.395 (5) ŵ = 5.83 mm1
c = 12.477 (5) ÅT = 293 K
α = 86.112 (5)°0.22 × 0.06 × 0.04 mm
β = 83.778 (5)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
7326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4483 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.77Rint = 0.048
12595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.88Δρmax = 0.99 e Å3
7326 reflectionsΔρmin = 0.72 e Å3
298 parameters
Special details top

Experimental. The intensity data were collected using an exposure time of 15 s/frame. A total of 2300 frames were collected, with a frame width of 0.2°, covering up to θ = 31.61° with 88% completeness accomplished. Completeness of 99.5% was accomplished up to θ = 28.14°. The first 50 frames were recollected at the end of the data collection to check for decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.50181 (2)0.09446 (2)0.747341 (18)0.03617 (8)
P10.69748 (15)0.18241 (14)0.65355 (12)0.0386 (4)
P20.38910 (15)0.27971 (14)0.80416 (12)0.0386 (3)
C310.3374 (5)0.0104 (5)0.8219 (4)0.0349 (13)
N110.8357 (5)0.3793 (4)0.5292 (4)0.0421 (12)
N210.3955 (5)0.5123 (4)0.8994 (4)0.0480 (12)
C120.7886 (6)0.0953 (5)0.5415 (5)0.0451 (14)
H12A0.81330.00880.56850.054*
H12B0.72510.08790.4870.054*
N220.2336 (6)0.5020 (6)0.7609 (4)0.0674 (16)
C110.8515 (6)0.2010 (5)0.7277 (4)0.0413 (14)
H11A0.82680.25910.78480.05*
H11B0.87760.11790.76090.05*
C410.5886 (6)0.0829 (5)0.7087 (5)0.0428 (14)
N120.9719 (5)0.2519 (4)0.6565 (4)0.0425 (12)
C320.2223 (6)0.0276 (6)0.7694 (6)0.0563 (17)
H320.22070.00810.69910.068*
C130.6967 (6)0.3454 (5)0.5820 (5)0.0440 (14)
H13A0.63090.34780.52810.053*
H13B0.66520.40890.63340.053*
C140.9380 (6)0.3777 (5)0.6071 (5)0.0472 (15)
H14A1.02360.41430.57120.057*
H14B0.90310.43330.66390.057*
C230.4853 (6)0.4001 (5)0.8672 (5)0.0445 (14)
H23A0.52310.35950.93050.053*
H23B0.56320.42970.81660.053*
C330.1078 (7)0.0963 (7)0.8170 (8)0.078 (2)
H330.03310.10740.77730.094*
N130.9152 (5)0.1579 (4)0.4911 (4)0.0420 (11)
C151.0153 (6)0.1658 (5)0.5693 (5)0.0449 (14)
H15A1.10310.19530.53150.054*
H15B1.03230.07980.60140.054*
C210.3017 (7)0.3903 (6)0.7094 (5)0.0612 (18)
H21A0.37020.42030.65110.073*
H21B0.2320.34340.67830.073*
C160.8845 (6)0.2880 (6)0.4470 (5)0.0485 (15)
H16A0.81340.28370.39790.058*
H16B0.96830.32110.40530.058*
C440.7177 (10)0.3142 (8)0.6517 (12)0.114 (5)
H440.76080.3920.63280.137*
C450.7506 (9)0.2617 (8)0.7425 (9)0.097 (3)
H450.81570.30250.78410.116*
C250.1234 (7)0.4607 (8)0.8480 (7)0.081 (2)
H25A0.07090.53640.87280.097*
H25B0.05910.40610.81860.097*
C430.6259 (9)0.2586 (8)0.5886 (8)0.093 (3)
H430.60620.29590.52640.111*
C460.6854 (7)0.1464 (7)0.7718 (6)0.069 (2)
H460.70610.11060.83440.082*
C260.2805 (7)0.4704 (6)0.9803 (5)0.0531 (16)
H26A0.32010.4231.040.064*
H26B0.2320.54631.00830.064*
N230.1794 (5)0.3903 (5)0.9407 (5)0.0591 (15)
C350.2158 (11)0.1306 (7)0.9743 (6)0.089 (3)
H350.21430.16461.04530.107*
C420.5595 (6)0.1405 (6)0.6196 (6)0.064 (2)
H420.49390.10150.57750.077*
C360.3318 (8)0.0646 (6)0.9263 (5)0.067 (2)
H360.40770.05660.96550.08*
C220.2414 (6)0.2641 (6)0.9124 (5)0.0576 (18)
H22A0.170.21210.88860.069*
H22B0.27440.21970.97610.069*
C240.3350 (7)0.5772 (6)0.8080 (5)0.0604 (18)
H24A0.41010.59980.75230.073*
H24B0.28930.65680.83090.073*
C340.1031 (9)0.1463 (7)0.9177 (9)0.092 (3)
H340.02540.19090.94950.11*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.03085 (11)0.02975 (12)0.04618 (14)0.00309 (8)0.00612 (9)0.00511 (9)
P10.0341 (8)0.0285 (8)0.0507 (9)0.0024 (6)0.0074 (7)0.0028 (7)
P20.0327 (7)0.0350 (8)0.0472 (9)0.0032 (6)0.0050 (7)0.0106 (7)
C310.037 (3)0.027 (3)0.040 (3)0.002 (2)0.004 (3)0.006 (2)
N110.041 (3)0.036 (3)0.046 (3)0.001 (2)0.002 (2)0.010 (2)
N210.056 (3)0.037 (3)0.052 (3)0.001 (2)0.004 (3)0.014 (2)
C120.037 (3)0.040 (3)0.059 (4)0.000 (3)0.004 (3)0.018 (3)
N220.081 (4)0.064 (4)0.060 (4)0.037 (3)0.025 (3)0.021 (3)
C110.047 (3)0.037 (3)0.035 (3)0.005 (3)0.011 (3)0.000 (3)
C410.038 (3)0.030 (3)0.057 (4)0.005 (3)0.009 (3)0.001 (3)
N120.037 (3)0.042 (3)0.047 (3)0.007 (2)0.004 (2)0.004 (2)
C320.038 (3)0.050 (4)0.078 (5)0.002 (3)0.000 (3)0.008 (4)
C130.040 (3)0.032 (3)0.059 (4)0.001 (3)0.000 (3)0.000 (3)
C140.045 (3)0.033 (3)0.062 (4)0.006 (3)0.000 (3)0.002 (3)
C230.038 (3)0.045 (4)0.051 (4)0.002 (3)0.003 (3)0.011 (3)
C330.036 (4)0.050 (4)0.145 (8)0.003 (3)0.011 (5)0.011 (5)
N130.039 (3)0.041 (3)0.045 (3)0.003 (2)0.003 (2)0.001 (2)
C150.037 (3)0.039 (3)0.056 (4)0.002 (3)0.001 (3)0.003 (3)
C210.067 (4)0.071 (5)0.049 (4)0.023 (4)0.017 (3)0.027 (4)
C160.051 (4)0.049 (4)0.041 (3)0.003 (3)0.006 (3)0.007 (3)
C440.060 (6)0.036 (5)0.234 (15)0.009 (4)0.050 (8)0.017 (7)
C450.064 (5)0.049 (5)0.162 (10)0.025 (4)0.026 (6)0.042 (6)
C250.045 (4)0.100 (6)0.102 (6)0.026 (4)0.006 (4)0.055 (5)
C430.062 (5)0.076 (6)0.139 (8)0.033 (5)0.038 (5)0.065 (6)
C460.060 (4)0.061 (5)0.074 (5)0.008 (4)0.018 (4)0.023 (4)
C260.068 (4)0.048 (4)0.042 (3)0.000 (3)0.009 (3)0.013 (3)
N230.043 (3)0.063 (4)0.071 (4)0.003 (3)0.010 (3)0.027 (3)
C350.161 (9)0.055 (5)0.044 (4)0.038 (6)0.033 (5)0.001 (4)
C420.038 (4)0.049 (4)0.106 (6)0.007 (3)0.000 (4)0.028 (4)
C360.098 (6)0.058 (5)0.046 (4)0.022 (4)0.013 (4)0.003 (3)
C220.050 (4)0.051 (4)0.068 (4)0.009 (3)0.022 (3)0.017 (3)
C240.081 (5)0.040 (4)0.059 (4)0.014 (4)0.004 (4)0.006 (3)
C340.084 (6)0.047 (5)0.131 (8)0.024 (4)0.068 (6)0.022 (5)
Geometric parameters (Å, º) top
Pt—C312.052 (5)C23—H23A0.97
Pt—C412.064 (6)C23—H23B0.97
Pt—P12.2888 (16)C33—C341.324 (11)
Pt—P22.2944 (17)C33—H330.93
P1—C121.843 (5)N13—C151.450 (7)
P1—C111.851 (6)N13—C161.459 (7)
P1—C131.861 (5)C15—H15A0.97
P2—C211.841 (6)C15—H15B0.97
P2—C231.846 (6)C21—H21A0.97
P2—C221.854 (6)C21—H21B0.97
C31—C321.369 (8)C16—H16A0.97
C31—C361.380 (8)C16—H16B0.97
N11—C141.455 (7)C44—C431.337 (13)
N11—C131.468 (7)C44—C451.362 (14)
N11—C161.473 (7)C44—H440.93
N21—C241.452 (8)C45—C461.386 (10)
N21—C261.471 (7)C45—H450.93
N21—C231.479 (7)C25—N231.469 (9)
C12—N131.460 (6)C25—H25A0.97
C12—H12A0.97C25—H25B0.97
C12—H12B0.97C43—C421.422 (10)
N22—C241.464 (8)C43—H430.93
N22—C211.466 (8)C46—H460.93
N22—C251.485 (9)C26—N231.448 (7)
C11—N121.470 (6)C26—H26A0.97
C11—H11A0.97C26—H26B0.97
C11—H11B0.97N23—C221.473 (8)
C41—C421.358 (8)C35—C341.376 (12)
C41—C461.403 (9)C35—C361.387 (10)
N12—C141.450 (7)C35—H350.93
N12—C151.473 (7)C42—H420.93
C32—C331.388 (9)C36—H360.93
C32—H320.93C22—H22A0.97
C13—H13A0.97C22—H22B0.97
C13—H13B0.97C24—H24A0.97
C14—H14A0.97C24—H24B0.97
C14—H14B0.97C34—H340.93
C31—Pt—C4184.6 (2)C15—N13—C16108.4 (4)
C31—Pt—P1171.24 (15)C15—N13—C12110.4 (4)
C41—Pt—P186.71 (15)C16—N13—C12111.5 (4)
C31—Pt—P289.40 (15)N13—C15—N12114.8 (4)
C41—Pt—P2173.77 (15)N13—C15—H15A108.6
P1—Pt—P299.28 (6)N12—C15—H15A108.6
C12—P1—C1197.1 (3)N13—C15—H15B108.6
C12—P1—C1397.2 (3)N12—C15—H15B108.6
C11—P1—C1397.9 (3)H15A—C15—H15B107.5
C12—P1—Pt118.57 (19)N22—C21—P2112.9 (4)
C11—P1—Pt117.89 (17)N22—C21—H21A109
C13—P1—Pt122.91 (18)P2—C21—H21A109
C21—P2—C2398.4 (3)N22—C21—H21B109
C21—P2—C2297.8 (3)P2—C21—H21B109
C23—P2—C2296.7 (3)H21A—C21—H21B107.8
C21—P2—Pt120.8 (2)N13—C16—N11114.2 (4)
C23—P2—Pt120.05 (19)N13—C16—H16A108.7
C22—P2—Pt118.0 (2)N11—C16—H16A108.7
C32—C31—C36115.6 (6)N13—C16—H16B108.7
C32—C31—Pt120.4 (4)N11—C16—H16B108.7
C36—C31—Pt124.0 (5)H16A—C16—H16B107.6
C14—N11—C13111.2 (4)C43—C44—C45122.8 (9)
C14—N11—C16108.3 (4)C43—C44—H44118.6
C13—N11—C16110.8 (4)C45—C44—H44118.6
C24—N21—C26108.1 (5)C44—C45—C46118.9 (9)
C24—N21—C23111.8 (5)C44—C45—H45120.6
C26—N21—C23110.1 (4)C46—C45—H45120.6
N13—C12—P1113.5 (4)N23—C25—N22113.3 (5)
N13—C12—H12A108.9N23—C25—H25A108.9
P1—C12—H12A108.9N22—C25—H25A108.9
N13—C12—H12B108.9N23—C25—H25B108.9
P1—C12—H12B108.9N22—C25—H25B108.9
H12A—C12—H12B107.7H25A—C25—H25B107.7
C24—N22—C21111.1 (5)C44—C43—C42117.8 (9)
C24—N22—C25108.3 (5)C44—C43—H43121.1
C21—N22—C25110.9 (6)C42—C43—H43121.1
N12—C11—P1112.1 (4)C45—C46—C41121.1 (8)
N12—C11—H11A109.2C45—C46—H46119.5
P1—C11—H11A109.2C41—C46—H46119.5
N12—C11—H11B109.2N23—C26—N21114.9 (5)
P1—C11—H11B109.2N23—C26—H26A108.6
H11A—C11—H11B107.9N21—C26—H26A108.6
C42—C41—C46117.2 (6)N23—C26—H26B108.6
C42—C41—Pt121.8 (5)N21—C26—H26B108.6
C46—C41—Pt120.9 (5)H26A—C26—H26B107.5
C14—N12—C11110.9 (4)C26—N23—C25108.3 (6)
C14—N12—C15107.9 (4)C26—N23—C22111.5 (5)
C11—N12—C15111.3 (4)C25—N23—C22111.8 (5)
C31—C32—C33122.5 (7)C34—C35—C36120.6 (7)
C31—C32—H32118.7C34—C35—H35119.7
C33—C32—H32118.7C36—C35—H35119.7
N11—C13—P1112.0 (4)C41—C42—C43122.2 (7)
N11—C13—H13A109.2C41—C42—H42118.9
P1—C13—H13A109.2C43—C42—H42118.9
N11—C13—H13B109.2C31—C36—C35121.6 (7)
P1—C13—H13B109.2C31—C36—H36119.2
H13A—C13—H13B107.9C35—C36—H36119.2
N12—C14—N11115.6 (5)N23—C22—P2112.1 (4)
N12—C14—H14A108.4N23—C22—H22A109.2
N11—C14—H14A108.4P2—C22—H22A109.2
N12—C14—H14B108.4N23—C22—H22B109.2
N11—C14—H14B108.4P2—C22—H22B109.2
H14A—C14—H14B107.4H22A—C22—H22B107.9
N21—C23—P2112.4 (4)N21—C24—N22114.9 (5)
N21—C23—H23A109.1N21—C24—H24A108.5
P2—C23—H23A109.1N22—C24—H24A108.5
N21—C23—H23B109.1N21—C24—H24B108.5
P2—C23—H23B109.1N22—C24—H24B108.5
H23A—C23—H23B107.9H24A—C24—H24B107.5
C34—C33—C32121.2 (8)C33—C34—C35118.4 (7)
C34—C33—H33119.4C33—C34—H34120.8
C32—C33—H33119.4C35—C34—H34120.8

Experimental details

Crystal data
Chemical formula[Pt(C6H5)2(C6H12N3P)2]
Mr663.6
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.616 (5), 10.395 (5), 12.477 (5)
α, β, γ (°)86.112 (5), 83.778 (5), 88.080 (5)
V3)1236.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.83
Crystal size (mm)0.22 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.69, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
12595, 7326, 4483
Rint0.048
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.083, 0.88
No. of reflections7326
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.72

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pt—C312.052 (5)Pt—P12.2888 (16)
Pt—C412.064 (6)Pt—P22.2944 (17)
C31—Pt—C4184.6 (2)C12—P1—C1197.1 (3)
C31—Pt—P1171.24 (15)C12—P1—C1397.2 (3)
C41—Pt—P186.71 (15)C11—P1—C1397.9 (3)
C31—Pt—P289.40 (15)C21—P2—C2398.4 (3)
C41—Pt—P2173.77 (15)C21—P2—C2297.8 (3)
P1—Pt—P299.28 (6)C23—P2—C2296.7 (3)
Comparative geometrical data for cis-[M(X)2(PTA)2] complexes (Å, °). top
M(X)M-PM-XP-M-PX-M-XΘEFootnote
Pt(Ph)2.2888 (16)2.052 (5)99.28 (6)84.6 (2)113TW
2.2944 (17)2.064 (6)113
Pt(Cl)2.2240 (12)2.3490 (13)94.26 (4)87.24 (5)116(i)
2.2284 (12)2.3712 (13)117
2.2229 (13)2.3473 (12)94.68 (5)87.06 (5)116
2.2300 (12)2.3663 (13)116
Pt(Cl)2.218 (5)2.358 (5)94.386.2 (2)117(ii) (iii)
Pd(Cl)2.2422.37393.58 (5)88.95116(iv)
2.2552.347115
2.2512.34793.25 (5)89.15117
2.2392.378116
Pd(Cl)2.226 (5)2.363 (5)94.4 (2)90.2 (2)117(ii)
2.264 (6)2.360 (5)117
(TW) This work; (i) Otto et al., 1998; (ii) Darensbourg et al., 1997; (iii) Protonated form of PTA; (iv) Alyea et al., 1998.
Comparative geometrical data for cis-[Pt(X)2(PR3)2] complexes (Å, °). top
Pt(X)(PR3)M—PM—XP—M—PC—M—CΘEFootnote
(Ph)(PTA)2.2888 (16)2.052 (5)99.28 (6)84.6 (2)113(TW)
2.2944 (17)2.064 (6)113
(2-TolPh)(PEt3)2.317 (2)2.058 (10)100.0 (1)83.9 (3)145(i), (ii)
2.330 (2)2.091 (6)140
(C6F5)(DP(2-PEPh))2.3102.07092.8685.83148(iii)
(C6F5)(DP(3,3-DMBPh))2.2942.05095.0284.24151(iii)
2.2972.059149
(C6F5)(DP(2pTet))2.3152.06893.2885.78151(iii)
2.2852.109149
(2-NPh)(PPh3)2.3322.061100.3782.88(viii)(iv)
2.3132.061
(7-MeNap)(PPh3)2.34 (1)2.08 (2)99.8 (2)85.2 (7)(viii)(v)
2.32 (1)2.08 (2)
(2-OMePh)(PPh3)2.3092.033100.8781.56(viii)(vi)
2.3132.033
(3,5-DMNP)(PPh3)2.3052.071100.1782.55150(vii)
2.3172.058144
(TW) This work; (i) Rieger et al., 1993; (ii) Anti isomer; (iii) Ara et al., 2002; (iv) Brune et al., 1984; (v) Debaerdemaeker et al., 1987; (vi) Debaerdemaeker et al., 1981; (vii) James et al., 1996; (viii) H atoms not included in structure extracted from CSD. 2-TolPh = ο-Tolylphenyl; DP(2-PEPh) = diphenyl(2-phenylethynyl); DP(3,3-DMBPh) = diphenyl(3,3-dimethylbutylnyl); DP(2pTet) = diphenyl(2-ρ-tolyl)ethynyl; 2-NPh = 2-Nitrophenyl; 7-MeNap = 7-Methyl-1-naphthyl; 2-OMePh = 2-Methoxyphenyl; 3,5-DMNP = 3,5-bis(diethylaminomethyl)phenyl.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds