Download citation
Download citation
link to html
The structure of the title compound, aqua­[[mu]-(N1-carboxylato­methyl­guanidino)­oxidoacetato]([mu]-guanidino­acetic acid)­di­copper(II) nitrate dihydrate, [Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2O, contains two enantiomers of the di­copper(II) complex cation that comprise water, neutral zwitterionic guanidino­acetic acid and the trianion of (N1-carboxy­methyl­guanidino)­hydroxy­acetic acid as ligands. Extensive hydrogen bonding creates three-dimensional connectivity but is largely confined to layers that each contain both cation enantiomers. These layers are related to one another by crystallographic symmetry and are therefore identical in composition and connectivity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103003329/tr1052sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103003329/tr1052IIsup2.hkl
Contains datablock II

CCDC reference: 208001

Comment top

As part of a continuing study of CuII complexes with aminoacids (Felcman & de Miranda, 1997; de Miranda & Felcman, 2001) we previously reported the structure of [Cu2(NO3)2(gaa)4], (I), [gaa = guanidinoacetic acid, H2NC(NH2)NHCH2CO2; de Miranda et al., 2002]. Green crystalline (I) had been isolated from a reaction mixture containing CuII(NO3)2, guanidinoacetic acid and aspartic acid. Obtained along with (I) from this reaction mixture were blue crystals of the title compound, (II), whose structure we now report. The sample crystal used for the analysis presented here came, in fact, from a subsequent preparation of (II), again accompanied by (I), but in the absence of aspartic acid, which must therefore, when present, be merely a spectator species.

For convenience, the asymmetric unit in the structure of (II) is described in terms of two subunits, labelled identically and distinguished by suffixes A and B, of formula C8H19Cu2N7O10, where this formula corresponds to an aquadicopper complex cation of formula (C8H15Cu2N6O8)+, a nitrate, NO3, counter anion and two hydrate water molecules (see Scheme and Fig. 1). Only the cation merits further detailed discussion.

Three ligand species contribute to the variously distorted approximately square-planar cooordinaton of Cu (Table 1) in the complex cation of (II). The first and simplest of these is the water molecule, O8. The second is the bismonodentate bridging (µ2) guanidinoacetic acid species, gaa, with formula C3H7N3O2, comprising O1, O2, C1–C3 and N1–N3, in its zwitterionic and therefore neutral form. Previous examples of complexes containing zwitterionic gaa are (I) (de Miranda et al., 2002) and [CuCl2(gaa)2] (Silva et al., 2001). The third and most interesting is the tetradentate bischelate species, oag3−, formulated (C5H6N3O5)3−, comprising C4–C8, N4–N6 and O3–O7 and corresponding to the trianion of the previously unkown (N1-carboxymethylguanidino)hydroxyacetic acid. In this last case, O3 and N4 form bonds with Cu2, thus creating a five-membered chelate ring, and O5 and O6 form bonds with Cu1 in a similar manner. However O5 forms a further bond with Cu2 and therefore has an additional bridging function, thus creating a further six-membered ring.

The chemical identity of the individual atoms within the oag3− species was determined initially by consideration of the atomic displacement parameters but is supported by comparison of these with those found for atoms of corresponding type in gaa. Further support for the correctness of the atom designations comes from the positions of H atoms determined by difference synthesis and their satisfactory contribution to the hydrogen-bonding scheme discussed later.

The structural subunits A and B and the complex cations within them are identical in their connectivity and therefore, as noted above, have been labelled in an identical manner and distinguished by suffix. It is clear from Table 1 that with few exceptions, e.g. the angles at N6, the bond distances and angles of the two complex cations within the asymmetric unit are very similar. However the cations differ in their configuration at the asymmetric centre C7, which is R at C7A (subunit A) and S at C7B (subunit B). The differing R and S configurations at C7A and C7B are, however, compatible with the formation of oag3− from non-chiral components in the manner suggested below (see supplementary Scheme).

Extensive hydrogen-bonding (Table 2 and Fig. 2) creates layers parallel to (010). Most of the values given in Table 2 correspond to hydrogen-bonds within the layer and once again demonstrate the similarity of the structural subunits. The most obvious and inevitable exceptions are when interlayer hydrogen bonds are considered (e.g. the marked differences for pairs of donor atoms such as N6A/N6B and O9A/O9B), because the layers occur centred on y = 1/8 and at intervals of 1/4 thereafter. Thus any one layer is related to any other layer with a different y coordinate by only one of the crystallographic symmetry elements of the space group P21/c. Further, for any one layer, while it is related to its immediate neighbour on one side by a crystallographic centre of symmetry, the relationship to the layer on the other side must be that of the c-glide plane, and the interlayer hydrogen-bonds must reflect this.

The new ligand, oag3−, is considered to be derived from two gaa molecules. Nakai et al. (1979) have reported that gaa in the presence of Ag2CO3 supported on Celite generates guanidine by the loss of a two-C-atom moiety, either hydroxyacetic acid, HOCH2CO2H, (III), or the oxidized species HC(O)CO2H, (IV). If (IV) is not directly formed it will be readily generated by oxidation of (III) by the Ag salt in air. In our reaction media, CuII is available to bring about the oxidation of (III) to (IV), which then permits the reaction with another molecule of gaa to provide the new ligand (see supplementary Scheme). There is partial and somewhat circumstantial evidence for this as follows. Consideration of the stoichiometry and charge balance of the formula, [Cu2(NO3)2(gaa)4] (de Miranda et al., 2002), of the overall neutral complex in green (I) now suggests that Cu is present there in the +1 oxidation state, because the gaa in this complex is once again present in its uncharged zwitterionic form and NO3 is the only anion present. This assumption would be consistant with both the involvement of Cu(II) ?in? the genesis of oag3− and the recovery of crystals of blue (II) in admixture with green (I) from our reaction mixtures.

Experimental top

To a solution of gaa (1.171 g, 10 mmol) in 50% aqueous ethanol (50 ml) were successively added, with stirring, nitric acid (0.1 mol L−1, until pH < 7), aspartic acid (1.331 g, 10 mmol) and copper nitrate trihydrate (2.462 g, 10 mmol). After stirring the solution for 1 h at 303 K, KOH solution (0.1 M) was slowly added until precipitation occurred. The mixture was filtered, and ethanol (25 ml) was added to the filtrate. On standing at room temperature, green crystals of (I) and blue crystals of (II) were slowly deposited from the solution. The two types of crystal were separated manually. The crystal used in the structure analysis reported here was obtained in essentially this manner, except that aspartic acid was absent from the reaction mixture.

Refinement top

Intensity data were taken over the full Ewald sphere. Only the monoclinic crystal system permitted solution and refinement of the structure, and this system was confirmed as appropriate by checkCIF. The maximum residual electron density was 0.85 Å from Cu2B. Anisotropic displacement parameters were refined for all non-H atoms. H atoms attached to C atoms were placed by geometric means with N—H distances of 0.99 and 1.00 Å for methylene (C2 and C5) and tertiary (C7) H atoms, respectively. H atoms attached to N and water O atoms were initially found in sensible, if approximate, positions by difference synthesis and thereafter idealized as follows. SHELXL97 AFIX 93 with N—H distances of 0.88 Å was used for H atoms of terminal NH2 groups (N2, N3 and N5). For the remaining H atoms, the coordinates were allowed to refine but with DFIX used to constrain the N—H distance in the case of secondary amine atoms N1 and N6 and SADI used to restrain the O—H distances for water O8, O9 and O10 atoms. For all H atoms, Ueq was set to 1.2Uiso of the non-H atom to which they are attached.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. Subunit A of (II), showing the labelling scheme (the suffix A has been deliberately suppressed), which applies equally to subunit B. Non-H atoms are shown as 50% probability ellipsoids and H atoms as spheres of arbitrary radii. Dashed lines represent hydrogen-bonds.
[Figure 2] Fig. 2. A portion of the layer at y = 1/8 in the structure of (II), viewed along b. Non-H atoms are shown as 50% probability ellipsoids and H atoms as spheres of arbitrary radii. H atoms other than those involved in hydrogen-bond (dashed lines) formation have been omitted for clarity, and only selected atoms are labelled.
aqua[µ-(N1-carboxatomethylguanidino)oxidoacetato](µ-guanidinoacetic acid)dicopper(II) nitrate dihydrate top
Crystal data top
[Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2OF(000) = 2224
Mr = 548.38Dx = 2.060 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17990 reflections
a = 15.2979 (2) Åθ = 2.9–27.5°
b = 13.0020 (2) ŵ = 2.49 mm1
c = 17.7821 (2) ÅT = 120 K
β = 90.0302 (7)°Block, blue
V = 3536.92 (8) Å30.20 × 0.15 × 0.15 mm
Z = 8
Data collection top
Enraf–Nonius KappaCCD area detector
diffractometer
7933 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode7112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1616
Tmin = 0.890, Tmax = 0.923l = 2322
33782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: geom and difmap
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0253P)2 + 6.7574P]
where P = (Fo2 + 2Fc2)/3
7933 reflections(Δ/σ)max = 0.001
589 parametersΔρmax = 0.93 e Å3
70 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2OV = 3536.92 (8) Å3
Mr = 548.38Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.2979 (2) ŵ = 2.49 mm1
b = 13.0020 (2) ÅT = 120 K
c = 17.7821 (2) Å0.20 × 0.15 × 0.15 mm
β = 90.0302 (7)°
Data collection top
Enraf–Nonius KappaCCD area detector
diffractometer
7933 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
7112 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.923Rint = 0.034
33782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03570 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.93 e Å3
7933 reflectionsΔρmin = 1.03 e Å3
589 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

'Linear' torsion angles excluded as per PLATON alerts O6A Cu1A O1A C1A −160.4 (11).. . . ? O5A Cu2A O3A C4A 11 (2).. . . ? O3A Cu2A O5A C7A −33 (2).. . . ? O3A Cu2A O5A Cu1A −174 (2).. . . ? O1A Cu1A O6A C8A 152.9 (12).. . . ? O6B Cu1B O1B C1B 143.0 (8).. . . ? N4B Cu2B O2B C1B 177.4 (5).. . . ? O5B Cu2B O3B C4B 67.9 (6).. . . ? O2B Cu2B N4B C6B −137.7 (5).. . . ? O2B Cu2B N4B C5B 33.2 (7).. . . ? O3B Cu2B O5B C7B −57.3 (6).. . . ? O3B Cu2B O5B Cu1B 102.4 (5).. . . ? O1B Cu1B O6B C8B −141.7 (8).. . . ?

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1A0.05930 (2)0.11693 (3)0.752151 (17)0.01536 (9)
Cu2A0.281021 (19)0.13660 (3)0.725787 (17)0.01147 (8)
O1A0.07892 (12)0.11793 (16)0.64516 (10)0.0165 (4)
O2A0.22518 (12)0.12728 (15)0.62867 (10)0.0160 (4)
C1A0.14767 (17)0.1216 (2)0.60633 (14)0.0123 (5)
C2A0.13754 (17)0.1180 (2)0.52184 (14)0.0139 (5)
H2A0.16740.05600.50220.017*
H2B0.16610.17910.49950.017*
N1A0.04651 (15)0.11578 (19)0.49930 (12)0.0145 (5)
H1A0.0056 (17)0.116 (2)0.5335 (15)0.017*
C3A0.02173 (17)0.1212 (2)0.42708 (15)0.0131 (5)
N2A0.08097 (15)0.12034 (18)0.37314 (12)0.0165 (5)
H2C0.06460.12400.32580.020*
H2D0.13680.11610.38450.020*
N3A0.06317 (15)0.12761 (19)0.41003 (13)0.0178 (5)
H3A0.07970.13130.36270.021*
H3B0.10250.12820.44610.021*
O3A0.38949 (12)0.16013 (15)0.66714 (10)0.0150 (4)
O4A0.53034 (12)0.20154 (15)0.68045 (10)0.0162 (4)
C4A0.45764 (16)0.1792 (2)0.70745 (14)0.0125 (5)
C5A0.44780 (16)0.1731 (2)0.79175 (14)0.0120 (5)
H5A0.46780.23830.81480.014*
H5B0.48450.11660.81160.014*
N4A0.35666 (13)0.15478 (17)0.81136 (12)0.0119 (4)
C6A0.33859 (17)0.1341 (2)0.88208 (14)0.0131 (5)
N5A0.39872 (15)0.1224 (2)0.93565 (13)0.0195 (5)
H5C0.45460.12850.92460.023*
H5D0.38260.10860.98210.023*
N6A0.25412 (15)0.1204 (2)0.90266 (13)0.0169 (5)
H6A0.243 (2)0.093 (2)0.9448 (13)0.020*
C7A0.18332 (17)0.1567 (2)0.85878 (14)0.0153 (5)
H7A0.18970.23290.85340.018*
O5A0.17853 (12)0.11357 (16)0.78587 (10)0.0183 (4)
C8A0.09691 (17)0.1352 (2)0.90000 (14)0.0131 (5)
O6A0.03145 (12)0.11898 (16)0.85721 (10)0.0166 (4)
O7A0.09329 (12)0.13644 (16)0.96943 (10)0.0171 (4)
O8A0.06155 (14)0.0942 (2)0.73082 (12)0.0323 (6)
H8A0.101 (2)0.097 (3)0.7617 (18)0.039*
H8B0.080 (3)0.100 (3)0.6889 (13)0.039*
O9A0.19234 (14)0.07847 (18)0.82914 (12)0.0216 (4)
H9A0.2351 (17)0.110 (2)0.815 (2)0.026*
H9B0.196 (2)0.0164 (13)0.828 (2)0.026*
O10A0.33526 (13)0.18678 (18)0.79699 (12)0.0224 (4)
H10A0.366 (2)0.173 (3)0.8322 (14)0.027*
H10B0.365 (2)0.179 (3)0.7602 (14)0.027*
N7A0.19460 (15)0.12538 (18)0.58010 (13)0.0151 (5)
O11A0.11330 (13)0.11475 (18)0.58923 (12)0.0237 (5)
O12A0.22390 (13)0.12553 (17)0.51362 (11)0.0212 (4)
O13A0.24369 (13)0.13639 (17)0.63444 (11)0.0233 (5)
Cu1B0.44259 (2)0.10281 (3)0.158105 (17)0.01188 (8)
Cu2B0.21784 (2)0.10287 (3)0.185284 (17)0.01411 (8)
O1B0.42322 (12)0.08951 (15)0.26515 (10)0.0146 (4)
O2B0.27720 (12)0.07245 (16)0.27968 (10)0.0161 (4)
C1B0.35418 (17)0.0851 (2)0.30315 (14)0.0123 (5)
C2B0.36256 (17)0.0919 (2)0.38792 (14)0.0133 (5)
H2E0.33070.15320.40610.016*
H2F0.33540.03040.41100.016*
N1B0.45365 (14)0.09845 (18)0.41137 (12)0.0127 (4)
H1E0.4948 (17)0.089 (2)0.3803 (15)0.015*
C3B0.47645 (17)0.11719 (19)0.48256 (14)0.0122 (5)
N2B0.41698 (15)0.12578 (18)0.53605 (12)0.0151 (5)
H2H0.36120.11910.52510.018*
H2G0.43320.13810.58270.018*
N3B0.56136 (14)0.12706 (18)0.49978 (13)0.0152 (5)
H3E0.57720.13920.54650.018*
H3F0.60120.12140.46440.018*
O3B0.10794 (13)0.12387 (17)0.24228 (11)0.0204 (4)
O4B0.03081 (12)0.17404 (17)0.22669 (11)0.0202 (4)
C4B0.04217 (17)0.1475 (2)0.20136 (15)0.0158 (5)
C5B0.05229 (16)0.1411 (2)0.11728 (14)0.0144 (5)
H5E0.01600.08430.09730.017*
H5F0.03220.20610.09390.017*
N4B0.14390 (14)0.12330 (18)0.09873 (12)0.0143 (5)
C6B0.16342 (17)0.1106 (2)0.02732 (15)0.0150 (5)
N5B0.10531 (15)0.1121 (2)0.02805 (13)0.0212 (5)
H5G0.04960.12200.01800.025*
H5H0.12240.10310.07480.025*
N6B0.24958 (15)0.0907 (2)0.00950 (13)0.0176 (5)
H6E0.259 (2)0.093 (3)0.0388 (11)0.021*
C7B0.31600 (17)0.1431 (2)0.05323 (15)0.0160 (5)
H7E0.30010.21760.05600.019*
O5B0.32330 (12)0.10532 (15)0.12704 (10)0.0140 (4)
C8B0.40400 (17)0.1338 (2)0.01189 (15)0.0133 (5)
O6B0.47061 (12)0.12367 (15)0.05441 (10)0.0157 (4)
O7B0.40668 (12)0.14207 (16)0.05733 (10)0.0179 (4)
O8B0.56199 (12)0.05998 (17)0.17714 (11)0.0183 (4)
H8E0.5981 (18)0.084 (3)0.1489 (16)0.022*
H8F0.582 (2)0.068 (3)0.2189 (11)0.022*
O9B0.67393 (13)0.15798 (17)0.08668 (11)0.0198 (4)
H9E0.7241 (13)0.144 (3)0.096 (2)0.024*
H9F0.659 (2)0.2163 (16)0.096 (2)0.024*
O10B0.84133 (13)0.12883 (19)0.11875 (12)0.0236 (5)
H10E0.866 (2)0.127 (3)0.0788 (13)0.028*
H10F0.874 (2)0.151 (3)0.1509 (16)0.028*
N7B0.69272 (15)0.09694 (18)0.33043 (13)0.0170 (5)
O11B0.61249 (12)0.07797 (18)0.32025 (11)0.0227 (5)
O12B0.72013 (14)0.10693 (17)0.39659 (11)0.0224 (4)
O13B0.74235 (13)0.10689 (18)0.27619 (12)0.0254 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.00671 (15)0.0320 (2)0.00733 (15)0.00272 (13)0.00061 (12)0.00102 (12)
Cu2A0.00653 (15)0.02092 (17)0.00696 (15)0.00039 (12)0.00065 (11)0.00006 (12)
O1A0.0105 (9)0.0294 (11)0.0096 (9)0.0005 (8)0.0002 (7)0.0020 (8)
O2A0.0084 (9)0.0287 (11)0.0109 (9)0.0004 (8)0.0011 (7)0.0008 (8)
C1A0.0122 (12)0.0152 (13)0.0096 (12)0.0010 (10)0.0014 (10)0.0001 (9)
C2A0.0094 (12)0.0224 (14)0.0101 (12)0.0000 (10)0.0004 (10)0.0003 (10)
N1A0.0080 (10)0.0276 (13)0.0080 (10)0.0002 (9)0.0005 (8)0.0007 (9)
C3A0.0132 (12)0.0126 (12)0.0134 (12)0.0001 (10)0.0017 (10)0.0003 (9)
N2A0.0154 (11)0.0264 (13)0.0076 (10)0.0000 (9)0.0028 (9)0.0006 (9)
N3A0.0121 (11)0.0315 (14)0.0099 (11)0.0007 (10)0.0042 (9)0.0009 (9)
O3A0.0094 (9)0.0257 (10)0.0098 (8)0.0020 (8)0.0012 (7)0.0007 (7)
O4A0.0095 (8)0.0261 (11)0.0129 (9)0.0039 (8)0.0018 (7)0.0016 (8)
C4A0.0112 (12)0.0138 (12)0.0123 (12)0.0003 (10)0.0016 (10)0.0004 (9)
C5A0.0076 (11)0.0179 (13)0.0103 (12)0.0027 (10)0.0004 (9)0.0002 (10)
N4A0.0058 (10)0.0193 (11)0.0105 (10)0.0000 (8)0.0004 (8)0.0008 (8)
C6A0.0097 (12)0.0196 (13)0.0100 (12)0.0015 (10)0.0014 (10)0.0023 (10)
N5A0.0099 (11)0.0397 (15)0.0090 (11)0.0017 (10)0.0020 (9)0.0018 (10)
N6A0.0092 (10)0.0322 (14)0.0093 (11)0.0014 (9)0.0010 (9)0.0044 (9)
C7A0.0100 (12)0.0259 (15)0.0101 (12)0.0003 (10)0.0017 (10)0.0022 (10)
O5A0.0102 (9)0.0361 (12)0.0085 (9)0.0013 (8)0.0003 (7)0.0043 (8)
C8A0.0088 (12)0.0189 (13)0.0116 (12)0.0016 (10)0.0003 (10)0.0004 (10)
O6A0.0075 (9)0.0310 (11)0.0113 (9)0.0027 (8)0.0002 (7)0.0017 (8)
O7A0.0119 (9)0.0315 (11)0.0081 (9)0.0004 (8)0.0007 (7)0.0006 (8)
O8A0.0097 (10)0.0771 (19)0.0102 (10)0.0078 (11)0.0012 (8)0.0011 (11)
O9A0.0165 (10)0.0282 (11)0.0202 (10)0.0036 (9)0.0002 (8)0.0017 (9)
O10A0.0141 (10)0.0365 (13)0.0166 (10)0.0008 (9)0.0014 (8)0.0038 (9)
N7A0.0125 (11)0.0185 (12)0.0142 (11)0.0016 (9)0.0020 (9)0.0013 (9)
O11A0.0094 (9)0.0446 (13)0.0170 (10)0.0046 (9)0.0019 (8)0.0027 (9)
O12A0.0164 (10)0.0353 (12)0.0120 (9)0.0041 (9)0.0047 (8)0.0013 (8)
O13A0.0166 (10)0.0376 (13)0.0157 (10)0.0029 (9)0.0047 (8)0.0019 (9)
Cu1B0.00708 (15)0.02091 (18)0.00765 (15)0.00005 (12)0.00000 (12)0.00013 (12)
Cu2B0.00705 (15)0.02764 (19)0.00762 (15)0.00080 (13)0.00041 (12)0.00048 (12)
O1B0.0091 (8)0.0247 (10)0.0100 (9)0.0007 (7)0.0007 (7)0.0006 (7)
O2B0.0097 (9)0.0270 (11)0.0115 (9)0.0034 (8)0.0018 (7)0.0020 (8)
C1B0.0146 (12)0.0126 (12)0.0096 (12)0.0019 (10)0.0000 (10)0.0013 (9)
C2B0.0091 (12)0.0214 (14)0.0093 (12)0.0024 (10)0.0014 (10)0.0009 (10)
N1B0.0067 (10)0.0232 (12)0.0083 (10)0.0003 (9)0.0003 (8)0.0002 (8)
C3B0.0151 (13)0.0107 (12)0.0109 (12)0.0001 (10)0.0002 (10)0.0006 (9)
N2B0.0134 (11)0.0237 (12)0.0081 (10)0.0000 (9)0.0005 (9)0.0030 (9)
N3B0.0105 (10)0.0247 (12)0.0104 (10)0.0015 (9)0.0008 (9)0.0021 (9)
O3B0.0118 (9)0.0377 (12)0.0116 (9)0.0044 (8)0.0010 (8)0.0015 (8)
O4B0.0105 (9)0.0369 (12)0.0132 (9)0.0044 (8)0.0045 (7)0.0035 (8)
C4B0.0112 (12)0.0235 (14)0.0126 (12)0.0018 (11)0.0013 (10)0.0024 (10)
C5B0.0065 (11)0.0254 (14)0.0114 (12)0.0025 (10)0.0014 (10)0.0030 (10)
N4B0.0065 (10)0.0254 (12)0.0110 (10)0.0025 (9)0.0019 (8)0.0014 (9)
C6B0.0109 (12)0.0229 (14)0.0111 (12)0.0012 (10)0.0009 (10)0.0020 (10)
N5B0.0102 (11)0.0432 (16)0.0101 (11)0.0018 (10)0.0013 (9)0.0011 (10)
N6B0.0094 (11)0.0324 (14)0.0111 (11)0.0015 (9)0.0009 (9)0.0010 (10)
C7B0.0113 (12)0.0258 (15)0.0109 (12)0.0001 (11)0.0005 (10)0.0021 (10)
O5B0.0093 (9)0.0247 (10)0.0079 (8)0.0000 (7)0.0007 (7)0.0001 (7)
C8B0.0096 (12)0.0178 (13)0.0126 (12)0.0005 (10)0.0006 (10)0.0008 (10)
O6B0.0092 (9)0.0273 (11)0.0105 (9)0.0003 (7)0.0008 (7)0.0007 (7)
O7B0.0135 (9)0.0310 (11)0.0091 (9)0.0000 (8)0.0015 (7)0.0010 (8)
O8B0.0112 (9)0.0330 (12)0.0107 (9)0.0013 (8)0.0001 (7)0.0007 (8)
O9B0.0147 (10)0.0265 (11)0.0182 (10)0.0031 (9)0.0021 (8)0.0016 (8)
O10B0.0130 (10)0.0426 (14)0.0153 (10)0.0018 (9)0.0001 (8)0.0032 (9)
N7B0.0133 (11)0.0231 (13)0.0148 (11)0.0014 (9)0.0011 (9)0.0009 (9)
O11B0.0090 (9)0.0438 (13)0.0154 (10)0.0014 (9)0.0019 (8)0.0017 (9)
O12B0.0180 (10)0.0364 (12)0.0127 (10)0.0017 (9)0.0040 (8)0.0023 (8)
O13B0.0161 (10)0.0424 (14)0.0178 (10)0.0039 (9)0.0059 (8)0.0047 (9)
Geometric parameters (Å, º) top
Cu1A—O8A1.911 (2)Cu1B—O5B1.9066 (18)
Cu1A—O6A1.9161 (19)Cu1B—O6B1.9126 (18)
Cu1A—O5A1.9207 (19)Cu1B—O1B1.9344 (18)
Cu1A—O1A1.9259 (19)Cu1B—O8B1.939 (2)
Cu2A—O5A1.920 (2)Cu2B—O5B1.9179 (18)
Cu2A—N4A1.927 (2)Cu2B—N4B1.928 (2)
Cu2A—O2A1.9308 (18)Cu2B—O2B1.9486 (18)
Cu2A—O3A1.9832 (19)Cu2B—O3B1.9825 (19)
O1A—C1A1.259 (3)O1B—C1B1.255 (3)
O2A—C1A1.253 (3)O2B—C1B1.260 (3)
C1A—C2A1.511 (3)C1B—C2B1.515 (3)
C2A—N1A1.450 (3)C2B—N1B1.457 (3)
C2A—H2A0.9900C2B—H2E0.9900
C2A—H2B0.9900C2B—H2F0.9900
N1A—C3A1.341 (3)N1B—C3B1.335 (3)
N1A—H1A0.872 (18)N1B—H1E0.847 (18)
C3A—N2A1.319 (4)C3B—N2B1.321 (3)
C3A—N3A1.337 (3)C3B—N3B1.341 (3)
N2A—H2C0.8800N2B—H2H0.8800
N2A—H2D0.8800N2B—H2G0.8800
N3A—H3A0.8800N3B—H3E0.8800
N3A—H3B0.8800N3B—H3F0.8800
O3A—C4A1.290 (3)O3B—C4B1.279 (3)
O4A—C4A1.245 (3)O4B—C4B1.253 (3)
C4A—C5A1.509 (3)C4B—C5B1.505 (4)
C5A—N4A1.457 (3)C5B—N4B1.458 (3)
C5A—H5A0.9900C5B—H5E0.9900
C5A—H5B0.9900C5B—H5F0.9900
N4A—C6A1.315 (3)N4B—C6B1.315 (3)
C6A—N5A1.333 (3)C6B—N5B1.326 (4)
C6A—N6A1.355 (3)C6B—N6B1.380 (3)
N5A—H5C0.8800N5B—H5G0.8800
N5A—H5D0.8800N5B—H5H0.8800
N6A—C7A1.416 (3)N6B—C7B1.449 (4)
N6A—H6A0.849 (18)N6B—H6E0.872 (18)
C7A—O5A1.414 (3)C7B—O5B1.406 (3)
C7A—C8A1.537 (4)C7B—C8B1.539 (3)
C7A—H7A1.0000C7B—H7E1.0000
C8A—O7A1.236 (3)C8B—O7B1.236 (3)
C8A—O6A1.276 (3)C8B—O6B1.275 (3)
O8A—H8A0.812 (17)O8B—H8E0.809 (17)
O8A—H8B0.800 (17)O8B—H8F0.809 (17)
O9A—H9A0.815 (17)O9B—H9E0.807 (17)
O9A—H9B0.810 (17)O9B—H9F0.808 (17)
O10A—H10A0.801 (17)O10B—H10E0.804 (17)
O10A—H10B0.801 (17)O10B—H10F0.808 (17)
N7A—O13A1.232 (3)N7B—O13B1.235 (3)
N7A—O11A1.262 (3)N7B—O12B1.255 (3)
N7A—O12A1.264 (3)N7B—O11B1.265 (3)
O8A—Cu1A—O6A88.91 (9)O5B—Cu1B—O6B86.17 (8)
O8A—Cu1A—O5A167.85 (11)O5B—Cu1B—O1B98.03 (8)
O6A—Cu1A—O5A84.65 (8)O6B—Cu1B—O1B174.81 (8)
O8A—Cu1A—O1A87.43 (9)O5B—Cu1B—O8B163.10 (9)
O6A—Cu1A—O1A175.94 (8)O6B—Cu1B—O8B89.85 (8)
O5A—Cu1A—O1A99.27 (8)O1B—Cu1B—O8B86.98 (8)
O5A—Cu2A—N4A94.03 (8)O5B—Cu2B—N4B93.44 (8)
O5A—Cu2A—O2A97.26 (8)O5B—Cu2B—O2B94.40 (8)
N4A—Cu2A—O2A168.59 (9)N4B—Cu2B—O2B171.34 (8)
O5A—Cu2A—O3A177.90 (7)O5B—Cu2B—O3B170.99 (9)
N4A—Cu2A—O3A83.90 (8)N4B—Cu2B—O3B83.79 (9)
O2A—Cu2A—O3A84.83 (8)O2B—Cu2B—O3B89.00 (8)
C1A—O1A—Cu1A132.21 (17)C1B—O1B—Cu1B131.53 (17)
C1A—O2A—Cu2A134.95 (18)C1B—O2B—Cu2B133.93 (17)
O2A—C1A—O1A128.2 (2)O1B—C1B—O2B127.9 (2)
O2A—C1A—C2A114.5 (2)O1B—C1B—C2B117.5 (2)
O1A—C1A—C2A117.3 (2)O2B—C1B—C2B114.6 (2)
N1A—C2A—C1A112.0 (2)N1B—C2B—C1B111.6 (2)
N1A—C2A—H2A109.2N1B—C2B—H2E109.3
C1A—C2A—H2A109.2C1B—C2B—H2E109.3
N1A—C2A—H2B109.2N1B—C2B—H2F109.3
C1A—C2A—H2B109.2C1B—C2B—H2F109.3
H2A—C2A—H2B107.9H2E—C2B—H2F108.0
C3A—N1A—C2A122.4 (2)C3B—N1B—C2B122.1 (2)
C3A—N1A—H1A118 (2)C3B—N1B—H1E117 (2)
C2A—N1A—H1A120 (2)C2B—N1B—H1E121 (2)
N2A—C3A—N3A120.2 (2)N2B—C3B—N1B121.2 (2)
N2A—C3A—N1A120.1 (2)N2B—C3B—N3B119.7 (2)
N3A—C3A—N1A119.7 (3)N1B—C3B—N3B119.1 (2)
C3A—N2A—H2C120.0C3B—N2B—H2H120.0
C3A—N2A—H2D120.0C3B—N2B—H2G120.0
H2C—N2A—H2D120.0H2H—N2B—H2G120.0
C3A—N3A—H3A120.0C3B—N3B—H3E120.0
C3A—N3A—H3B120.0C3B—N3B—H3F120.0
H3A—N3A—H3B120.0H3E—N3B—H3F120.0
C4A—O3A—Cu2A114.45 (16)C4B—O3B—Cu2B114.16 (17)
O4A—C4A—O3A123.5 (2)O4B—C4B—O3B124.2 (2)
O4A—C4A—C5A118.9 (2)O4B—C4B—C5B117.7 (2)
O3A—C4A—C5A117.5 (2)O3B—C4B—C5B118.1 (2)
N4A—C5A—C4A110.0 (2)N4B—C5B—C4B109.4 (2)
N4A—C5A—H5A109.7N4B—C5B—H5E109.8
C4A—C5A—H5A109.7C4B—C5B—H5E109.8
N4A—C5A—H5B109.7N4B—C5B—H5F109.8
C4A—C5A—H5B109.7C4B—C5B—H5F109.8
H5A—C5A—H5B108.2H5E—C5B—H5F108.2
C6A—N4A—C5A117.6 (2)C6B—N4B—C5B117.2 (2)
C6A—N4A—Cu2A127.16 (18)C6B—N4B—Cu2B128.33 (19)
C5A—N4A—Cu2A113.96 (16)C5B—N4B—Cu2B113.88 (16)
N4A—C6A—N5A124.2 (2)N4B—C6B—N5B124.2 (2)
N4A—C6A—N6A119.0 (2)N4B—C6B—N6B117.6 (2)
N5A—C6A—N6A116.8 (2)N5B—C6B—N6B118.2 (2)
C6A—N5A—H5C120.0C6B—N5B—H5G120.0
C6A—N5A—H5D120.0C6B—N5B—H5H120.0
H5C—N5A—H5D120.0H5G—N5B—H5H120.0
C6A—N6A—C7A122.5 (2)C6B—N6B—C7B117.2 (2)
C6A—N6A—H6A120 (2)C6B—N6B—H6E112 (2)
C7A—N6A—H6A118 (2)C7B—N6B—H6E113 (2)
O5A—C7A—N6A114.4 (2)O5B—C7B—N6B113.1 (2)
O5A—C7A—C8A108.7 (2)O5B—C7B—C8B110.5 (2)
N6A—C7A—C8A109.6 (2)N6B—C7B—C8B108.7 (2)
O5A—C7A—H7A108.0O5B—C7B—H7E108.2
N6A—C7A—H7A108.0N6B—C7B—H7E108.2
C8A—C7A—H7A108.0C8B—C7B—H7E108.2
C7A—O5A—Cu2A113.92 (15)C7B—O5B—Cu1B110.62 (15)
C7A—O5A—Cu1A109.08 (15)C7B—O5B—Cu2B116.33 (15)
Cu2A—O5A—Cu1A126.72 (10)Cu1B—O5B—Cu2B130.43 (10)
O7A—C8A—O6A124.3 (2)O7B—C8B—O6B124.9 (2)
O7A—C8A—C7A120.8 (2)O7B—C8B—C7B119.9 (2)
O6A—C8A—C7A114.9 (2)O6B—C8B—C7B115.1 (2)
C8A—O6A—Cu1A114.18 (17)C8B—O6B—Cu1B114.00 (16)
Cu1A—O8A—H8A125 (3)Cu1B—O8B—H8E115 (2)
Cu1A—O8A—H8B121 (3)Cu1B—O8B—H8F118 (2)
H8A—O8A—H8B112 (4)H8E—O8B—H8F105 (3)
H9A—O9A—H9B117 (4)H9E—O9B—H9F116 (4)
H10A—O10A—H10B106 (4)H10E—O10B—H10F111 (4)
O13A—N7A—O11A120.8 (2)O13B—N7B—O12B121.1 (2)
O13A—N7A—O12A121.1 (2)O13B—N7B—O11B120.4 (2)
O11A—N7A—O12A118.1 (2)O12B—N7B—O11B118.6 (2)
O8A—Cu1A—O1A—C1A173.7 (3)O5A—Cu1A—O6A—C8A11.48 (19)
O5A—Cu1A—O1A—C1A3.8 (3)O5B—Cu1B—O1B—C1B0.8 (2)
O5A—Cu2A—O2A—C1A8.3 (3)O8B—Cu1B—O1B—C1B164.6 (2)
N4A—Cu2A—O2A—C1A163.1 (4)O5B—Cu2B—O2B—C1B22.6 (3)
O3A—Cu2A—O2A—C1A171.9 (3)O3B—Cu2B—O2B—C1B149.0 (3)
Cu2A—O2A—C1A—O1A1.8 (5)Cu1B—O1B—C1B—O2B12.1 (4)
Cu2A—O2A—C1A—C2A178.70 (18)Cu1B—O1B—C1B—C2B170.36 (18)
Cu1A—O1A—C1A—O2A1.1 (4)Cu2B—O2B—C1B—O1B26.9 (4)
Cu1A—O1A—C1A—C2A178.33 (18)Cu2B—O2B—C1B—C2B155.50 (19)
O2A—C1A—C2A—N1A177.6 (2)O1B—C1B—C2B—N1B2.3 (3)
O1A—C1A—C2A—N1A2.8 (3)O2B—C1B—C2B—N1B175.6 (2)
C1A—C2A—N1A—C3A174.3 (2)C1B—C2B—N1B—C3B171.9 (2)
C2A—N1A—C3A—N2A5.6 (4)C2B—N1B—C3B—N2B3.3 (4)
C2A—N1A—C3A—N3A174.3 (2)C2B—N1B—C3B—N3B176.9 (2)
N4A—Cu2A—O3A—C4A2.02 (18)N4B—Cu2B—O3B—C4B4.6 (2)
O2A—Cu2A—O3A—C4A176.24 (19)O2B—Cu2B—O3B—C4B179.8 (2)
Cu2A—O3A—C4A—O4A175.9 (2)Cu2B—O3B—C4B—O4B172.4 (2)
Cu2A—O3A—C4A—C5A4.6 (3)Cu2B—O3B—C4B—C5B8.7 (3)
O4A—C4A—C5A—N4A175.2 (2)O4B—C4B—C5B—N4B172.2 (2)
O3A—C4A—C5A—N4A5.2 (3)O3B—C4B—C5B—N4B8.9 (4)
C4A—C5A—N4A—C6A171.3 (2)C4B—C5B—N4B—C6B176.7 (2)
C4A—C5A—N4A—Cu2A3.4 (3)C4B—C5B—N4B—Cu2B4.8 (3)
O5A—Cu2A—N4A—C6A12.1 (2)O5B—Cu2B—N4B—C6B17.2 (3)
O2A—Cu2A—N4A—C6A176.4 (4)O3B—Cu2B—N4B—C6B171.4 (3)
O3A—Cu2A—N4A—C6A167.6 (2)O5B—Cu2B—N4B—C5B172.01 (19)
O5A—Cu2A—N4A—C5A178.67 (18)O3B—Cu2B—N4B—C5B0.61 (19)
O2A—Cu2A—N4A—C5A9.8 (6)C5B—N4B—C6B—N5B0.7 (4)
O3A—Cu2A—N4A—C5A1.00 (18)Cu2B—N4B—C6B—N5B169.8 (2)
C5A—N4A—C6A—N5A4.5 (4)C5B—N4B—C6B—N6B178.1 (2)
Cu2A—N4A—C6A—N5A161.7 (2)Cu2B—N4B—C6B—N6B7.6 (4)
C5A—N4A—C6A—N6A177.6 (2)N4B—C6B—N6B—C7B37.0 (4)
Cu2A—N4A—C6A—N6A16.2 (4)N5B—C6B—N6B—C7B145.4 (3)
N4A—C6A—N6A—C7A19.5 (4)C6B—N6B—C7B—O5B72.0 (3)
N5A—C6A—N6A—C7A162.4 (3)C6B—N6B—C7B—C8B165.0 (2)
C6A—N6A—C7A—O5A61.4 (4)N6B—C7B—O5B—Cu1B142.17 (18)
C6A—N6A—C7A—C8A176.3 (2)C8B—C7B—O5B—Cu1B20.1 (3)
N6A—C7A—O5A—Cu2A58.6 (3)N6B—C7B—O5B—Cu2B54.3 (3)
C8A—C7A—O5A—Cu2A178.60 (16)C8B—C7B—O5B—Cu2B176.30 (16)
N6A—C7A—O5A—Cu1A153.65 (19)O6B—Cu1B—O5B—C7B13.41 (18)
C8A—C7A—O5A—Cu1A30.9 (2)O1B—Cu1B—O5B—C7B163.52 (17)
N4A—Cu2A—O5A—C7A24.08 (19)O8B—Cu1B—O5B—C7B90.2 (3)
O2A—Cu2A—O5A—C7A154.24 (18)O6B—Cu1B—O5B—Cu2B173.98 (14)
N4A—Cu2A—O5A—Cu1A165.07 (14)O1B—Cu1B—O5B—Cu2B2.96 (15)
O2A—Cu2A—O5A—Cu1A13.25 (15)O8B—Cu1B—O5B—Cu2B109.3 (3)
O8A—Cu1A—O5A—C7A82.6 (5)N4B—Cu2B—O5B—C7B14.44 (19)
O6A—Cu1A—O5A—C7A24.36 (18)O2B—Cu2B—O5B—C7B169.24 (19)
O1A—Cu1A—O5A—C7A154.53 (17)N4B—Cu2B—O5B—Cu1B174.11 (14)
O8A—Cu1A—O5A—Cu2A134.9 (4)O2B—Cu2B—O5B—Cu1B9.58 (14)
O6A—Cu1A—O5A—Cu2A166.86 (14)O5B—C7B—C8B—O7B164.6 (2)
O1A—Cu1A—O5A—Cu2A12.03 (15)N6B—C7B—C8B—O7B40.0 (3)
O5A—C7A—C8A—O7A158.0 (2)O5B—C7B—C8B—O6B19.3 (3)
N6A—C7A—C8A—O7A32.3 (4)N6B—C7B—C8B—O6B143.9 (2)
O5A—C7A—C8A—O6A23.4 (3)O7B—C8B—O6B—Cu1B175.6 (2)
N6A—C7A—C8A—O6A149.1 (2)C7B—C8B—O6B—Cu1B8.5 (3)
O7A—C8A—O6A—Cu1A177.8 (2)O5B—Cu1B—O6B—C8B2.47 (19)
C7A—C8A—O6A—Cu1A3.7 (3)O8B—Cu1B—O6B—C8B166.03 (19)
O8A—Cu1A—O6A—C8A178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11A0.87 (2)2.07 (2)2.921 (3)164 (3)
N1B—H1E···O11B0.85 (2)2.10 (2)2.933 (3)169 (3)
N2A—H2C···O4B0.881.952.804 (3)164
N2A—H2D···O12Bi0.882.203.076 (3)172
N2B—H2G···O4Aii0.882.002.866 (3)166
N2B—H2H···O12A0.882.112.980 (3)169
N3A—H3A···O3B0.882.193.061 (3)172
N3A—H3B···O12A0.882.213.072 (3)166
N3B—H3E···O3Aii0.882.223.099 (3)176
N3B—H3F···O12B0.882.193.056 (3)168
N5A—H5C···O7Biii0.882.152.991 (3)159
N5A—H5D···O9Biii0.882.152.942 (3)150
N5B—H5G···O7Aiv0.882.213.055 (3)162
N5B—H5H···O9Aiv0.882.042.901 (3)166
N6A—H6A···N6Bv0.85 (2)2.52 (3)3.158 (4)132 (3)
N6B—H6E···O9Aiv0.87 (2)2.57 (2)3.328 (3)146 (3)
O8A—H8A···O9A0.81 (2)1.86 (2)2.664 (3)170 (4)
O8A—H8B···O11A0.80 (2)1.86 (2)2.653 (3)175 (4)
O8B—H8E···O9B0.81 (2)1.87 (2)2.673 (3)172 (4)
O8B—H8F···O11B0.81 (2)1.87 (2)2.669 (3)172 (3)
O9A—H9A···O10A0.82 (2)1.85 (2)2.663 (3)172 (4)
O9A—H9B···O10Bvi0.81 (2)2.19 (2)2.896 (3)146 (3)
O9A—H9B···O13Bvi0.81 (2)2.63 (3)3.212 (3)131 (3)
O9B—H9E···O10B0.81 (2)1.85 (2)2.651 (3)173 (4)
O9B—H9F···O3Avii0.81 (2)2.18 (2)2.930 (3)155 (3)
O10A—H10A···O7Bviii0.80 (2)2.10 (2)2.870 (3)161 (4)
O10A—H10B···O4Aii0.80 (2)2.16 (2)2.926 (3)160 (4)
O10B—H10E···O7Aix0.80 (2)2.05 (2)2.840 (3)169 (4)
O10B—H10F···O4Bii0.81 (2)2.01 (2)2.802 (3)166 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y, z+1; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1/2, z1/2; (viii) x, y, z+1; (ix) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2O
Mr548.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.2979 (2), 13.0020 (2), 17.7821 (2)
β (°) 90.0302 (7)
V3)3536.92 (8)
Z8
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerEnraf–Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.890, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
33782, 7933, 7112
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.14
No. of reflections7933
No. of parameters589
No. of restraints70
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 1.03

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11A0.872 (18)2.07 (2)2.921 (3)164 (3)
N1B—H1E···O11B0.847 (18)2.098 (19)2.933 (3)169 (3)
N2A—H2C···O4B0.881.952.804 (3)164
N2A—H2D···O12Bi0.882.203.076 (3)172
N2B—H2G···O4Aii0.882.002.866 (3)166
N2B—H2H···O12A0.882.112.980 (3)169
N3A—H3A···O3B0.882.193.061 (3)172
N3A—H3B···O12A0.882.213.072 (3)166
N3B—H3E···O3Aii0.882.223.099 (3)176
N3B—H3F···O12B0.882.193.056 (3)168
N5A—H5C···O7Biii0.882.152.991 (3)159
N5A—H5D···O9Biii0.882.152.942 (3)150
N5B—H5G···O7Aiv0.882.213.055 (3)162
N5B—H5H···O9Aiv0.882.042.901 (3)166
N6A—H6A···N6Bv0.849 (18)2.52 (3)3.158 (4)132 (3)
N6B—H6E···O9Aiv0.872 (18)2.57 (2)3.328 (3)146 (3)
O8A—H8A···O9A0.812 (17)1.861 (19)2.664 (3)170 (4)
O8A—H8B···O11A0.800 (17)1.855 (18)2.653 (3)175 (4)
O8B—H8E···O9B0.809 (17)1.871 (18)2.673 (3)172 (4)
O8B—H8F···O11B0.809 (17)1.867 (17)2.669 (3)172 (3)
O9A—H9A···O10A0.815 (17)1.854 (18)2.663 (3)172 (4)
O9A—H9B···O10Bvi0.810 (17)2.19 (2)2.896 (3)146 (3)
O9A—H9B···O13Bvi0.810 (17)2.63 (3)3.212 (3)131 (3)
O9B—H9E···O10B0.807 (17)1.848 (18)2.651 (3)173 (4)
O9B—H9F···O3Avii0.808 (17)2.18 (2)2.930 (3)155 (3)
O10A—H10A···O7Bviii0.801 (17)2.10 (2)2.870 (3)161 (4)
O10A—H10B···O4Aii0.801 (17)2.16 (2)2.926 (3)160 (4)
O10B—H10E···O7Aix0.804 (17)2.047 (18)2.840 (3)169 (4)
O10B—H10F···O4Bii0.808 (17)2.011 (19)2.802 (3)166 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y, z+1; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1/2, z1/2; (viii) x, y, z+1; (ix) x+1, y, z1.
Table 1. Bond lengths and angles (Å, °) in cations A and B of (II) top
cation Acation B
Cu1—O11.9259 (19)1.9344 (18)
Cu1—O51.9207 (19)1.9066 (18)
Cu1—O61.9161 (19)1.9126 (18)
Cu1—O81.911 (2)1.939 (2)
Cu2—O21.9308 (18)1.9486 (18)
Cu2—O31.9832 (19)1.9825 (19)
Cu2—O51.920 (2)1.9179 (18)
Cu2—N41.927 (2)1.928 (2)
O1—C11.259 (3)1.255 (3)
O2—C11.253 (3)1.260 (3)
C1—C21.511 (3)1.515 (3)
C2—N11.450 (3)1.457 (3)
N1—C31.341 (3)1.335 (3)
C3—N21.319 (4)1.321 (3)
C3—N31.337 (3)1.341 (3)
O3—C41.290 (3)1.279 (3)
O4—C41.245 (3)1.253 (3)
C4—C51.509 (3)1.505 (4)
C5—N41.457 (3)1.458 (3)
N4—C61.315 (3)1.315 (3)
C6—N51.333 (3)1.326 (4)
C6—N61.355 (3)1.380 (3)
N6—C71.416 (3)1.449 (4)
C7—O51.414 (3)1.406 (3)
C7—C81.537 (4)1.539 (3)
C8—O61.276 (3)1.275 (3)
C8—O71.236 (3)1.236 (3)
O1—Cu1—O599.27 (8)98.03 (8)
O1—Cu1—O6175.94 (8)174.81 (8)
O1—Cu1—O887.43 (9)86.98 (8)
O5—Cu1—O684.65 (8)86.17 (8)
O5—Cu1—O8167.85 (11)163.10 (9)
O6—Cu1—O888.91 (9)89.85 (8)
O2—Cu2—O384.83 (8)89.00 (8)
O2—Cu2—O597.26 (8)94.40 (8)
O2—Cu2—N4168.59 (9)171.34 (8)
O3—Cu2—O5177.90 (7)170.99 (9)
O3—Cu2—N483.90 (8)83.79 (9)
O5—Cu2—N494.03 (8)93.44 (8)
C1—O1—Cu1132.21 (17)131.53 (17)
C1—O2—Cu2134.95 (18)133.93 (17)
O1—C1—O2128.2 (2)127.9 (2)
O1—C1—C2117.3 (2)117.5 (2)
O2—C1—C2114.5 (2)114.6 (2)
C1—C2—N1112.0 (2)111.6 (2)
C2—N1—C3122.4 (2)122.1 (2)
N1—C3—N2120.1 (2)121.2 (2)
N1—C3—N3119.7 (3)119.1 (2)
N2—C3—N3120.2 (2)119.7 (2)
C4—O3—Cu2114.45 (16)114.16 (17)
O3—C4—O4123.5 (2)124.2 (2)
O3—C4—C5117.5 (2)118.1 (2)
O4—C4—C5118.9 (2)117.7 (2)
C4—C5—N4110.0 (2)109.4 (2)
C5—N4—C6117.6 (2)117.2 (2)
C5—N4—Cu2113.96 (16)113.88 (16)
C6—N4—Cu2127.16 (18)128.33 (19)
N4—C6—N5124.2 (2)124.2 (2)
N4—C6—N6119.0 (2)117.6 (2)
N5—C6—N6116.8 (2)118.2 (2)
C6—N6—C7122.5 (2)117.2 (2)
N6—C7—O5114.4 (2)113.1 (2)
N6—C7—C8109.6 (2)108.7 (2)
O5—C7—C8108.7 (2)110.5 (2)
C7—O5—Cu1109.08 (15)110.62 (15)
C7—O5—Cu2113.92 (15)116.33 (15)
Cu1—O5—Cu2126.72 (10)130.43 (10)
C7—C8—O6114.9 (2)115.1 (2)
C7—C8—O7120.8 (2)119.9 (2)
O6—C8—O7124.3 (2)124.9 (2)
C8—O6—Cu1114.18 (17)114.00 (16)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds