Download citation
Download citation
link to html
The intramolecular hydrogen-bonding pattern of Z-Leu-Aib-Pro-Val-OBg monohydrate [(N-benzhydryl­amino)­carbonyl­methyl N-benzyl­oxy­carbonyl-[alpha]-amino­isobutyryl­prolyl­valinate monohydrate], C43H55N5O8·H2O, is unusual for a tetrapeptide because, in addition to a 1\leftarrow4 hydrogen bond, a second hydrogen bond of the type 1\leftarrow5 is formed. This folding reflects the intramolecular hydrogen-bonding pattern that this amino acid sequence adopts in the naturally occurring peptaibol alamethicin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010291/tr1055sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010291/tr1055Isup2.hkl
Contains datablock I

CCDC reference: 219561

Comment top

The sequence Leu-Aib-Pro-Val represents a segment of the naturally occurring peptaibol antibiotics [peptides containing α-aminoisobutyric acid (Aib) and a C-terminal β-amino alcohol (Brückner & Graf, 1983; Benedetti et al., 1982)] such as alamethicin (Pandey et al., 1977; Brückner et al., 1985), gliodeliquescin (Brückner & Przybylski, 1984), trichobrachin (Kripp, 1990), trichocellin (Wada et al., 1994), trichokonin (Huang et al., 1995a & 1995b) and trichorzianin (Bodo et al., 1985). OBg is an unique protecting group for the C-termini of synthetic peptides, since it can be cleaved under very mild alkaline conditions, such as treatment with aqueous 10% sodium carbonate (Amblard & Rodriguez, 1988). The backbone conformation that the tetrapeptide adopts is quite unusual. Leu1 lies with its torsion angles (Table 2) in the semi-extended region of a Ramachandran plot, which is unusual for a N-terminal protected residue of an Aib-containing peptide. In most other cases, the CO group of the protection group is involved in an intramolecular hydrogen bond with the third or fourth residue, thereby forcing the first residue to adopt a helical conformation (for examples see Geßmann et al., 1991, 1997; Geßmann, 1999). In (I), the third residue is proline, which cannot act as a hydrogen-bond donor, and instead the Val4 N atom forms a 14 hydrogen bond with Leu1. Furthermore, the ϕ/ψ values of Leu1 are in an allowed, albeit not the most favoured, region of the Ramachandran plot. While Aib2 and Pro3 are in the most favoured helical region, Val4 is again just in the additional allowed helical region. A larger variation of the torsion angles for the standard amino acids Val and Leu in Aib-containing peptides as compared with those in proteins has been observed previously (Geßmann et al., 1994 & 1997, Geßmann, 1999) and is probably the result of the smaller number of intramolecular hydrogen bonds in peptides.

There are two intramolecular hydrogen bonds in (I). One is the 1 4 hydrogen bond between the Val4 NH group and the CO group of Leu1, which forms a ring with the usual (for an incipient 310-helix) ten atoms. The second hydrogen bond is formed between the NH-group of OBg and the CO group of Aib2. The number of ring atoms is 13, which is typical for an α-helical 1 5 hydrogen bond. A hydrogen bond of that type has, to our knowledge, never been observed in a tetrapeptide and is clearly due to the substitution of the amino group in a residue for an O atom in the OBg protection group, prohibiting a 14 interaction between CO (Aib2) and O (OBg). Interestingly, the only crystal structure of a natural peptide that comprises the sequence Val-Aib-Pro-Leu, that of alamethicin (Fox & Richards, 1982), shows a similar hydrogen-bond pattern, viz. no intramolecular hydrogen bond involving the CO group of the residue preceeding Leu12, a 14 hydrogen bond between the CO group of Leu12 and the N—H group of Val15, and a 15 hydrogen bond between the CO group of Aib13 and the N—H group of residue 17, which is in the place of the N—H group of the OBg protection group in alamethicin. The peptide unit in (I) adopts the usual trans planar conformation with an average deviation of 6.1° from ideal geometry (ω = 180°), a deviation which is unusually large, especially for Leu1 (Table 2). The side chain of Leu1 adopts the most common conformation (Janin et al., 1978), which belongs to the type g+ for χ1 and g+t for χ2. The pyrrolidine ring of Pro3 adopts the Cγ-endo (Ashida & Kakudo, 1974) conformation [Cremer & Pople (1975) puckering parameters Q=0.368 Å and Φ=281.9°]. The angles between the N-terminal benzene plane and the two C-terminal benzene planes are 66.7 (4) and 79.6 (4)°, respectively, while the angle between the two C-terminal planes is 80.2 (4)°.

In the crystal packing, the unique molecule is hydrogen bonded to a symmetry-related molecule at (x − 1,y,z), thus building infinite long columns in the [−1 0 0] direction. Each molecule is also hydrogen bonded along [0 − 1 0] via the co-crystallized water molecule (Table 1 and Fig. 2). Thus, planes of hydrogen bonded molecules are formed parallel to the ab plane. These planes stack via apolar molecular contacts along the c axis.

Experimental top

Z-Leu-Aib-Pro-Val-OBg was synthesized in the following way: To Z-Leu-Aib-Pro-OH (225 mg, 0.5 mmol) in N,N-dimethylformamide (DMF; 10 ml) were added (benzotriazol-1-yloxy)tris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP; 260 mg, 0.5 mmol; Novabiochem, Läufelfingen, Switzerland), H-Val-OBg x trifluoroacetic acid (TFA; 250 mg, 0.5 mmol; Fluka, Buchs, Switzerland) and N-methylmorpholine (NMM; 112 µl, 1.0 mmol; Fluka, Buchs, Switzerland). After 16 h at room temperature, the solvent was removed in vacuo. The remaining residue was dissolved in ethyl acetate (100 ml) and washed successively (3 x 50 ml) with KHSO4 (5%), KHCO3 (5%) and water. The organic phase was dried overnight over anhydrous Na2SO4 and evaporated to dryness. To the remaining oil, a small amount of methanol was added, and the peptide was precipitated by addition of diethyl ether and n-hexane. Yield 385 mg (73%); m.p. 368 K. Analysis calculated for C43H55N5O8·H2O (787.94): C 65.83, H 7.29, N 8.89%; found: C 65.80, H. 7.21, N 8.75%. Enantioselective gas chromatography on Chirasil-Val of a total hydrolysate of the title compound revealed less than 0.7% racemization of L-amino acids. The tripeptide Z-Leu-Aib-Pro-OH was prepared by conventional stepwise solution phase synthesis, as described by Brückner & Koza (2003). H-Val-OBg x TFA was obtained by treatment of Boc-Val-OBg (Novabiochem, Läufelfingen, Switzerland) with TFA. The tetrapeptide was crystallized by cooling a hot (343 K) methanol–water mixture (70:30) to room temperature. Rod-shaped crystals suitable for X-ray analysis were obtained after some days.

Refinement top

Data were collected from θ=1–60°, using a collimator with a diameter of 1 mm, resulting in 6444 unique reflections. Refinement against these reflections resulted in an unreasonable Flack parameter of −0.6 (4). Therefore, 2743 Friedel pairs were merged before repeated refinement. All but five non-H atoms were detected by direct methods with the program Crisp, and the remaining non-H atoms were located from the difference Fourier syntheses. H atoms were placed at calculated postions and refined as riding. The highest peak in the final difference Fourier synthesis was associated with a water H atom, although this H atom has no acceptor. All Ueq(H) values were fixed to 1.5Ueq of the parent atom, except for H atoms belonging to the water molecule, where Ueq(H) was fixed to 1.2Ueq of the O atom. These H atoms were refined with distance constraints (0.96 Å) also restraining the H—O—H angle. The largest positive residual electron density is close (0.24 Å) to the water H atom without an acceptor.

Computing details top

Data collection: CAD-4 (Enraf–Nonius, 1989); cell refinement: CAD-4; data reduction: Xtal3.7 DIFDAT, ABSORB, ADDREF (du Bouley & Hall, 2000); program(s) used to solve structure: CRISP (du Bouley & Hall, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.7 PIG (du Bouley & Hall, 2000), Xtal3.7 ORTEP (Johnson, 1976, Davenport et al., 2000), Setor (Evans, 1993); software used to prepare material for publication: SHELXL97, Xtal3.7 CIFIO, BONDLA (du Bouley & Hall, 2000), PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately along [0 1 1]. The four hydrogen bonds, by translation of the unit cell symmetry- related molecules, are shown. Hydrogen bonds are indicated as broken lines and H atoms have been omitted for clarity.
(N-benzhydrylamino)carbonylmethyl N-benzyloxycarbonyl-α-aminoisobutyrylprolylvalinate monohydrate top
Crystal data top
C43H55N5O8·H2OF(000) = 1688
Mr = 787.94Dx = 1.191 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.882 (11) Åθ = 13.5–18.9°
b = 10.705 (6) ŵ = 0.68 mm1
c = 41.553 (17) ÅT = 293 K
V = 4396 (6) Å3Rod, colourless
Z = 40.8 × 0.1 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2471 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
Graphite monochromatorθmax = 59.9°, θmin = 2.1°
ω/θ scansh = 1111
Absorption correction: analytical
ABSORB (Bouley & Hall, 2000)
k = 1112
Tmin = 0.888, Tmax = 0.953l = 4646
7588 measured reflections5 standard reflections every 120 min
3701 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0824P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.010
3701 reflectionsΔρmax = 0.52 e Å3
521 parametersΔρmin = 0.24 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00064 (15)
Crystal data top
C43H55N5O8·H2OV = 4396 (6) Å3
Mr = 787.94Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.882 (11) ŵ = 0.68 mm1
b = 10.705 (6) ÅT = 293 K
c = 41.553 (17) Å0.8 × 0.1 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2471 reflections with I > 2σ(I)
Absorption correction: analytical
ABSORB (Bouley & Hall, 2000)
Rint = 0.110
Tmin = 0.888, Tmax = 0.953θmax = 59.9°
7588 measured reflections5 standard reflections every 120 min
3701 independent reflections intensity decay: 2%
Refinement top
R[F2 > 2σ(F2)] = 0.0613 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.52 e Å3
3701 reflectionsΔρmin = 0.24 e Å3
521 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.8669 (7)0.1220 (6)0.55838 (14)0.0622 (16)
C020.9952 (8)0.1057 (7)0.57105 (18)0.081 (2)
H021.01990.14510.59010.122*
C031.0862 (8)0.0297 (9)0.5548 (2)0.098 (3)
H031.17130.01700.56380.147*
C041.0572 (9)0.0260 (8)0.5269 (2)0.089 (2)
H041.12190.07290.51600.134*
C050.9269 (9)0.0117 (9)0.51456 (18)0.096 (3)
H050.90270.05180.49560.144*
C060.8339 (8)0.0618 (7)0.53047 (17)0.083 (2)
H060.74720.07050.52210.124*
C070.7650 (8)0.2033 (6)0.57539 (16)0.078 (2)
H070.67900.19860.56420.117*
H080.79530.28950.57480.117*
O010.7467 (5)0.1645 (4)0.60869 (11)0.0773 (14)
C080.6649 (7)0.0610 (5)0.61232 (17)0.0628 (16)
O080.6001 (5)0.0148 (4)0.59100 (11)0.0698 (11)
N10.6688 (5)0.0248 (4)0.64339 (12)0.0604 (13)
H10.70950.06940.65760.091*
C1A0.6022 (6)0.0919 (5)0.65229 (16)0.0612 (15)
H1A0.51040.09230.64340.092*
C1B0.5937 (8)0.1048 (7)0.68870 (17)0.080 (2)
H1B10.54260.17980.69360.119*
H1B20.68460.11680.69690.119*
C1G0.5281 (10)0.0066 (9)0.70728 (18)0.101 (3)
H1G0.58370.08040.70290.152*
C1D0.5401 (12)0.0205 (13)0.7438 (2)0.153 (5)
H1D10.49550.09780.74870.229*
H1D20.63390.02650.74960.229*
H1D30.49850.04610.75570.229*
C1E0.3885 (12)0.0360 (11)0.6959 (3)0.147 (4)
H1E10.38570.03240.67290.220*
H1E20.32610.02370.70470.220*
H1E30.36380.11840.70300.220*
C10.6803 (7)0.2001 (6)0.63834 (16)0.0620 (16)
O10.7937 (5)0.2259 (4)0.64992 (13)0.0800 (14)
N20.6290 (5)0.2601 (4)0.61332 (11)0.0576 (13)
H20.54590.24730.60810.086*
C2A0.7101 (6)0.3486 (6)0.59397 (14)0.0582 (15)
C2L0.8129 (7)0.2714 (7)0.57435 (18)0.080 (2)
H2L10.78070.26190.55270.121*
H2L20.82350.19050.58400.121*
H2L30.89860.31360.57410.121*
C2R0.6146 (7)0.4189 (7)0.57078 (16)0.0750 (19)
H2R10.61400.37760.55030.113*
H2R20.64580.50320.56810.113*
H2R30.52470.41960.57950.113*
C20.7832 (7)0.4438 (5)0.61476 (13)0.0563 (15)
O20.8998 (4)0.4776 (4)0.60746 (9)0.0583 (10)
N30.7218 (4)0.4969 (4)0.63985 (10)0.0510 (11)
C3A0.7918 (6)0.5955 (5)0.65803 (13)0.0544 (14)
H3A0.81180.66500.64340.082*
C3B0.6866 (7)0.6393 (7)0.68293 (17)0.080 (2)
H3B10.69770.59530.70320.120*
H3B20.69400.72840.68680.120*
C3G0.5529 (7)0.6072 (7)0.66734 (19)0.083 (2)
H3G10.48210.59940.68340.124*
H3G20.52690.67080.65190.124*
C3D0.5772 (6)0.4845 (6)0.65084 (17)0.0680 (17)
H3D10.51650.47320.63270.102*
H3D20.56650.41500.66560.102*
C30.9212 (7)0.5564 (6)0.67459 (14)0.0590 (16)
O30.9980 (5)0.6391 (4)0.68455 (11)0.0747 (13)
N40.9439 (6)0.4351 (4)0.67884 (12)0.0642 (14)
H40.88600.38260.67130.096*
C4A1.0614 (7)0.3877 (6)0.69554 (15)0.0715 (18)
H4A1.10660.45710.70650.107*
C4B1.0176 (9)0.2879 (9)0.72121 (16)0.098 (3)
H4B0.97560.21740.71000.147*
C4G0.9148 (12)0.3439 (12)0.7439 (2)0.148 (5)
H4G10.83220.35980.73250.223*
H4G20.94930.42090.75250.223*
H4G30.89760.28660.76120.223*
C4C1.1318 (13)0.2416 (15)0.7397 (2)0.171 (6)
H4C11.18680.18900.72630.257*
H4C21.09920.19430.75780.257*
H4C31.18470.31080.74730.257*
C41.1592 (8)0.3290 (6)0.67218 (16)0.0723 (18)
O41.2807 (6)0.3377 (7)0.67326 (14)0.112 (2)
O511.0956 (4)0.2598 (4)0.65013 (10)0.0653 (11)
C511.1792 (8)0.1917 (7)0.62804 (17)0.079 (2)
H5111.12600.12500.61860.118*
H5121.25290.15350.63990.118*
C51.2378 (7)0.2700 (6)0.60140 (16)0.0665 (16)
O51.3462 (5)0.2397 (4)0.58902 (12)0.0812 (13)
N51.1648 (5)0.3693 (5)0.59226 (12)0.0635 (13)
H51.08680.38110.60090.095*
C5A1.2129 (6)0.4583 (6)0.56810 (14)0.0638 (16)
H5A1.29660.42350.55920.096*
C611.2497 (6)0.5822 (6)0.58316 (14)0.0618 (15)
C621.3333 (7)0.6648 (6)0.56631 (17)0.0730 (18)
H621.36320.64350.54580.110*
C631.3721 (7)0.7769 (7)0.5795 (2)0.081 (2)
H631.42860.82990.56790.121*
C641.3293 (8)0.8111 (7)0.6089 (2)0.086 (2)
H641.35530.88790.61740.128*
C651.2455 (8)0.7311 (8)0.62706 (18)0.085 (2)
H651.21650.75380.64750.128*
C661.2072 (7)0.6177 (7)0.61361 (17)0.0752 (19)
H661.15170.56430.62530.113*
C711.1145 (6)0.4673 (6)0.54079 (15)0.0608 (16)
C721.1090 (8)0.3707 (7)0.51915 (18)0.083 (2)
H721.16650.30270.52170.124*
C731.0184 (9)0.3726 (8)0.49326 (19)0.096 (2)
H731.01240.30450.47940.143*
C740.9375 (8)0.4768 (9)0.48838 (18)0.088 (2)
H740.87840.47990.47100.132*
C750.9453 (8)0.5730 (8)0.50889 (19)0.090 (2)
H750.89130.64300.50560.135*
C761.0337 (7)0.5697 (7)0.53530 (16)0.0761 (19)
H761.03770.63750.54930.114*
O0.9222 (5)0.1052 (3)0.67743 (17)0.142 (3)
H1W0.982 (3)0.042 (3)0.6695 (16)0.171*
H2W0.961 (6)0.182 (2)0.670 (2)0.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.083 (4)0.051 (3)0.053 (3)0.001 (3)0.004 (3)0.003 (3)
C020.092 (5)0.079 (5)0.072 (4)0.003 (5)0.020 (4)0.007 (4)
C030.073 (5)0.113 (6)0.107 (6)0.006 (5)0.005 (5)0.002 (6)
C040.086 (5)0.093 (5)0.089 (5)0.003 (5)0.003 (4)0.008 (5)
C050.111 (6)0.108 (6)0.069 (5)0.013 (6)0.004 (4)0.020 (5)
C060.085 (5)0.086 (5)0.078 (5)0.007 (5)0.008 (4)0.006 (4)
C070.101 (5)0.059 (4)0.073 (4)0.002 (4)0.021 (4)0.010 (4)
O010.104 (4)0.061 (2)0.066 (3)0.023 (3)0.012 (3)0.008 (2)
C080.065 (4)0.042 (3)0.081 (5)0.010 (3)0.010 (4)0.003 (3)
O080.082 (3)0.056 (2)0.072 (3)0.004 (2)0.011 (2)0.001 (2)
N10.076 (3)0.048 (3)0.056 (3)0.005 (3)0.003 (3)0.004 (2)
C1A0.058 (3)0.052 (3)0.074 (4)0.000 (3)0.003 (3)0.003 (3)
C1B0.088 (5)0.071 (4)0.080 (5)0.004 (4)0.006 (4)0.001 (4)
C1G0.134 (7)0.091 (5)0.078 (5)0.033 (6)0.035 (5)0.010 (5)
C1D0.191 (11)0.191 (12)0.077 (5)0.010 (11)0.034 (6)0.009 (7)
C1E0.152 (10)0.149 (10)0.140 (9)0.051 (9)0.025 (8)0.027 (8)
C10.065 (4)0.053 (3)0.069 (4)0.002 (3)0.001 (3)0.000 (3)
O10.071 (3)0.057 (2)0.112 (4)0.003 (2)0.026 (3)0.014 (3)
N20.055 (3)0.057 (3)0.062 (3)0.011 (2)0.005 (2)0.005 (3)
C2A0.058 (3)0.059 (3)0.058 (3)0.004 (3)0.000 (3)0.002 (3)
C2L0.070 (4)0.077 (4)0.095 (5)0.010 (4)0.017 (4)0.029 (4)
C2R0.078 (4)0.080 (4)0.067 (4)0.018 (4)0.007 (3)0.012 (4)
C20.073 (4)0.048 (3)0.048 (3)0.003 (3)0.005 (3)0.005 (3)
O20.050 (2)0.056 (2)0.069 (2)0.0131 (19)0.0075 (19)0.000 (2)
N30.048 (3)0.049 (2)0.056 (3)0.001 (2)0.001 (2)0.006 (2)
C3A0.063 (4)0.046 (3)0.054 (3)0.001 (3)0.001 (3)0.007 (3)
C3B0.079 (5)0.072 (4)0.087 (5)0.007 (4)0.003 (4)0.025 (4)
C3G0.065 (4)0.089 (5)0.094 (5)0.018 (4)0.009 (4)0.015 (4)
C3D0.049 (4)0.075 (4)0.080 (4)0.004 (3)0.014 (3)0.003 (4)
C30.069 (4)0.059 (4)0.049 (3)0.002 (4)0.000 (3)0.003 (3)
O30.081 (3)0.053 (2)0.090 (3)0.011 (2)0.018 (3)0.009 (3)
N40.075 (3)0.048 (3)0.069 (3)0.009 (3)0.016 (3)0.006 (3)
C4A0.084 (4)0.068 (4)0.063 (4)0.011 (4)0.021 (4)0.000 (3)
C4B0.116 (6)0.126 (6)0.053 (4)0.056 (6)0.002 (4)0.019 (5)
C4G0.175 (10)0.170 (10)0.101 (7)0.081 (9)0.033 (7)0.053 (7)
C4C0.190 (11)0.221 (14)0.103 (7)0.092 (12)0.004 (8)0.039 (9)
C40.084 (5)0.068 (4)0.065 (4)0.007 (4)0.007 (4)0.010 (4)
O40.066 (3)0.143 (5)0.126 (5)0.008 (4)0.012 (3)0.002 (4)
O510.063 (2)0.066 (2)0.067 (3)0.009 (2)0.002 (2)0.000 (2)
C510.092 (5)0.067 (4)0.078 (5)0.016 (4)0.011 (4)0.010 (4)
C50.074 (4)0.055 (3)0.070 (4)0.012 (4)0.000 (4)0.002 (3)
O50.064 (3)0.081 (3)0.098 (3)0.023 (3)0.010 (3)0.005 (3)
N50.057 (3)0.062 (3)0.071 (3)0.006 (3)0.011 (3)0.013 (3)
C5A0.060 (4)0.064 (4)0.067 (4)0.006 (3)0.009 (3)0.012 (3)
C610.059 (4)0.066 (4)0.061 (4)0.001 (3)0.005 (3)0.003 (3)
C620.069 (4)0.076 (4)0.074 (4)0.004 (4)0.001 (3)0.004 (4)
C630.067 (4)0.071 (4)0.104 (6)0.018 (4)0.008 (4)0.015 (5)
C640.078 (5)0.078 (5)0.100 (6)0.004 (5)0.021 (5)0.010 (5)
C650.087 (5)0.090 (5)0.078 (5)0.007 (5)0.010 (4)0.007 (4)
C660.076 (4)0.076 (4)0.074 (4)0.015 (4)0.008 (4)0.002 (4)
C710.057 (3)0.059 (4)0.066 (4)0.005 (3)0.009 (3)0.000 (3)
C720.085 (5)0.072 (4)0.090 (5)0.012 (4)0.008 (4)0.026 (4)
C730.114 (6)0.093 (6)0.079 (5)0.009 (6)0.008 (5)0.019 (5)
C740.090 (5)0.105 (6)0.069 (5)0.012 (5)0.003 (4)0.008 (5)
C750.090 (5)0.092 (5)0.087 (5)0.024 (5)0.021 (5)0.001 (5)
C760.083 (5)0.075 (4)0.070 (4)0.015 (4)0.005 (4)0.001 (4)
O0.174 (6)0.105 (4)0.148 (6)0.040 (5)0.076 (5)0.026 (4)
Geometric parameters (Å, º) top
C01—C061.366 (9)C3G—C3D1.501 (9)
C01—C021.383 (10)C3G—H3G10.9700
C01—C071.507 (9)C3G—H3G20.9700
C02—C031.388 (11)C3D—H3D10.9700
C02—H020.9300C3D—H3D20.9700
C03—C041.337 (11)C3—O31.237 (7)
C03—H030.9300C3—N41.329 (8)
C04—C051.394 (11)N4—C4A1.445 (8)
C04—H040.9300N4—H40.8600
C05—C061.379 (10)C4A—C41.507 (10)
C05—H050.9300C4A—C4B1.571 (10)
C06—H060.9300C4A—H4A0.9800
C07—O011.456 (8)C4B—C4C1.453 (13)
C07—H070.9700C4B—C4G1.510 (11)
C07—H080.9700C4B—H4B0.9800
O01—C081.380 (7)C4G—H4G10.9600
C08—O081.200 (7)C4G—H4G20.9600
C08—N11.349 (8)C4G—H4G30.9600
N1—C1A1.459 (7)C4C—H4C10.9600
N1—H10.8600C4C—H4C20.9600
C1A—C11.508 (9)C4C—H4C30.9600
C1A—C1B1.522 (9)C4—O41.205 (8)
C1A—H1A0.9800C4—O511.335 (8)
C1B—C1G1.561 (11)O51—C511.434 (8)
C1B—H1B10.9700C51—C51.505 (9)
C1B—H1B20.9700C51—H5110.9700
C1G—C1E1.491 (13)C51—H5120.9700
C1G—C1D1.549 (11)C5—O51.232 (8)
C1G—H1G0.9800C5—N51.340 (8)
C1D—H1D10.9600N5—C5A1.464 (7)
C1D—H1D20.9600N5—H50.8600
C1D—H1D30.9600C5A—C711.497 (9)
C1E—H1E10.9600C5A—C611.511 (9)
C1E—H1E20.9600C5A—H5A0.9800
C1E—H1E30.9600C61—C661.387 (9)
C1—O11.251 (7)C61—C621.398 (9)
C1—N21.323 (7)C62—C631.373 (10)
N2—C2A1.479 (7)C62—H620.9300
N2—H20.8600C63—C641.345 (10)
C2A—C21.519 (8)C63—H630.9300
C2A—C2L1.543 (9)C64—C651.409 (11)
C2A—C2R1.545 (9)C64—H640.9300
C2L—H2L10.9600C65—C661.389 (10)
C2L—H2L20.9600C65—H650.9300
C2L—H2L30.9600C66—H660.9300
C2R—H2R10.9600C71—C721.372 (9)
C2R—H2R20.9600C71—C761.375 (9)
C2R—H2R30.9600C72—C731.400 (11)
C2—O21.246 (7)C72—H720.9300
C2—N31.334 (7)C73—C741.387 (11)
N3—C3A1.471 (7)C73—H730.9300
N3—C3D1.506 (7)C74—C751.339 (11)
C3A—C31.512 (8)C74—H740.9300
C3A—C3B1.539 (9)C75—C761.403 (9)
C3A—H3A0.9800C75—H750.9300
C3B—C3G1.512 (10)C76—H760.9300
C3B—H3B10.9700O—H1W0.96 (11)
C3B—H3B20.9700O—H2W0.96 (6)
C06—C01—C02118.8 (7)H3B1—C3B—H3B2109.0
C06—C01—C07120.7 (7)C3D—C3G—C3B104.7 (6)
C02—C01—C07120.5 (6)C3D—C3G—H3G1110.8
C01—C02—C03118.9 (7)C3B—C3G—H3G1110.8
C01—C02—H02120.5C3D—C3G—H3G2110.8
C03—C02—H02120.5C3B—C3G—H3G2110.8
C04—C03—C02123.0 (8)H3G1—C3G—H3G2108.9
C04—C03—H03118.5C3G—C3D—N3102.3 (5)
C02—C03—H03118.5C3G—C3D—H3D1111.3
C03—C04—C05117.9 (8)N3—C3D—H3D1111.3
C03—C04—H04121.0C3G—C3D—H3D2111.3
C05—C04—H04121.0N3—C3D—H3D2111.3
C06—C05—C04120.2 (8)H3D1—C3D—H3D2109.2
C06—C05—H05119.9O3—C3—N4123.5 (6)
C04—C05—H05119.9O3—C3—C3A118.2 (5)
C01—C06—C05121.1 (7)N4—C3—C3A118.3 (6)
C01—C06—H06119.4C3—N4—C4A122.8 (6)
C05—C06—H06119.4C3—N4—H4118.6
O01—C07—C01111.3 (5)C4A—N4—H4118.6
O01—C07—H07109.4N4—C4A—C4110.7 (5)
C01—C07—H07109.4N4—C4A—C4B110.1 (6)
O01—C07—H08109.4C4—C4A—C4B109.3 (6)
C01—C07—H08109.4N4—C4A—H4A108.9
H07—C07—H08108.0C4—C4A—H4A108.9
C08—O01—C07113.9 (5)C4B—C4A—H4A108.9
O08—C08—N1127.1 (6)C4C—C4B—C4G109.1 (7)
O08—C08—O01124.3 (6)C4C—C4B—C4A112.2 (8)
N1—C08—O01108.6 (6)C4G—C4B—C4A109.9 (7)
C08—N1—C1A118.4 (5)C4C—C4B—H4B108.5
C08—N1—H1120.8C4G—C4B—H4B108.5
C1A—N1—H1120.8C4A—C4B—H4B108.5
N1—C1A—C1109.3 (5)C4B—C4G—H4G1109.5
N1—C1A—C1B110.8 (5)C4B—C4G—H4G2109.5
C1—C1A—C1B109.9 (5)H4G1—C4G—H4G2109.5
N1—C1A—H1A108.9C4B—C4G—H4G3109.5
C1—C1A—H1A108.9H4G1—C4G—H4G3109.5
C1B—C1A—H1A108.9H4G2—C4G—H4G3109.5
C1A—C1B—C1G116.4 (6)C4B—C4C—H4C1109.5
C1A—C1B—H1B1108.2C4B—C4C—H4C2109.5
C1G—C1B—H1B1108.2H4C1—C4C—H4C2109.5
C1A—C1B—H1B2108.2C4B—C4C—H4C3109.5
C1G—C1B—H1B2108.2H4C1—C4C—H4C3109.5
H1B1—C1B—H1B2107.3H4C2—C4C—H4C3109.5
C1E—C1G—C1D114.8 (8)O4—C4—O51122.5 (7)
C1E—C1G—C1B112.9 (8)O4—C4—C4A125.7 (7)
C1D—C1G—C1B108.0 (9)O51—C4—C4A111.8 (6)
C1E—C1G—H1G106.9C4—O51—C51116.7 (6)
C1D—C1G—H1G106.9O51—C51—C5114.2 (5)
C1B—C1G—H1G106.9O51—C51—H511108.7
C1G—C1D—H1D1109.5C5—C51—H511108.7
C1G—C1D—H1D2109.5O51—C51—H512108.7
H1D1—C1D—H1D2109.5C5—C51—H512108.7
C1G—C1D—H1D3109.5H511—C51—H512107.6
H1D1—C1D—H1D3109.5O5—C5—N5124.0 (6)
H1D2—C1D—H1D3109.5O5—C5—C51119.7 (6)
C1G—C1E—H1E1109.5N5—C5—C51116.3 (6)
C1G—C1E—H1E2109.5C5—N5—C5A122.4 (5)
H1E1—C1E—H1E2109.5C5—N5—H5118.8
C1G—C1E—H1E3109.5C5A—N5—H5118.8
H1E1—C1E—H1E3109.5N5—C5A—C71110.6 (5)
H1E2—C1E—H1E3109.5N5—C5A—C61111.5 (5)
O1—C1—N2122.6 (6)C71—C5A—C61114.4 (5)
O1—C1—C1A118.7 (6)N5—C5A—H5A106.6
N2—C1—C1A118.7 (6)C71—C5A—H5A106.6
C1—N2—C2A122.0 (5)C61—C5A—H5A106.6
C1—N2—H2119.0C66—C61—C62117.6 (6)
C2A—N2—H2119.0C66—C61—C5A123.1 (6)
N2—C2A—C2112.2 (5)C62—C61—C5A119.4 (6)
N2—C2A—C2L107.5 (5)C63—C62—C61121.2 (7)
C2—C2A—C2L110.3 (5)C63—C62—H62119.4
N2—C2A—C2R108.7 (5)C61—C62—H62119.4
C2—C2A—C2R108.6 (5)C64—C63—C62120.8 (7)
C2L—C2A—C2R109.5 (6)C64—C63—H63119.6
C2A—C2L—H2L1109.5C62—C63—H63119.6
C2A—C2L—H2L2109.5C63—C64—C65120.4 (7)
H2L1—C2L—H2L2109.5C63—C64—H64119.8
C2A—C2L—H2L3109.5C65—C64—H64119.8
H2L1—C2L—H2L3109.5C66—C65—C64118.4 (7)
H2L2—C2L—H2L3109.5C66—C65—H65120.8
C2A—C2R—H2R1109.5C64—C65—H65120.8
C2A—C2R—H2R2109.5C61—C66—C65121.6 (7)
H2R1—C2R—H2R2109.5C61—C66—H66119.2
C2A—C2R—H2R3109.5C65—C66—H66119.2
H2R1—C2R—H2R3109.5C72—C71—C76118.0 (6)
H2R2—C2R—H2R3109.5C72—C71—C5A118.3 (6)
O2—C2—N3119.2 (5)C76—C71—C5A123.7 (6)
O2—C2—C2A119.8 (5)C71—C72—C73121.2 (7)
N3—C2—C2A120.9 (6)C71—C72—H72119.4
C2—N3—C3A119.6 (5)C73—C72—H72119.4
C2—N3—C3D129.1 (5)C74—C73—C72119.5 (7)
C3A—N3—C3D110.7 (5)C74—C73—H73120.2
N3—C3A—C3115.6 (5)C72—C73—H73120.2
N3—C3A—C3B104.2 (5)C75—C74—C73119.5 (7)
C3—C3A—C3B110.5 (5)C75—C74—H74120.2
N3—C3A—H3A108.8C73—C74—H74120.2
C3—C3A—H3A108.8C74—C75—C76120.9 (7)
C3B—C3A—H3A108.8C74—C75—H75119.5
C3G—C3B—C3A103.5 (5)C76—C75—H75119.5
C3G—C3B—H3B1111.1C71—C76—C75120.8 (7)
C3A—C3B—H3B1111.1C71—C76—H76119.6
C3G—C3B—H3B2111.1C75—C76—H76119.6
C3A—C3B—H3B2111.1H1W—O—H2W104 (4)
C06—C01—C02—C030.6 (10)C4B—C4A—C4—O5179.2 (7)
C07—C01—C02—C03179.7 (6)O4—C4—O51—C512.1 (9)
C01—C02—C03—C042.0 (12)C4A—C4—O51—C51175.5 (5)
C02—C03—C04—C053.4 (13)C4—O51—C51—C578.0 (7)
C03—C04—C05—C062.3 (13)O51—C51—C5—O5151.9 (6)
C02—C01—C06—C051.6 (11)O51—C51—C5—N529.2 (9)
C07—C01—C06—C05179.3 (7)O5—C5—N5—C5A5.2 (10)
C04—C05—C06—C010.2 (13)C51—C5—N5—C5A176.0 (6)
C06—C01—C07—O01124.8 (7)C5—N5—C5A—C71122.8 (6)
C02—C01—C07—O0154.3 (8)C5—N5—C5A—C61108.8 (6)
C01—C07—O01—C0878.6 (7)N5—C5A—C61—C6617.1 (8)
C07—O01—C08—O088.9 (8)C71—C5A—C61—C66109.3 (7)
C07—O01—C08—N1172.6 (5)N5—C5A—C61—C62161.2 (6)
O08—C08—N1—C1A8.6 (9)C71—C5A—C61—C6272.5 (8)
O01—C08—N1—C1A173.0 (5)C66—C61—C62—C630.1 (10)
C08—N1—C1A—C169.6 (7)C5A—C61—C62—C63178.3 (6)
C08—N1—C1A—C1B169.2 (6)C61—C62—C63—C640.7 (11)
N1—C1A—C1B—C1G53.4 (8)C62—C63—C64—C651.1 (11)
C1—C1A—C1B—C1G174.3 (6)C63—C64—C65—C660.8 (11)
C1A—C1B—C1G—C1E56.5 (10)C62—C61—C66—C650.1 (10)
C1A—C1B—C1G—C1D175.4 (8)C5A—C61—C66—C65178.5 (6)
N1—C1A—C1—O170.5 (8)C64—C65—C66—C610.2 (10)
C1B—C1A—C1—O151.2 (8)N5—C5A—C71—C7274.5 (7)
C1B—C1A—C1—N2132.1 (6)C61—C5A—C71—C72158.7 (6)
O1—C1—N2—C2A9.8 (9)N5—C5A—C71—C76108.7 (7)
N1—C1A—C1—N2106.2 (6)C61—C5A—C71—C7618.1 (9)
C1A—C1—N2—C2A166.8 (5)C76—C71—C72—C733.6 (11)
C1—N2—C2A—C250.0 (7)C5A—C71—C72—C73179.3 (7)
C1—N2—C2A—C2L71.5 (7)C71—C72—C73—C743.4 (12)
C1—N2—C2A—C2R170.1 (5)C72—C73—C74—C751.4 (12)
N2—C2A—C2—O2141.9 (5)C73—C74—C75—C760.2 (13)
C2L—C2A—C2—O222.0 (7)C72—C71—C76—C752.0 (10)
C2R—C2A—C2—O297.9 (6)C5A—C71—C76—C75178.8 (7)
N2—C2A—C2—N341.6 (7)C74—C75—C76—C710.1 (12)
C2L—C2A—C2—N3161.5 (5)O01—C08—N1—C1A173.0 (5)
C2R—C2A—C2—N378.5 (7)C08—N1—C1A—C169.6 (7)
O2—C2—N3—C3A1.0 (7)N1—C1A—C1—N2106.2 (6)
C2A—C2—N3—C3A175.5 (5)C1A—C1—N2—C2A166.8 (5)
O2—C2—N3—C3D171.5 (5)C1—N2—C2A—C250.0 (7)
C2A—C2—N3—C3D5.0 (9)N2—C2A—C2—N341.6 (7)
C2—N3—C3A—C362.6 (6)C2A—C2—N3—C3A175.5 (5)
C3D—N3—C3A—C3125.3 (5)C2—N3—C3A—C362.6 (6)
C2—N3—C3A—C3B176.0 (5)N3—C3A—C3—N417.2 (7)
C3D—N3—C3A—C3B3.9 (6)C3A—C3—N4—C4A177.4 (5)
N3—C3A—C3B—C3G25.4 (6)C3—N4—C4A—C4107.6 (7)
C3—C3A—C3B—C3G150.2 (6)N4—C4A—C4—O5142.2 (7)
C3A—C3B—C3G—C3D38.0 (7)C4A—C4—O51—C51175.5 (5)
C3B—C3G—C3D—N335.0 (7)C4—O51—C51—C578.0 (7)
C2—N3—C3D—C3G151.9 (6)O51—C51—C5—N529.2 (9)
C3A—N3—C3D—C3G19.2 (7)C51—C5—N5—C5A176.0 (6)
N3—C3A—C3—O3165.5 (5)C5—N5—C5A—C71122.8 (6)
C3B—C3A—C3—O376.4 (7)C5—N5—C5A—C61108.8 (6)
N3—C3A—C3—N417.2 (7)N1—C1A—C1B—C1G53.4 (8)
C3B—C3A—C3—N4100.9 (7)C1A—C1B—C1G—C1E56.5 (10)
O3—C3—N4—C4A0.3 (10)C1A—C1B—C1G—C1D175.4 (8)
C3A—C3—N4—C4A177.4 (5)N3—C3A—C3B—C3G25.4 (6)
C3—N4—C4A—C4107.6 (7)C3—C3A—C3B—C3G150.2 (6)
C3—N4—C4A—C4B131.4 (7)C3A—C3B—C3G—C3D38.0 (7)
N4—C4A—C4B—C4C177.3 (8)C3B—C3G—C3D—N335.0 (7)
C4—C4A—C4B—C4C60.9 (10)C3A—N3—C3D—C3G19.2 (7)
N4—C4A—C4B—C4G55.8 (9)C2—N3—C3D—C3G151.9 (6)
C4—C4A—C4B—C4G177.5 (8)C3D—N3—C3A—C3B3.9 (6)
N4—C4A—C4—O4140.4 (7)N4—C4A—C4B—C4C177.3 (8)
C4B—C4A—C4—O498.2 (9)N4—C4A—C4B—C4G55.8 (9)
N4—C4A—C4—O5142.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.862.112.944 (7)164
N5—H5···O20.862.132.932 (7)154
N1—H1···O0.862.293.002 (7)140
N2—H2···O5i0.862.132.979 (7)170
O—H2W···O3ii0.96 (6)2.04 (4)2.853 (6)142 (6)
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC43H55N5O8·H2O
Mr787.94
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.882 (11), 10.705 (6), 41.553 (17)
V3)4396 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.8 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
ABSORB (Bouley & Hall, 2000)
Tmin, Tmax0.888, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
7588, 3701, 2471
Rint0.110
θmax (°)59.9
(sin θ/λ)max1)0.561
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.184, 1.08
No. of reflections3701
No. of parameters521
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.24

Computer programs: CAD-4 (Enraf–Nonius, 1989), CAD-4, Xtal3.7 DIFDAT, ABSORB, ADDREF (du Bouley & Hall, 2000), CRISP (du Bouley & Hall, 2000), SHELXL97 (Sheldrick, 1997), Xtal3.7 PIG (du Bouley & Hall, 2000), Xtal3.7 ORTEP (Johnson, 1976, Davenport et al., 2000), Setor (Evans, 1993), SHELXL97, Xtal3.7 CIFIO, BONDLA (du Bouley & Hall, 2000), PLATON (Spek, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.862.112.944 (7)164.0
N5—H5···O20.862.132.932 (7)154.3
N1—H1···O0.862.293.002 (7)140.3
N2—H2···O5i0.862.132.979 (7)169.9
O—H2W···O3ii0.96 (6)2.04 (4)2.853 (6)142 (6)
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
Backbone and side chain torsion angles (°) top
ω(Z)O01-C08-N1 –C1A173.0 (5)
ϕ(1)C08-N1 –C1A-C1-69.6 (7)
ψ(1)N1 –C1A-C1 –N2106.2 (6)
ω(1)C1A-C1 –N2 –C2A-166.8 (5)
ϕ(2)C1 –N2 –C2A-C2-50.0 (7)
ψ(2)N2 –C2A-C2 –N3-41.6 (7)
ω(2)C2A-C2 –N3 –C3A-175.5 (5)
ϕ(3)C2 –N3 –C3A-C3-62.6 (6)
ψ(3)N3 –C3A-C3 –N4-17.2 (7)
ω(3)C3A-C3 –N4 –C4A-177.4 (5)
ϕ(4)C3 –N4 –C4A-C4-107.6 (7)
ψ(4)N4 –C4A-C4 –O51-42.2 (7)
ω(4)C4A-C4 –O51-C51-175.5 (5)
ϕ(5)C4 –O51-C51-C5-78.0 (7)
ψ(5)O51-C51-C5 –N5-29.2 (9)
ω(5)C51-C5 –N5 –C5A176.0 (6)
C5 –N5 –C5A-C61-108.8 (6)
C5 –N5 –C5A-C71122.8 (6)
χ(1)N1 –C1A-C1B-C1G-53.4 (8)
χ21 (1)C1A-C1B-C1G-C1E-56.5 (10)
χ22 (1)C1A-C1B-C1G-C1D175.4 (8)
χ1(3)N3 –C3A-C3B-C3G-25.4 (6)
χ2(3)C3A-C3B-C3G-C3D38.0 (7)
χ3(3)C3B-C3G-C3D-N3-35.0 (7)
χ4(3)C3A-N3 –C3D-C3G19.2 (7)
θ(3)C3D-N3 –C3A-C3B3.9 (6)
χ11 (4)N4 –C4A-C4B-C4C-177.3 (8)
χ12 (4)N4 –C4A-C4B-C4G-55.8 (9)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds