Download citation
Download citation
link to html
In the structures of the title compounds, [Pd(C5H9)(C32H37N2O2P)]PF6 and [PdCl2(C32H37N2O2P)], the bis­(di­hydro­oxazolyl)­phosphine ligand is N,P-bidentate, with S chirality on the P atom. In the allyl complex, the [pi]-allyl ligand ligates in a syn-syn-[kappa]3C manner.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302170X/tr1065sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302170X/tr1065Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302170X/tr1065IIsup3.hkl
Contains datablock II

CCDC references: 226113; 226114

Comment top

The exploration of new chiral phospine ligands has contributed substantially to the development of asymmetric catalysis (Pfaltz, 1999; Gavrilov & Polosukhin, 2000; Muniz & Bolm, 2000; Henry, 2002; Noyori, 2002; Tang et al., 2003). Although many chiral phosphines have been prepared by combining compounds containing achiral P atoms with readily accessible chiral backbones derived from binaphthyl, tartarate, amino acids etc., much attention has recently been directed to phosphines derived from compounds containing pre-existing chiral phosphorus atoms (such as duPHOS, TangPHOS etc.), as the resultant catalysts are effective? in asymmetric catalysis (Burk et al., 1996; Yamanoi & Imamoto, 1999; Albert et al., 2000; Tang & Zhang, 2003). Difficulties associated with the generation of a chiral phosphorus atom during synthesis have long been known, as have the problems encountered in resolving enatiomerically mixed preparations.

The selective coordination of the potential tridentate ligand to a metal ion in a bidentate-κ2B,P manner will generate a new chiral centre on the P atom. In the case of an AB2P-type phosphine ligand, where the B moiety has a ligating atom and A has not, the use of a chiral B moiety can influence the ratio of SP to RP, and the selective ligation system can construct a chiral reaction field around a metal active site imposed by the chiralities of the B and P moieties. Within the scope of this concept, we have engaged in the synthesis of selectively coordinating ligands and have conducted studies on the synthesis, reactivity and catalysis of their selectively coordinated complexes (Yamada et al., 1996; Yamagishi, 1996; Yamada et al., 1997a; Yamada et al., 1997b; Yamagishi et al., 2003).

We have estimated the chirality of the complexes using CD? spectra in a series of earlier studies, although the absolute structures have not yet been determined. We have now obtained single crystals of [{bis((S)-4-tert-butyl-4,5-dihydrooxazol-2-ylphenyl)phenylphoshine- κ2N,P}(1,3-dimethyl-π-allyl-κ3C)palladium(II)] bishexafluorophosphate, (I), and (S)P-[{bis((S)-4-tert-butyl-4,5- dihydrooxazol-2-ylphenyl)phenylphoshine-κ2N,P} dichloropalladium(II)], (II), and investigated their structures, paying particular attention to the chirality around the P atom.

The structure of (I) contains a PdII metal ion, a bis(oxazolyl)phosphine ligand (NPN ligand) and a 1,3-dimethyl-π-allyl group, together with a PF6 counter ion. The P atom and atom N1 of one oxazolyl moiety coordinate to atom Pd1, whereas the second oxazolyl group is uncoordinated. Atoms N1 and P1 and three allylic C atoms (C34–C36) surround atom Pd1 in a distorted square-planar configuration. Both methyl groups (C33 and C37) of the allyl ligand are located syn with respect to atom H35, giving rise to a syn,syn-mode of binding for the 1,3-dimethyl-π-allyl ligand. The chirality of atom P1 is determined to be S from the Flack (1983) parameter, and the use of an S,S-ligand ensures ?a similar chirality? for atoms C9 and C22. The Pd1—C34 distance is longer than the Pd1—C36 distance because of the trans influence of atoms P1 and N1. The C14—C19—C20—N2 torsion angle may be influenced by steric congestion between the C23–C26 tert-butyl goup and other parts of the complex. The second uncoordinated oxazole moiety appears on the opposite side of the Pd—P1—N1 plane relative to the tert-butyl group of the coordinated oxazole moiety.

There are earlier crystallographic reports on bidentate-κ2NP diphenylphosphino-4-substituted-4,5-dihydrooxazole complexes of π-allyl palladium, such as the tert-butyl 4-substituent (Bernardinelli et al., 2001; Kollmar et al., 2001) and other alkyl and phenyl 4-substituents (Baltzer et al., 1996; Schaffner et al., 1997; Schaffner et al., 1998; Sprinz et al., 1994). Among these examples, Kollmar reported [(1,3-diethyl-π-allyl)-((4S)-(2-(2- diphenylphosphino)phenyl)-4,5-dihydro-4-tert-butyloxazole-κ2N,P)- palladium(II)] (Kollmar et al., 2001). The P1—Pd1—N1 and C34—Pd1—C36 angles, and the Pd1—P1, Pd1—N1, Pd1—C34, Pd1—C35 and Pd1—C36 distances in (I) are similar to the equivalent angles and distances in structure determined by Kollmar et al. (2001) [P—Pd—N = 87.46 (9) °, C—Pd—C = 68.2 (2) Å, Pd—P = 2.2816 (10) Å, Pd—N = 2.112 (4) Å, and Pd—C = 2.261 (5), 2.164 (4) and 2.114 (5) Å]. These similarities show that the uncoordinated oxazolyl group in (I) has little influence on the coordination of the NPN ligand; it remains a bidentate-κ2N,P ligand and simply behaves as a large substituent on one of the phenyl groups attached to the P atom.

The NPN ligand in (II), like that in I, ligates to palladium chloride in a bidentate-κ2N,P manner. Atoms P1, N1, Cl1 and Cl2 complete a distorted square-planar configuration around atom Pd1. The chirality at atoms P1, C15 and C27 is determined to be S from the Flack (1983) parameter. The Pd1—Cl2 distance is longer than Pd1—Cl1 because of the trans influence, as described above for (I). The structures of the NPN ligand in (I) and (II) hardly differ, although they have different ligands (1,3-dimethyl-π-allyl and dichloride, respectively). The Pd1···N2 distance [2.938 (4) Å] to the non-coordinated oxazolyl group is slightly shorter in (II) than it is in (I) [3.108 (3) Å]. The Pd1—P1—C14—C19 and Pd1—N1—C9—C10 torsion angles are similar in the two compounds.

Experimental top

An NPN ligand with a dihydrooxazole moiety was prepared according to the method for preparing the NPN ligand with a phenethylamine moiety (Yamada et al., 1996), except for the use of (S)-4-tert-butyl-2-phenyl-2,3-dihydrooxazole (Bernardinelli et al., 2001) instead of (S)—N,N-dimethyl-1-phenylethylamine. For the preparation of (I), the ligand was stirred with an equimolar amount of [Pd(µ-Cl)(η3-allyl)]2 in chloroform overnight at room temperature. A methanol solution of NH4PF6 was added and the mixture was stirred for 2.5 h, before being washed with water and then evaporated. The residue was purified by reprecipitation from chloroform/ether, and recrystallization from chloroform/hexane gave the π-allyl derivative of (I) in the form of a white solid. This white solid was mixed with 3-penten-2-yl acetate (5 equivalents) and dimethyl sodiomalonate (3 equivalents) in tetrahydrofuran at 298 K for 48 h, before addition of a NH4PF6 solution in methanol. The reaction mixture was evaporated, extracted with dichloromethane and evaporated again. The residual oil was purified by reprecipitation from dichloromethane/ether, and recrystallization from dichloromethane/ether gave pale yellow crystals in an 87% yield. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from dichloromethane/ether. The 1H NMR spectrum shows strong resonances due to a main species with weak resonances, which are in turn? due to the presence of a small amount of a minor species. 1H NMR (CDCl3, 400 MHz): δ 0.44 (9H, s, Me), 0.57 (9H, s, Me), 0.88 (3H, dd, Me on π-allyl), 1.87 (3H, dd, Me on π-allyl), 2.74 (1H, dq, allylic H), 3.79–4.62 (6H, m, methyne and methylene), 4.52 (1H, m, allylic H), 5.30 (1H, dd, allylic H), 6.87–8.30 (13H, m, Ph). For the prepartaion of (II), the ligand was stirred with an equimolar amount of [PdCl2(PhCN)2] in benzene overnight. The precipitate was collected and recrystallized from dichloromethane/hexane to give orange crystals (87% yield). Single crystals suitable for X-ray diffraction were obtained by recrystallization from the same solvents. 1H NMR (CDCl3, 400 MHz): δ 0.56 (9H, s, Me), 0.76 (9H, s, Me), 4.06 (1H, t, methylene), 4.39 (1H, t, methyne), 4.49 (1H, t, methylene), 4.53 (1H, dd, methylene), 4.96 (1H, t, methylene), 5.55 (1H, m, methylene), 6.88 (1H, dd, Ph), 7.00 (1H, dd, Ph), 7.36–7.62 (9H, m, Ph), 8.06 (1H, dd, Ph), 8.19 (1H, dd, Ph).

Refinement top

For both compounds, all H atoms bonded to C atoms, except for atoms H9A and H22A of (II), were included in calculated positions, with C—H distances of 0.93 Å for aromatic and allylic H atoms, 0.98 Å for methyne atoms, 0.97 Å for methylene atoms, and 0.96 Å for methyl atoms. Atoms H9A and H22A of (II) were placed in positions determined from a difference Fourier map, and constrained to ride on the coordinates of their parent atoms. In (I), there are two large and two smaller voids (in total ca 110.6 Å3) per unit cell, the larger probably hosting a disordered solvent molecule. A residual peak of 1.2 e Å−3 was localized in this void, but it could not be verified what this peak represented through refinement. A disordered solvent correction based on the SQUEEZE algorithm (van der Sluis & Spek, 1990) in PLATON (Spek, 2003) afforded solvent-free reflection data and estimated that a total of 12 electrons were unaccounted for. Refinement with the solvent-free data improves the minimum residual electron density from −0.304 to −0.275 e Å−3, the maximum residual electron density from 1.181 to 0.575 e Å−3, and wR from 0.0936 to 0.0743.

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: SHELXTL (Bruker, 1997) and PLATON (Spek, 2003) for (I); SHELXTL for (II).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) diagram of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) diagram of (II), showing 50% probabilty displacement ellipsoids.
(I) top
Crystal data top
[Pd(C32H37N2O2P)(C5H9)]PF6F(000) = 856
Mr = 833.10Dx = 1.436 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 972 reflections
a = 10.3152 (13) Åθ = 2.0–27.8°
b = 13.5764 (17) ŵ = 0.63 mm1
c = 13.8415 (18) ÅT = 293 K
β = 96.345 (2)°Block, pale yellow
V = 1926.5 (4) Å30.8 × 0.4 × 0.4 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
8317 independent reflections
Radiation source: fine-focus sealed tube7836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 66 pixels mm-1θmax = 27.8°, θmin = 2.0°
ω scansh = 1310
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.536, Tmax = 0.634l = 1714
12103 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8317 reflectionsΔρmax = 0.58 e Å3
459 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 3757 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (17)
Crystal data top
[Pd(C32H37N2O2P)(C5H9)]PF6V = 1926.5 (4) Å3
Mr = 833.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.3152 (13) ŵ = 0.63 mm1
b = 13.5764 (17) ÅT = 293 K
c = 13.8415 (18) Å0.8 × 0.4 × 0.4 mm
β = 96.345 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7836 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.634Rint = 0.014
12103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.58 e Å3
S = 1.00Δρmin = 0.28 e Å3
8317 reflectionsAbsolute structure: Flack (1983), 3757 Friedel pairs
459 parametersAbsolute structure parameter: 0.001 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.921373 (16)0.473424 (15)0.821573 (11)0.03385 (6)
P10.97012 (6)0.40147 (5)0.68067 (5)0.03107 (13)
N10.8113 (2)0.57856 (16)0.73314 (16)0.0368 (5)
N20.7852 (3)0.2731 (2)0.7696 (2)0.0429 (6)
O10.6706 (2)0.64276 (17)0.61573 (17)0.0592 (6)
O20.8575 (3)0.1391 (2)0.8539 (2)0.0700 (8)
C10.8266 (2)0.4037 (2)0.58980 (18)0.0335 (5)
C20.8104 (3)0.3296 (2)0.5204 (2)0.0445 (6)
H2A0.86970.27780.52310.053*
C30.7071 (4)0.3313 (2)0.4468 (2)0.0535 (8)
H3A0.69860.28150.40040.064*
C40.6186 (3)0.4059 (3)0.4427 (2)0.0532 (8)
H4A0.54960.40740.39340.064*
C50.6315 (2)0.4786 (3)0.51117 (19)0.0456 (6)
H5A0.56910.52830.50870.055*
C60.7359 (2)0.4805 (3)0.58514 (16)0.0347 (5)
C70.7436 (3)0.5665 (2)0.6504 (2)0.0387 (6)
C80.6779 (4)0.7150 (3)0.6931 (3)0.0721 (11)
H8A0.59920.71390.72570.086*
H8B0.68970.78070.66800.086*
C90.7952 (4)0.6841 (2)0.7619 (3)0.0482 (9)
H9A0.77180.68610.82860.058*
C100.9202 (5)0.7451 (2)0.7569 (3)0.0603 (10)
C111.0309 (4)0.7077 (3)0.8293 (4)0.0787 (12)
H11A1.05170.64120.81340.118*
H11B1.00460.70970.89370.118*
H11C1.10630.74860.82660.118*
C120.9623 (6)0.7449 (3)0.6533 (3)0.0891 (15)
H12A1.03530.78830.65080.134*
H12B0.89110.76680.60790.134*
H12C0.98680.67930.63660.134*
C130.8870 (6)0.8527 (3)0.7854 (4)0.0911 (15)
H13A0.85010.85220.84610.137*
H13B0.82540.88050.73580.137*
H13C0.96520.89160.79190.137*
C141.0319 (3)0.2750 (2)0.67755 (19)0.0350 (5)
C151.1345 (3)0.2545 (2)0.6220 (2)0.0421 (6)
H15A1.16610.30440.58490.051*
C161.1899 (3)0.1614 (3)0.6212 (3)0.0519 (8)
H16A1.25460.14840.58110.062*
C171.1495 (3)0.0887 (2)0.6791 (3)0.0576 (9)
H17A1.18960.02730.68100.069*
C181.0492 (3)0.1065 (2)0.7348 (3)0.0527 (8)
H18A1.02240.05680.77430.063*
C190.9869 (3)0.1989 (2)0.7327 (2)0.0381 (6)
C200.8716 (3)0.2090 (2)0.7844 (2)0.0431 (7)
C210.7362 (4)0.1635 (4)0.8922 (4)0.0812 (13)
H21A0.75190.18040.96060.097*
H21B0.67590.10850.88470.097*
C220.6823 (3)0.2512 (3)0.8328 (2)0.0472 (7)
H22A0.67590.30700.87690.057*
C230.5493 (3)0.2365 (3)0.7739 (2)0.0527 (8)
C240.5082 (5)0.3299 (5)0.7211 (5)0.1038 (19)
H24A0.50720.38290.76700.156*
H24B0.42260.32170.68720.156*
H24C0.56880.34500.67530.156*
C250.4477 (4)0.2099 (4)0.8415 (3)0.0696 (11)
H25A0.44390.26090.88910.104*
H25B0.47120.14880.87360.104*
H25C0.36390.20320.80430.104*
C260.5597 (5)0.1534 (5)0.6989 (4)0.0978 (18)
H26A0.47440.13830.66740.147*
H26B0.59640.09570.73150.147*
H26C0.61470.17450.65130.147*
C271.0906 (2)0.4714 (3)0.62126 (17)0.0370 (4)
C281.0786 (3)0.4918 (3)0.5229 (2)0.0510 (8)
H28A1.00490.47100.48330.061*
C291.1767 (4)0.5433 (3)0.4825 (3)0.0653 (10)
H29A1.16810.55720.41630.078*
C301.2860 (4)0.5736 (3)0.5409 (3)0.0654 (10)
H30A1.35150.60770.51410.079*
C311.2986 (3)0.5536 (3)0.6386 (3)0.0629 (9)
H31A1.37320.57350.67760.075*
C321.2002 (3)0.5035 (2)0.6795 (2)0.0487 (7)
H32A1.20820.49170.74610.058*
C330.7968 (5)0.5826 (4)1.0092 (3)0.0837 (13)
H33A0.76950.56681.07150.126*
H33B0.72200.59950.96480.126*
H33C0.85600.63741.01590.126*
C340.8612 (4)0.4988 (3)0.9726 (2)0.0718 (13)
H34A0.80270.45620.93790.086*
C350.9811 (4)0.4675 (4)0.9757 (2)0.0631 (9)
H35A1.04320.50471.01360.076*
C361.0282 (4)0.3867 (3)0.9302 (2)0.0562 (8)
H36A0.96680.34370.89920.067*
C371.1665 (5)0.3621 (4)0.9263 (3)0.0862 (14)
H37A1.21610.42160.92350.129*
H37B1.17510.32310.86940.129*
H37C1.19840.32540.98330.129*
P20.44253 (11)0.85731 (8)0.86591 (7)0.0659 (3)
F10.5563 (3)0.7860 (3)0.9042 (2)0.1181 (11)
F20.3303 (5)0.9273 (4)0.8246 (3)0.170 (2)
F30.3517 (4)0.8114 (4)0.9332 (3)0.1529 (17)
F40.3977 (3)0.7813 (3)0.7833 (2)0.1081 (10)
F50.5362 (5)0.9007 (4)0.7938 (3)0.1480 (15)
F60.4866 (5)0.9317 (3)0.9484 (3)0.1677 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03943 (9)0.03493 (9)0.02702 (8)0.00098 (10)0.00289 (6)0.00121 (10)
P10.0323 (3)0.0318 (3)0.0289 (3)0.0022 (2)0.0027 (2)0.0004 (2)
N10.0430 (12)0.0323 (11)0.0354 (12)0.0025 (9)0.0054 (9)0.0017 (9)
N20.0381 (14)0.0435 (15)0.0474 (16)0.0035 (11)0.0059 (11)0.0058 (12)
O10.0712 (15)0.0504 (13)0.0520 (13)0.0285 (11)0.0107 (11)0.0069 (10)
O20.0646 (15)0.0747 (18)0.0732 (17)0.0079 (13)0.0186 (13)0.0375 (14)
C10.0346 (12)0.0367 (12)0.0288 (12)0.0008 (10)0.0012 (9)0.0008 (10)
C20.0501 (17)0.0423 (15)0.0395 (15)0.0031 (13)0.0021 (12)0.0048 (12)
C30.068 (2)0.0479 (17)0.0419 (17)0.0042 (15)0.0073 (14)0.0114 (14)
C40.0524 (17)0.0592 (19)0.0438 (16)0.0037 (15)0.0130 (13)0.0019 (15)
C50.0366 (11)0.0532 (15)0.0452 (13)0.0026 (17)0.0037 (9)0.0041 (19)
C60.0356 (11)0.0368 (13)0.0319 (10)0.0022 (14)0.0047 (8)0.0051 (14)
C70.0403 (14)0.0373 (14)0.0391 (14)0.0083 (11)0.0075 (11)0.0009 (11)
C80.096 (3)0.0522 (19)0.065 (2)0.033 (2)0.002 (2)0.0139 (17)
C90.068 (2)0.0373 (18)0.0409 (18)0.0085 (15)0.0122 (16)0.0059 (14)
C100.099 (3)0.0358 (16)0.048 (2)0.0079 (18)0.020 (2)0.0032 (14)
C110.080 (3)0.067 (2)0.089 (3)0.028 (2)0.007 (2)0.007 (2)
C120.137 (4)0.070 (3)0.068 (3)0.025 (3)0.046 (3)0.001 (2)
C130.155 (5)0.0394 (19)0.080 (3)0.009 (2)0.017 (3)0.013 (2)
C140.0350 (13)0.0338 (13)0.0349 (13)0.0048 (10)0.0018 (10)0.0032 (10)
C150.0392 (14)0.0443 (15)0.0429 (15)0.0033 (12)0.0051 (11)0.0068 (12)
C160.0465 (16)0.0522 (17)0.0560 (19)0.0137 (14)0.0006 (14)0.0150 (15)
C170.0528 (19)0.0403 (16)0.076 (2)0.0155 (14)0.0074 (16)0.0136 (16)
C180.0562 (18)0.0332 (14)0.066 (2)0.0032 (13)0.0063 (15)0.0020 (14)
C190.0387 (14)0.0349 (13)0.0391 (15)0.0003 (11)0.0031 (11)0.0007 (11)
C200.0452 (16)0.0409 (16)0.0418 (16)0.0083 (13)0.0021 (13)0.0063 (13)
C210.056 (2)0.108 (3)0.081 (3)0.001 (2)0.016 (2)0.047 (3)
C220.0439 (16)0.0573 (18)0.0416 (16)0.0083 (13)0.0095 (12)0.0008 (13)
C230.0429 (16)0.070 (2)0.0467 (17)0.0061 (15)0.0099 (13)0.0011 (15)
C240.058 (3)0.118 (4)0.136 (5)0.012 (3)0.015 (3)0.055 (4)
C250.0475 (19)0.092 (3)0.071 (3)0.0161 (19)0.0179 (17)0.008 (2)
C260.072 (3)0.133 (5)0.089 (3)0.020 (3)0.011 (2)0.053 (3)
C270.0368 (11)0.0331 (10)0.0419 (12)0.0031 (16)0.0084 (9)0.0003 (17)
C280.0496 (15)0.059 (2)0.0450 (15)0.0027 (14)0.0080 (12)0.0126 (14)
C290.068 (2)0.076 (2)0.055 (2)0.0091 (19)0.0222 (17)0.0258 (19)
C300.055 (2)0.058 (2)0.087 (3)0.0011 (16)0.0249 (19)0.025 (2)
C310.0446 (17)0.064 (2)0.080 (3)0.0127 (16)0.0053 (16)0.0085 (19)
C320.0435 (15)0.0546 (19)0.0480 (16)0.0047 (12)0.0051 (12)0.0083 (12)
C330.106 (3)0.090 (3)0.062 (2)0.022 (3)0.036 (2)0.001 (2)
C340.091 (3)0.095 (4)0.0286 (14)0.018 (2)0.0065 (15)0.0029 (16)
C350.084 (2)0.072 (2)0.0308 (12)0.036 (2)0.0021 (13)0.005 (2)
C360.070 (2)0.0575 (19)0.0378 (16)0.0049 (16)0.0094 (14)0.0055 (14)
C370.081 (3)0.108 (4)0.065 (3)0.031 (3)0.012 (2)0.006 (2)
P20.0817 (7)0.0694 (6)0.0465 (5)0.0103 (5)0.0066 (4)0.0005 (4)
F10.117 (2)0.135 (3)0.095 (2)0.045 (2)0.0220 (17)0.008 (2)
F20.209 (4)0.173 (4)0.121 (3)0.126 (4)0.011 (3)0.003 (3)
F30.150 (3)0.224 (5)0.093 (2)0.021 (3)0.051 (2)0.022 (3)
F40.112 (2)0.129 (3)0.0804 (18)0.003 (2)0.0045 (16)0.0332 (19)
F50.181 (4)0.146 (3)0.124 (3)0.033 (3)0.050 (3)0.013 (3)
F60.200 (4)0.156 (4)0.137 (3)0.019 (3)0.024 (3)0.086 (3)
Geometric parameters (Å, º) top
Pd1—C342.271 (3)C17—H17A0.9300
Pd1—C352.155 (3)C18—C191.408 (4)
Pd1—C362.120 (3)C18—H18A0.9300
Pd1—N12.125 (2)C19—C201.461 (4)
Pd1—P12.2864 (7)C21—C221.517 (5)
P1—C271.830 (3)C21—H21A0.9700
P1—C141.833 (3)C21—H21B0.9700
P1—C11.834 (3)C22—C231.530 (4)
N1—C71.284 (4)C22—H22A0.9800
N1—C91.502 (4)C23—C241.502 (6)
N2—C201.246 (4)C23—C251.523 (4)
N2—C221.478 (4)C23—C261.545 (6)
O1—C71.338 (3)C24—H24A0.9600
O1—C81.448 (4)C24—H24B0.9600
O2—C201.371 (4)C24—H24C0.9600
O2—C211.450 (5)C25—H25A0.9600
C1—C21.389 (4)C25—H25B0.9600
C1—C61.398 (4)C25—H25C0.9600
C2—C31.390 (4)C26—H26A0.9600
C2—H2A0.9300C26—H26B0.9600
C3—C41.361 (5)C26—H26C0.9600
C3—H3A0.9300C27—C281.382 (4)
C4—C51.365 (5)C27—C321.384 (4)
C4—H4A0.9300C28—C291.397 (5)
C5—C61.402 (3)C28—H28A0.9300
C5—H5A0.9300C29—C301.376 (6)
C6—C71.473 (4)C29—H29A0.9300
C8—C91.514 (5)C30—C311.371 (6)
C8—H8A0.9700C30—H30A0.9300
C8—H8B0.9700C31—C321.393 (4)
C9—C101.540 (6)C31—H31A0.9300
C9—H9A0.9800C32—H32A0.9300
C10—C111.521 (7)C33—C341.438 (6)
C10—C121.544 (5)C33—H33A0.9600
C10—C131.561 (5)C33—H33B0.9600
C11—H11A0.9600C33—H33C0.9600
C11—H11B0.9600C34—C351.304 (5)
C11—H11C0.9600C34—H34A0.9300
C12—H12A0.9600C35—C361.380 (5)
C12—H12B0.9600C35—H35A0.9300
C12—H12C0.9600C36—C371.472 (6)
C13—H13A0.9600C36—H36A0.9300
C13—H13B0.9600C37—H37A0.9600
C13—H13C0.9600C37—H37B0.9600
C14—C191.395 (4)C37—H37C0.9600
C14—C151.404 (4)P2—F31.526 (4)
C15—C161.389 (4)P2—F61.555 (4)
C15—H15A0.9300P2—F21.557 (4)
C16—C171.365 (5)P2—F11.568 (3)
C16—H16A0.9300P2—F41.572 (3)
C17—C181.378 (5)P2—F51.578 (4)
Pd1···N23.108 (3)
C34—Pd1—P1163.33 (12)O2—C21—C22105.1 (3)
C35—Pd1—P1139.69 (10)O2—C21—H21A110.7
C35—Pd1—C3434.13 (13)C22—C21—H21A110.7
C36—Pd1—C3466.73 (14)O2—C21—H21B110.7
C36—Pd1—C3537.64 (14)C22—C21—H21B110.7
C36—Pd1—N1169.75 (11)H21A—C21—H21B108.8
C36—Pd1—P1102.81 (10)N2—C22—C21103.6 (3)
N1—Pd1—C35132.15 (13)N2—C22—C23111.8 (3)
N1—Pd1—C34104.20 (12)C21—C22—C23116.1 (3)
N1—Pd1—P187.10 (6)N2—C22—H22A108.3
C27—P1—C14102.72 (14)C21—C22—H22A108.3
C27—P1—C1102.70 (11)C23—C22—H22A108.3
C14—P1—C1104.82 (12)C24—C23—C25108.9 (3)
C27—P1—Pd1112.69 (10)C24—C23—C22109.7 (3)
C14—P1—Pd1122.01 (9)C25—C23—C22110.0 (3)
C1—P1—Pd1109.94 (8)C24—C23—C26109.0 (4)
C7—N1—C9107.0 (2)C25—C23—C26110.1 (4)
C7—N1—Pd1129.15 (19)C22—C23—C26109.2 (3)
C9—N1—Pd1123.8 (2)C23—C24—H24A109.5
C20—N2—C22108.0 (3)C23—C24—H24B109.5
C7—O1—C8106.1 (2)H24A—C24—H24B109.5
C20—O2—C21105.1 (3)C23—C24—H24C109.5
C2—C1—C6118.6 (2)H24A—C24—H24C109.5
C2—C1—P1119.3 (2)H24B—C24—H24C109.5
C6—C1—P1122.0 (2)C23—C25—H25A109.5
C1—C2—C3121.3 (3)C23—C25—H25B109.5
C1—C2—H2A119.4H25A—C25—H25B109.5
C3—C2—H2A119.4C23—C25—H25C109.5
C4—C3—C2120.0 (3)H25A—C25—H25C109.5
C4—C3—H3A120.0H25B—C25—H25C109.5
C2—C3—H3A120.0C23—C26—H26A109.5
C3—C4—C5119.7 (3)C23—C26—H26B109.5
C3—C4—H4A120.1H26A—C26—H26B109.5
C5—C4—H4A120.1C23—C26—H26C109.5
C4—C5—C6121.9 (3)H26A—C26—H26C109.5
C4—C5—H5A119.0H26B—C26—H26C109.5
C6—C5—H5A119.0C28—C27—C32119.3 (3)
C1—C6—C5118.4 (3)C28—C27—P1123.7 (2)
C1—C6—C7124.9 (2)C32—C27—P1117.0 (2)
C5—C6—C7116.6 (3)C27—C28—C29120.3 (3)
N1—C7—O1116.8 (2)C27—C28—H28A119.9
N1—C7—C6129.4 (2)C29—C28—H28A119.9
O1—C7—C6113.8 (2)C30—C29—C28119.8 (3)
O1—C8—C9104.5 (3)C30—C29—H29A120.1
O1—C8—H8A110.8C28—C29—H29A120.1
C9—C8—H8A110.8C31—C30—C29120.2 (3)
O1—C8—H8B110.8C31—C30—H30A119.9
C9—C8—H8B110.8C29—C30—H30A119.9
H8A—C8—H8B108.9C30—C31—C32120.2 (4)
N1—C9—C8101.6 (3)C30—C31—H31A119.9
N1—C9—C10112.6 (3)C32—C31—H31A119.9
C8—C9—C10116.0 (3)C27—C32—C31120.1 (3)
N1—C9—H9A108.8C27—C32—H32A119.9
C8—C9—H9A108.8C31—C32—H32A119.9
C10—C9—H9A108.8C34—C33—H33A109.5
C11—C10—C9111.2 (3)C34—C33—H33B109.5
C11—C10—C12110.1 (4)H33A—C33—H33B109.5
C9—C10—C12111.3 (3)C34—C33—H33C109.5
C11—C10—C13108.4 (4)H33A—C33—H33C109.5
C9—C10—C13106.5 (4)H33B—C33—H33C109.5
C12—C10—C13109.2 (3)C35—C34—C33136.0 (5)
C10—C11—H11A109.5C35—C34—Pd168.06 (18)
C10—C11—H11B109.5C33—C34—Pd1128.9 (3)
H11A—C11—H11B109.5C35—C34—H34A112.0
C10—C11—H11C109.5C33—C34—H34A112.0
H11A—C11—H11C109.5Pd1—C34—H34A70.1
H11B—C11—H11C109.5C34—C35—C36128.6 (4)
C10—C12—H12A109.5C34—C35—Pd177.81 (19)
C10—C12—H12B109.5C36—C35—Pd169.81 (17)
H12A—C12—H12B109.5C34—C35—H35A115.7
C10—C12—H12C109.5C36—C35—H35A115.7
H12A—C12—H12C109.5Pd1—C35—H35A129.9
H12B—C12—H12C109.5C35—C36—C37126.1 (4)
C10—C13—H13A109.5C35—C36—Pd172.55 (18)
C10—C13—H13B109.5C37—C36—Pd1122.0 (3)
H13A—C13—H13B109.5C35—C36—H36A117.0
C10—C13—H13C109.5C37—C36—H36A117.0
H13A—C13—H13C109.5Pd1—C36—H36A75.3
H13B—C13—H13C109.5C36—C37—H37A109.5
C19—C14—C15118.0 (3)C36—C37—H37B109.5
C19—C14—P1122.9 (2)H37A—C37—H37B109.5
C15—C14—P1118.9 (2)C36—C37—H37C109.5
C16—C15—C14121.4 (3)H37A—C37—H37C109.5
C16—C15—H15A119.3H37B—C37—H37C109.5
C14—C15—H15A119.3F3—P2—F688.1 (3)
C17—C16—C15120.0 (3)F3—P2—F289.5 (3)
C17—C16—H16A120.0F6—P2—F291.1 (3)
C15—C16—H16A120.0F3—P2—F191.6 (3)
C16—C17—C18119.9 (3)F6—P2—F190.3 (2)
C16—C17—H17A120.0F2—P2—F1178.2 (2)
C18—C17—H17A120.0F3—P2—F491.4 (2)
C17—C18—C19120.9 (3)F6—P2—F4179.4 (3)
C17—C18—H18A119.5F2—P2—F489.2 (2)
C19—C18—H18A119.5F1—P2—F489.42 (19)
C14—C19—C18119.5 (3)F3—P2—F5177.6 (3)
C14—C19—C20122.4 (3)F6—P2—F594.1 (3)
C18—C19—C20118.0 (3)F2—P2—F591.3 (3)
N2—C20—O2118.0 (3)F1—P2—F587.5 (2)
N2—C20—C19126.3 (3)F4—P2—F586.4 (2)
O2—C20—C19115.7 (3)
Pd1—P1—C14—C1938.6 (3)C14—C19—C20—N217.4 (5)
Pd1—N1—C9—C1073.1 (3)
(II) top
Crystal data top
[PdCl2(C32H37N2O2P)]F(000) = 1416
Mr = 689.91Dx = 1.469 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 982 reflections
a = 10.2172 (13) Åθ = 1.8–27.4°
b = 13.3580 (18) ŵ = 0.85 mm1
c = 22.858 (3) ÅT = 83 K
V = 3119.7 (7) Å3Block, orange
Z = 40.1 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6600 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.9°, θmin = 1.8°
Detector resolution: 66 pixels mm-1h = 1312
ω scansk = 1217
20046 measured reflectionsl = 2529
7214 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7214 reflectionsΔρmax = 0.76 e Å3
369 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), 3090 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[PdCl2(C32H37N2O2P)]V = 3119.7 (7) Å3
Mr = 689.91Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2172 (13) ŵ = 0.85 mm1
b = 13.3580 (18) ÅT = 83 K
c = 22.858 (3) Å0.1 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6600 reflections with I > 2σ(I)
20046 measured reflectionsRint = 0.041
7214 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.76 e Å3
S = 1.05Δρmin = 0.62 e Å3
7214 reflectionsAbsolute structure: Flack (1983), 3090 Friedel pairs
369 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.86830 (3)0.82456 (2)0.139380 (13)0.01196 (8)
Cl11.01588 (10)0.77328 (8)0.06486 (5)0.0205 (2)
Cl21.02228 (10)0.92498 (8)0.18350 (5)0.0199 (2)
P10.71404 (10)0.89032 (8)0.19578 (5)0.0116 (2)
N10.7350 (3)0.7217 (2)0.11079 (14)0.0132 (7)
O10.5497 (3)0.6505 (2)0.07988 (13)0.0178 (7)
N20.7715 (4)1.0187 (3)0.09724 (15)0.0176 (8)
O20.9151 (3)1.1463 (2)0.10798 (13)0.0245 (8)
C10.5573 (4)0.8897 (3)0.15790 (17)0.0125 (8)
C20.4648 (4)0.9629 (3)0.17109 (19)0.0161 (9)
H2A0.48571.01340.19750.019*
C30.3425 (4)0.9613 (3)0.14547 (19)0.0175 (9)
H3A0.28081.00940.15580.021*
C40.3109 (4)0.8890 (3)0.10481 (19)0.0177 (9)
H4A0.22890.88950.08710.021*
C50.4006 (4)0.8161 (3)0.09032 (18)0.0168 (9)
H5A0.37910.76780.06260.020*
C60.5245 (4)0.8143 (3)0.11728 (17)0.0139 (8)
C70.6106 (4)0.7302 (3)0.10323 (17)0.0141 (8)
C80.6529 (4)0.5840 (3)0.06001 (19)0.0195 (9)
H8A0.66750.59140.01830.023*
H8B0.63110.51470.06830.023*
C90.7729 (4)0.6166 (3)0.09461 (19)0.0165 (9)
H9A0.85990.61960.06880.017 (11)*
C100.8070 (4)0.5503 (3)0.1482 (2)0.0192 (10)
C110.9277 (4)0.5913 (3)0.1798 (2)0.0255 (11)
H11A0.90770.65570.19610.038*
H11B0.99850.59780.15240.038*
H11C0.95260.54630.21050.038*
C120.6922 (5)0.5431 (4)0.1911 (2)0.0279 (11)
H12A0.71550.49980.22300.042*
H12B0.61710.51650.17130.042*
H12C0.67220.60860.20600.042*
C130.8395 (5)0.4446 (3)0.1252 (2)0.0301 (12)
H13A0.90360.44940.09460.045*
H13B0.76150.41400.11020.045*
H13C0.87370.40460.15660.045*
C140.7333 (4)1.0177 (3)0.22476 (18)0.0118 (8)
C150.6984 (4)1.0363 (3)0.28255 (18)0.0149 (9)
H15A0.66220.98480.30460.018*
C160.7161 (4)1.1293 (3)0.30810 (18)0.0178 (9)
H16A0.68881.14030.34640.021*
C170.7743 (4)1.2060 (3)0.2767 (2)0.0201 (10)
H17A0.78971.26780.29410.024*
C180.8094 (4)1.1892 (3)0.21883 (19)0.0178 (9)
H18A0.84821.24050.19750.021*
C190.7877 (4)1.0971 (3)0.19215 (18)0.0147 (9)
C200.8216 (4)1.0836 (3)0.13020 (18)0.0159 (9)
C210.9397 (5)1.1090 (4)0.0492 (2)0.0336 (12)
H21A1.02711.08120.04620.040*
H21B0.93031.16210.02060.040*
C220.8358 (4)1.0275 (3)0.03976 (19)0.0201 (10)
H22A0.88110.95930.02740.024 (12)*
C230.7349 (5)1.0481 (3)0.00901 (19)0.0201 (10)
C240.6383 (6)0.9617 (4)0.0099 (2)0.0406 (14)
H24A0.58290.96550.02400.061*
H24B0.68530.89950.00950.061*
H24C0.58570.96560.04460.061*
C250.8070 (5)1.0517 (4)0.0674 (2)0.0303 (11)
H25A0.74481.05930.09860.045*
H25B0.85520.99070.07280.045*
H25C0.86641.10740.06760.045*
C260.6635 (5)1.1471 (4)0.0008 (2)0.0322 (13)
H26A0.60011.15690.02960.048*
H26B0.72551.20100.00030.048*
H26C0.62001.14550.03810.048*
C270.6854 (4)0.8154 (3)0.26160 (17)0.0138 (8)
C280.5599 (4)0.7911 (3)0.28120 (19)0.0185 (9)
H28A0.48680.81110.25990.022*
C290.5450 (4)0.7370 (3)0.33267 (19)0.0210 (10)
H29A0.46160.72090.34600.025*
C300.6537 (5)0.7070 (3)0.3641 (2)0.0258 (10)
H30A0.64300.67120.39870.031*
C310.7782 (5)0.7297 (3)0.34453 (19)0.0236 (10)
H31A0.85110.70910.36580.028*
C320.7941 (4)0.7835 (3)0.29300 (19)0.0185 (9)
H32A0.87770.79830.27950.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01024 (13)0.01381 (14)0.01182 (14)0.00132 (12)0.00090 (12)0.00228 (13)
Cl10.0180 (5)0.0222 (6)0.0213 (6)0.0042 (4)0.0073 (4)0.0078 (4)
Cl20.0115 (5)0.0224 (6)0.0258 (6)0.0016 (4)0.0010 (4)0.0084 (4)
P10.0108 (5)0.0131 (5)0.0109 (5)0.0006 (4)0.0006 (4)0.0009 (4)
N10.0168 (18)0.0116 (17)0.0112 (18)0.0013 (14)0.0015 (14)0.0004 (13)
O10.0162 (15)0.0159 (17)0.0215 (16)0.0025 (11)0.0010 (12)0.0056 (12)
N20.0210 (19)0.020 (2)0.0120 (19)0.0025 (15)0.0013 (15)0.0013 (14)
O20.0269 (17)0.0301 (19)0.0165 (17)0.0136 (13)0.0038 (13)0.0007 (13)
C10.0098 (19)0.016 (2)0.012 (2)0.0032 (16)0.0003 (15)0.0055 (16)
C20.013 (2)0.017 (2)0.019 (2)0.0032 (17)0.0010 (17)0.0008 (17)
C30.012 (2)0.019 (2)0.021 (2)0.0018 (15)0.0046 (17)0.0018 (18)
C40.0123 (19)0.023 (2)0.018 (2)0.0033 (17)0.0023 (16)0.0088 (18)
C50.016 (2)0.020 (2)0.015 (2)0.0050 (17)0.0007 (15)0.0040 (18)
C60.0106 (18)0.018 (2)0.0131 (19)0.0038 (17)0.0031 (14)0.0027 (16)
C70.018 (2)0.016 (2)0.0082 (19)0.0051 (17)0.0007 (16)0.0019 (15)
C80.024 (3)0.014 (2)0.020 (2)0.0008 (18)0.0010 (18)0.0047 (16)
C90.017 (2)0.015 (2)0.017 (2)0.0017 (17)0.0055 (17)0.0039 (17)
C100.018 (2)0.016 (2)0.023 (3)0.0014 (16)0.0045 (18)0.0036 (18)
C110.027 (2)0.025 (3)0.025 (3)0.005 (2)0.005 (2)0.005 (2)
C120.029 (3)0.025 (3)0.030 (3)0.001 (2)0.008 (2)0.009 (2)
C130.038 (3)0.015 (2)0.037 (3)0.0038 (19)0.007 (2)0.0051 (19)
C140.0081 (19)0.012 (2)0.015 (2)0.0016 (15)0.0006 (15)0.0013 (16)
C150.012 (2)0.018 (2)0.015 (2)0.0024 (17)0.0004 (16)0.0010 (17)
C160.020 (2)0.023 (2)0.010 (2)0.0058 (18)0.0001 (16)0.0040 (17)
C170.020 (2)0.014 (2)0.026 (3)0.0013 (17)0.0043 (19)0.0047 (17)
C180.016 (2)0.013 (2)0.024 (2)0.0036 (17)0.0004 (17)0.0011 (17)
C190.011 (2)0.019 (2)0.014 (2)0.0021 (16)0.0018 (15)0.0035 (16)
C200.016 (2)0.018 (2)0.014 (2)0.0007 (16)0.0008 (16)0.0041 (17)
C210.036 (3)0.052 (3)0.013 (2)0.015 (3)0.003 (2)0.001 (2)
C220.025 (3)0.022 (2)0.013 (2)0.0007 (18)0.0021 (17)0.0016 (18)
C230.028 (3)0.021 (2)0.011 (2)0.0003 (19)0.0025 (18)0.0007 (17)
C240.052 (3)0.049 (3)0.022 (3)0.019 (3)0.017 (3)0.005 (2)
C250.045 (3)0.028 (3)0.018 (3)0.008 (2)0.001 (2)0.002 (2)
C260.039 (3)0.036 (3)0.021 (3)0.013 (2)0.002 (2)0.004 (2)
C270.0163 (19)0.012 (2)0.013 (2)0.0012 (17)0.0007 (15)0.0018 (17)
C280.021 (2)0.018 (2)0.016 (2)0.0009 (17)0.0016 (18)0.0000 (16)
C290.027 (2)0.017 (2)0.019 (2)0.0092 (19)0.0052 (19)0.0002 (18)
C300.041 (3)0.019 (2)0.017 (2)0.0022 (19)0.002 (2)0.0026 (17)
C310.031 (3)0.022 (2)0.018 (2)0.005 (2)0.0034 (18)0.0025 (18)
C320.018 (2)0.021 (2)0.017 (2)0.0022 (18)0.0007 (17)0.0030 (17)
Geometric parameters (Å, º) top
Pd1—N12.042 (3)C13—H13B0.9600
Pd1—P12.2177 (11)C13—H13C0.9600
Pd1—Cl12.3758 (11)C14—C151.390 (6)
Pd1—Cl22.3004 (11)C14—C191.410 (5)
P1—C11.820 (4)C15—C161.385 (6)
P1—C271.831 (4)C15—H15A0.9300
P1—C141.837 (4)C16—C171.384 (6)
N1—C71.288 (5)C16—H16A0.9300
N1—C91.502 (5)C17—C181.390 (6)
O1—C71.344 (5)C17—H17A0.9300
O1—C81.452 (5)C18—C191.390 (6)
N2—C201.257 (5)C18—H18A0.9300
N2—C221.474 (5)C19—C201.469 (6)
O2—C201.369 (5)C21—C221.535 (6)
O2—C211.454 (5)C21—H21A0.9700
C1—C21.393 (6)C21—H21B0.9700
C1—C61.410 (6)C22—C231.543 (6)
C2—C31.381 (5)C22—H22A1.0608
C2—H2A0.9300C23—C241.518 (7)
C3—C41.378 (6)C23—C251.525 (6)
C3—H3A0.9300C23—C261.527 (6)
C4—C51.378 (6)C24—H24A0.9600
C4—H4A0.9300C24—H24B0.9600
C5—C61.408 (5)C24—H24C0.9600
C5—H5A0.9300C25—H25A0.9600
C6—C71.463 (6)C25—H25B0.9600
C8—C91.523 (6)C25—H25C0.9600
C8—H8A0.9700C26—H26A0.9600
C8—H8B0.9700C26—H26B0.9600
C9—C101.553 (6)C26—H26C0.9600
C9—H9A1.0679C27—C321.389 (6)
C10—C111.530 (6)C27—C281.397 (5)
C10—C121.531 (6)C28—C291.389 (6)
C10—C131.543 (6)C28—H28A0.9300
C11—H11A0.9600C29—C301.382 (6)
C11—H11B0.9600C29—H29A0.9300
C11—H11C0.9600C30—C311.382 (6)
C12—H12A0.9600C30—H30A0.9300
C12—H12B0.9600C31—C321.389 (6)
C12—H12C0.9600C31—H31A0.9300
C13—H13A0.9600C32—H32A0.9300
Pd1···N22.938 (4)
Cl1—Pd1—Cl292.77 (4)C15—C14—C19118.0 (4)
N1—Pd1—Cl189.99 (10)C15—C14—P1118.7 (3)
N1—Pd1—Cl2171.42 (10)C19—C14—P1123.2 (3)
N1—Pd1—P188.77 (10)C16—C15—C14121.8 (4)
P1—Pd1—Cl1169.14 (4)C16—C15—H15A119.1
P1—Pd1—Cl290.01 (4)C14—C15—H15A119.1
C1—P1—C27104.36 (18)C17—C16—C15120.1 (4)
C1—P1—C14105.66 (19)C17—C16—H16A120.0
C27—P1—C14103.15 (18)C15—C16—H16A120.0
C1—P1—Pd1110.29 (14)C16—C17—C18119.0 (4)
C27—P1—Pd1112.00 (14)C16—C17—H17A120.5
C14—P1—Pd1120.04 (13)C18—C17—H17A120.5
C7—N1—C9107.7 (3)C17—C18—C19121.3 (4)
C7—N1—Pd1129.9 (3)C17—C18—H18A119.3
C9—N1—Pd1122.4 (3)C19—C18—H18A119.3
C7—O1—C8105.8 (3)C18—C19—C14119.7 (4)
C20—N2—C22107.3 (4)C18—C19—C20119.6 (4)
C20—O2—C21104.7 (3)C14—C19—C20120.7 (4)
C2—C1—C6118.8 (4)N2—C20—O2118.9 (4)
C2—C1—P1119.4 (3)N2—C20—C19124.5 (4)
C6—C1—P1121.7 (3)O2—C20—C19116.6 (4)
C3—C2—C1120.8 (4)O2—C21—C22104.7 (4)
C3—C2—H2A119.6O2—C21—H21A110.8
C1—C2—H2A119.6C22—C21—H21A110.8
C4—C3—C2120.6 (4)O2—C21—H21B110.8
C4—C3—H3A119.7C22—C21—H21B110.8
C2—C3—H3A119.7H21A—C21—H21B108.9
C5—C4—C3120.1 (4)N2—C22—C21103.8 (3)
C5—C4—H4A119.9N2—C22—C23111.1 (3)
C3—C4—H4A119.9C21—C22—C23115.9 (4)
C4—C5—C6120.3 (4)N2—C22—H22A111.3
C4—C5—H5A119.9C21—C22—H22A110.2
C6—C5—H5A119.9C23—C22—H22A104.6
C5—C6—C1119.4 (4)C24—C23—C25109.1 (4)
C5—C6—C7117.2 (4)C24—C23—C26110.5 (4)
C1—C6—C7123.3 (4)C25—C23—C26109.4 (4)
N1—C7—O1116.1 (4)C24—C23—C22108.0 (4)
N1—C7—C6129.2 (4)C25—C23—C22108.4 (4)
O1—C7—C6114.7 (3)C26—C23—C22111.5 (4)
O1—C8—C9104.3 (3)C23—C24—H24A109.5
O1—C8—H8A110.9C23—C24—H24B109.5
C9—C8—H8A110.9H24A—C24—H24B109.5
O1—C8—H8B110.9C23—C24—H24C109.5
C9—C8—H8B110.9H24A—C24—H24C109.5
H8A—C8—H8B108.9H24B—C24—H24C109.5
N1—C9—C8100.8 (3)C23—C25—H25A109.5
N1—C9—C10113.4 (3)C23—C25—H25B109.5
C8—C9—C10115.3 (3)H25A—C25—H25B109.5
N1—C9—H9A108.5C23—C25—H25C109.5
C8—C9—H9A113.2H25A—C25—H25C109.5
C10—C9—H9A105.7H25B—C25—H25C109.5
C11—C10—C12109.8 (4)C23—C26—H26A109.5
C11—C10—C13108.4 (4)C23—C26—H26B109.5
C12—C10—C13109.0 (4)H26A—C26—H26B109.5
C11—C10—C9110.4 (3)C23—C26—H26C109.5
C12—C10—C9111.7 (4)H26A—C26—H26C109.5
C13—C10—C9107.6 (4)H26B—C26—H26C109.5
C10—C11—H11A109.5C32—C27—C28119.8 (4)
C10—C11—H11B109.5C32—C27—P1117.7 (3)
H11A—C11—H11B109.5C28—C27—P1122.5 (3)
C10—C11—H11C109.5C29—C28—C27119.5 (4)
H11A—C11—H11C109.5C29—C28—H28A120.2
H11B—C11—H11C109.5C27—C28—H28A120.2
C10—C12—H12A109.5C30—C29—C28120.2 (4)
C10—C12—H12B109.5C30—C29—H29A119.9
H12A—C12—H12B109.5C28—C29—H29A119.9
C10—C12—H12C109.5C31—C30—C29120.5 (4)
H12A—C12—H12C109.5C31—C30—H30A119.7
H12B—C12—H12C109.5C29—C30—H30A119.7
C10—C13—H13A109.5C30—C31—C32119.7 (4)
C10—C13—H13B109.5C30—C31—H31A120.2
H13A—C13—H13B109.5C32—C31—H31A120.2
C10—C13—H13C109.5C27—C32—C31120.2 (4)
H13A—C13—H13C109.5C27—C32—H32A119.9
H13B—C13—H13C109.5C31—C32—H32A119.9
Pd1—N1—C9—C1072.7 (4)Pd1—P1—C14—C1938.8 (4)

Experimental details

(I)(II)
Crystal data
Chemical formula[Pd(C32H37N2O2P)(C5H9)]PF6[PdCl2(C32H37N2O2P)]
Mr833.10689.91
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)29383
a, b, c (Å)10.3152 (13), 13.5764 (17), 13.8415 (18)10.2172 (13), 13.3580 (18), 22.858 (3)
α, β, γ (°)90, 96.345 (2), 9090, 90, 90
V3)1926.5 (4)3119.7 (7)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.630.85
Crystal size (mm)0.8 × 0.4 × 0.40.1 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.536, 0.634
No. of measured, independent and
observed [I > 2σ(I)] reflections
12103, 8317, 7836 20046, 7214, 6600
Rint0.0140.041
(sin θ/λ)max1)0.6550.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.00 0.036, 0.091, 1.05
No. of reflections83177214
No. of parameters459369
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.280.76, 0.62
Absolute structureFlack (1983), 3757 Friedel pairsFlack (1983), 3090 Friedel pairs
Absolute structure parameter0.001 (17)0.00 (3)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXTL (Bruker, 1997) and PLATON (Spek, 2003), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Pd1—C342.271 (3)Pd1—N12.125 (2)
Pd1—C352.155 (3)Pd1—P12.2864 (7)
Pd1—C362.120 (3)
C34—Pd1—P1163.33 (12)C36—Pd1—N1169.75 (11)
C35—Pd1—P1139.69 (10)C36—Pd1—P1102.81 (10)
C35—Pd1—C3434.13 (13)N1—Pd1—C35132.15 (13)
C36—Pd1—C3466.73 (14)N1—Pd1—C34104.20 (12)
C36—Pd1—C3537.64 (14)N1—Pd1—P187.10 (6)
Pd1—P1—C14—C1938.6 (3)C14—C19—C20—N217.4 (5)
Pd1—N1—C9—C1073.1 (3)
Selected geometric parameters (Å, º) for (II) top
Pd1—N12.042 (3)Pd1—Cl12.3758 (11)
Pd1—P12.2177 (11)Pd1—Cl22.3004 (11)
Cl1—Pd1—Cl292.77 (4)N1—Pd1—P188.77 (10)
N1—Pd1—Cl189.99 (10)P1—Pd1—Cl1169.14 (4)
N1—Pd1—Cl2171.42 (10)P1—Pd1—Cl290.01 (4)
Pd1—N1—C9—C1072.7 (4)Pd1—P1—C14—C1938.8 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds