Download citation
Download citation
link to html
The title compound, (3R,4S,8R,9S)-cinchoninium (2R,3R)-tartrate tetrahydrate, C19H23N2O+·C4H5O6-·4H2O, is a hydrated salt of cinchonine. In the cinchoninium cation, the geometry around the quinuclidinic N atom is typical of a protonated N atom, and the bond lengths and angles in the tartrate moiety clearly indicate the mono-ionized form. The relative orientation of the quinoline and quinuclidine systems is that most frequently observed in structures of cinchona salts and corresponds to one of the energy minima calculated for this type of mol­ecule in the gas phase. An extended network of intermolecular hydrogen bonds spreads parallel to the bc plane separating apolar layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016365/tr1000sup1.cif
Contains datablocks text, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016365/tr1000Isup2.hkl
Contains datablock I

CCDC reference: 179281

Comment top

Compounds containing heterocyclic nitrogen systems are very important to mankind as they are often associated with substances that show physiological activity. In particular, naturally occurring alkaloids of the cinchona group have for a long time been used as antimalarial, antibacterial and cardioactive agents (Verpoorte et al., 1988; Carroll et al., 1991; Karle & Karle, 1992; Oleksyn & Serda, 1993; Chiou, et al., 1996). Many factors can influence the biological activity of these substances and the action mechanism is still not completely understood. In particular, the activity seems to be strongly correlated with the stereochemistry of the adjacent C8 and C9 chiral centres and 8,9-threo-isomers have been shown to possess minimal biological activity (Dijkstra et al., 1989; Karle & Karle, 1992; Oleksyn & Serda, 1993; Fujii et al., 2000). In addition, the ability of the amino and hydroxyl groups at C8 and C9 to form intermolecular hydrogen bonds with the receptors is also considered essential for the biological activity, which is completely lost when these groups are engaged in intramolecular hydrogen bonds. Apart from the biological activity, this class of substances has been used, after the pioneering studies of Pasteur (1853) and McKenzie (1899), as effective resolving agents of racemic mixtures of carboxylic acids (Fogassy et al., 1986; Dijkstra et al., 1989; Ryttersgaard & Larsen, 1998) and, more recently, as chiral control elements in various asymmetric processes (Corey et al., 1997; Thiel et al., 2001, and references therein).

Several adducts formed by cinchona alkaloids with carboxylic acids have been studied crystallographically in the last decade (Larsen et al., 1993; Oleksyn & Serda, 1993; Gjerløv & Larsen, 1997a,b; Ryttersgaard & Larsen, 1998). The present structure of (3R,4S,8R,9S)-cinchoninium (2R,3R)-tartrate tetrahydrate, (I), underlines the stereochemical features of the alkaloid moiety and its characteristic mode of interaction with other molecules in the crystal.

Fig. 1 shows a perspective view of the asymmetric unit in the cell. All the bond lengths and angles are in the expected ranges (Pniewska & Suszko-Purzycka, 1989, and references therein; Ryttersgaard & Larsen, 1998). In particular, the geometry around N1 in the quinuclidinic moiety is typical of a protonated nitrogen (Oleksyn et al., 1978, 1979). Likewise, the values of the bond lengths and angles in the tartrate anion clearly indicate that only the C4A carboxyl group is ionized. In the cinchona cation, N1+ is anti oriented with respect to the quinoline ring and the orientation of quinoline and quinuclidine moieties is well described by the torsion angles N1—C8—C9—C16 and C8—C9—C16—C15 of -170.9 (2) and -108.8 (3)°, respectively. This conformation corresponds to one of the energy minima calculated in the gas phase for this alkaloid family (Dupont et al., 1985; Carroll et al., 1991) and is the most frequently observed in the crystal structures of cinchona salts (Oleksyn & Serda, 1993). The quinoline system is only roughly planar. With respect to the best plane through the non-H atoms of the bicyclic system, the deviations are within 0.054 (3) Å. This finding, together with the values of the bond lengths and angles, is consistent with the low aromaticity of the bicyclic system (Gdaniec et al., 1989; Oleksyn & Serda, 1993). The quinuclidine system is in a boat conformation, slightly distorted toward a twist-boat form, so that the methylene groups are \sim12° twisted around the N1···C4 line. This twisting is more pronounced in the N1-protonated cinchona alkaloids (Oleksyn et al., 1992; Oleksyn & Serda, 1993). The vinyl group is oriented to form a dihedral angle of 137.6 (4)° with the C2—C3 bond, according to the experimental and theoretical results for correlated structures (Karle & Karle, 1981; Carroll et al., 1991; Ryttersgaard & Larsen, 1998). The hydroxyl O atom at C9 forms a O12—C9—C8—N1 torsion angle of 68.5 (2)°.

The tartrate anion adopts the usual extended trans conformation (Ryttersgaard & Larsen, 1998). The value of -175.4 (2)° for the backbone torsion angle (C1A—C2A—C3A—C4A) is well within the variance of ±16° around 180° found for 90 tartrate structures in a search of the Cambridge Structural Database (Version 5.21, April 2001; Allen & Kennard, 1993).

In the crystal, the molecular arrangement is ruled by numerous intermolecular hydrogen bonds that involve all the potential donor groups. The geometry of the hydrogen-bonding interactions is given in Table 2 and in Fig. 2. In particular, the tartrate anions are interconnected through a short hydrogen bond between the carboxylic hydroxyl and carboxylate carbonyl groups, giving rise to anion chains parallel to the b axis and encircling the screw axis at a = 1/2, c = 0. Such a head-to-tail chain arrangement is rather common in tartrate structures with a translational period of about 7 Å (Fogassy et al., 1986, and references therein). Further hydrogen-bonding interactions interconnect, along the a direction, cinchoninium and tartrate ions in an infinite sequence of alternating cations and anions. In both chain motifs, the crystal water W1 is involved as a donor and acceptor in four hydrogen bonds. The remaining water molecules are arranged around the screw axis at a and c = 1/2, and are joined by a network of hydrogen bonds which act as a bridge along the c direction between the screw-related tartrate moieties. In this manner, the molecular arrangement forms, along the a axis, an alternating sequence of polar (a = 1/2) and apolar layers (a = 0). In the hydrophobic layers, all distances are greater than (>3.5 Å) the sum of van der Waals radii. The vinyl groups point towards the quinoline systems of neighbouring screw-related cations with a C11···N13(2 - x, 1/2 + y, 1 - z) distance of 3.688 (4) Å.

Related literature top

For related literature, see: Allen & Kennard (1993); Carroll et al. (1991); Chiou et al. (1996); Corey et al. (1997); Dijkstra et al. (1989); Dupont et al. (1985); Fogassy et al. (1986); Fujii et al. (2000); Gdaniec et al. (1989); Gjerløv & Larsen (1997a, 1997b); Karle & Karle (1981, 1992); Larsen et al. (1993); McKenzie (1899); Oleksyn & Serda (1993); Oleksyn et al. (1978, 1979, 1992); Pasteur (1853); Pniewska & Suszko-Purzycka (1989); Ryttersgaard & Larsen (1998); Thiel et al. (2001); Verpoorte et al. (1988).

Experimental top

Single crystals of (I) were selected directly from the Artificial Crystal Collection of the mineralogist Arcangelo Scacchi (1810–1893) preserved in the `Real Museo Mineralogico' of Naples. Identical crystals were obtained dissolving a fraction of the original sample in methanol by slow evaporation (about three weeks) at 277 K. Crystals of compound (I) were also obtained from equimolar amounts of cinchonine and L-tartaric acid (Fluka products) dissolved in a (5:1 molar ratio) methanol and water mixture.

Refinement top

All H atoms were observed in difference Fourier maps and included at idealized positions in the final refinements as fixed atoms, with Uiso(H) = Ueq(parent atom). Alkyl H atoms and hydroxyl and water H atoms were constrained to lie 1.02 and 0.98 Å, respectively, from their parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Enraf-Nonius, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SDP; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1983, 1995).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of (I) with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing projected onto the ac plane. Only the H-atoms involved in hydrogen bonding are reported. Dotted lines indicate hydrogen bonds.
(I) top
Crystal data top
C19H23N2O+·C4H5O6·4H2OF(000) = 552.0
Mr = 516.54Dx = 1.332 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.802 (7) Åθ = 25.4–31.3°
b = 7.0425 (10) ŵ = 0.90 mm1
c = 14.97 (1) ÅT = 291 K
β = 107.44 (3)°Rectangular prism, light brown
V = 1287.6 (11) Å30.42 × 0.22 × 0.09 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
4833 reflections with I > 2.5σ(I)
Radiation source: monochromatedRint = 0.030
Graphite monochromatorθmax = 75.7°
ωθ scans as suggested by peak–shape analysis implemented in the CAD–4 Software (Enraf–Nonius, 1989)h = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 68
Tmin = 0.828, Tmax = 0.999l = 1817
5316 measured reflections3 standard reflections every 200 min
5096 independent reflections intensity decay: none
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + (0.02Fo)2 + 1.0] (Killean & Lawrence, 1969)
Least-squares matrix: full(Δ/σ)max = 0.013
R[F2 > 2σ(F2)] = 0.046Δρmax = 0.24 e Å3
wR(F2) = 0.054Δρmin = 0.24 e Å3
S = 0.99Extinction correction: Stout & Jensen (1968)
4833 reflectionsExtinction coefficient: 1.6E-6 (2)
326 parametersAbsolute structure: The absolute configuration was chosen according to that of the known cinchonine (Oleksyn et al., 1978) and is supported by the refined Rogers parameter (Rogers, 1981).
H-atom parameters constrainedRogers parameter: 0.998 (6)
Crystal data top
C19H23N2O+·C4H5O6·4H2OV = 1287.6 (11) Å3
Mr = 516.54Z = 2
Monoclinic, P21Cu Kα radiation
a = 12.802 (7) ŵ = 0.90 mm1
b = 7.0425 (10) ÅT = 291 K
c = 14.97 (1) Å0.42 × 0.22 × 0.09 mm
β = 107.44 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4833 reflections with I > 2.5σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.828, Tmax = 0.9993 standard reflections every 200 min
5316 measured reflections intensity decay: none
5096 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.24 e Å3
S = 0.99Δρmin = 0.24 e Å3
4833 reflectionsAbsolute structure: The absolute configuration was chosen according to that of the known cinchonine (Oleksyn et al., 1978) and is supported by the refined Rogers parameter (Rogers, 1981).
326 parametersRogers parameter: 0.998 (6)
Special details top

Experimental. Systematic absences and intensity statistics led to the unique assignment of the space group P21.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.37406 (15)1.00.04386 (12)0.0514 (5)
O2A0.34068 (18)1.0185 (3)0.18120 (14)0.0756 (7)
O3A0.35200 (12)0.6341 (3)0.20232 (11)0.0468 (5)
O4A0.56094 (12)0.7101 (2)0.18894 (12)0.0454 (5)
O5A0.39932 (14)0.3596 (2)0.04026 (11)0.0434 (5)
O6A0.55698 (14)0.3441 (3)0.15490 (12)0.0481 (5)
O120.80269 (12)0.8184 (3)0.27065 (11)0.0422 (5)
N10.71031 (14)0.4529 (3)0.32195 (13)0.0390 (5)
N131.13715 (15)0.6244 (4)0.18754 (15)0.0531 (7)
C1A0.35839 (17)0.9267 (3)0.11926 (16)0.0390 (7)
C2A0.36457 (16)0.7106 (3)0.11979 (15)0.0357 (6)
C3A0.47478 (15)0.6484 (3)0.11094 (14)0.0322 (6)
C4A0.47871 (17)0.4318 (3)0.10335 (15)0.0353 (6)
C20.69065 (19)0.5921 (4)0.39195 (16)0.0457 (7)
C30.7681 (2)0.5474 (4)0.48896 (16)0.0549 (8)
C40.8617 (2)0.4221 (4)0.47665 (18)0.0526 (8)
C50.8125 (3)0.2269 (4)0.44253 (19)0.0587 (9)
C60.7099 (2)0.2539 (4)0.36053 (18)0.0518 (8)
C70.9046 (2)0.5116 (4)0.40160 (17)0.0502 (8)
C80.82054 (16)0.4829 (4)0.30602 (15)0.0384 (6)
C90.81849 (16)0.6380 (4)0.23423 (15)0.0370 (5)
C100.8101 (3)0.7288 (5)0.54176 (19)0.0731 (12)
C110.8213 (4)0.7655 (5)0.6256 (2)0.0880 (15)
C141.1054 (2)0.7673 (4)0.2291 (2)0.0573 (9)
C151.0019 (2)0.7775 (4)0.24359 (18)0.0492 (8)
C160.92782 (17)0.6336 (4)0.21191 (15)0.0391 (7)
C170.95699 (17)0.4801 (4)0.16229 (14)0.0399 (7)
C180.88653 (19)0.3273 (4)0.12187 (16)0.0476 (7)
C190.9248 (2)0.1802 (5)0.08043 (19)0.0596 (9)
C201.0329 (2)0.1765 (5)0.07636 (18)0.0595 (9)
C211.10103 (19)0.3230 (5)0.11130 (17)0.0554 (8)
C221.06519 (18)0.4800 (4)0.15461 (15)0.0439 (7)
O1W0.66257 (14)1.0236 (3)0.13183 (12)0.0470 (6)
O2W0.4355 (2)0.3362 (4)0.33029 (16)0.0821 (8)
O3W0.4201 (3)0.5775 (5)0.47701 (19)0.1065 (12)
O4W0.5880 (3)0.4001 (4)0.62119 (17)0.1148 (14)
H20.652630.471590.262510.0390*
H30.611580.581130.393010.0457*
H40.704820.726800.373360.0457*
H50.727990.475190.527900.0549*
H60.923870.410000.537710.0526*
H70.793190.158440.495520.0587*
H80.867990.148100.421780.0587*
H90.708600.156880.309640.0518*
H100.642370.236230.382480.0518*
H110.976600.448560.402410.0502*
H120.917110.653280.414540.0502*
H130.842550.366060.275590.0384*
H140.755470.614850.174710.0370*
H150.832050.833990.504090.0731*
H160.850870.894560.652600.0880*
H170.800910.666490.667270.0880*
H181.158540.877160.252150.0573*
H190.982150.891220.277490.0492*
H200.807490.326870.123610.0476*
H210.873420.070760.051870.0596*
H221.060010.063250.047050.0595*
H231.178890.321320.106620.0554*
H4A0.302310.662190.064550.0357*
H5A0.484220.708360.051810.0322*
H10.773970.908300.219140.0422*
H1A0.357451.135040.047760.0514*
H2A0.273530.647050.194420.0468*
H3A0.602920.809170.169010.0454*
H1W0.636730.996890.064520.0470*
H2W0.639311.151290.143730.0470*
H3W0.409830.209710.306200.0821*
H4W0.402320.429210.281320.0821*
H5W0.467500.552000.540590.1065*
H6W0.420330.457410.444020.1065*
H7W0.609390.353460.685830.1148*
H8W0.583980.285140.583390.1148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0790 (9)0.0202 (7)0.0631 (8)0.0022 (7)0.0337 (7)0.0031 (7)
O2A0.1252 (12)0.0379 (10)0.0902 (10)0.0119 (10)0.0725 (7)0.0058 (9)
O3A0.0470 (6)0.0423 (9)0.0626 (8)0.0010 (7)0.0336 (5)0.0105 (7)
O4A0.0356 (7)0.0329 (8)0.0641 (9)0.0038 (7)0.0095 (7)0.0001 (8)
O5A0.0589 (8)0.0238 (7)0.0471 (7)0.0010 (7)0.0153 (6)0.0002 (7)
O6A0.0603 (8)0.0284 (8)0.0550 (8)0.0127 (7)0.0163 (7)0.0011 (7)
O120.0441 (7)0.0356 (8)0.0505 (7)0.0061 (7)0.0199 (5)0.0018 (7)
N10.0386 (7)0.0385 (10)0.0452 (8)0.0013 (8)0.0205 (6)0.0009 (8)
N130.0442 (8)0.0589 (13)0.0665 (10)0.0009 (9)0.0321 (7)0.0105 (10)
C1A0.0385 (9)0.0260 (10)0.0591 (11)0.0024 (8)0.0245 (7)0.0019 (9)
C2A0.0381 (9)0.0231 (10)0.0521 (10)0.0010 (8)0.0228 (7)0.0020 (8)
C3A0.0323 (8)0.0244 (10)0.0447 (9)0.0020 (7)0.0187 (6)0.0026 (8)
C4A0.0436 (9)0.0264 (10)0.0399 (9)0.0039 (8)0.0187 (7)0.0007 (8)
C20.0519 (10)0.0447 (14)0.0504 (10)0.0034 (10)0.0304 (7)0.0013 (10)
C30.0838 (14)0.0460 (15)0.0439 (10)0.0090 (13)0.0329 (9)0.0042 (10)
C40.0609 (13)0.0528 (15)0.0449 (11)0.0043 (12)0.0170 (10)0.0094 (11)
C50.0854 (17)0.0385 (14)0.0568 (13)0.0026 (13)0.0285 (11)0.0103 (11)
C60.0692 (14)0.0344 (13)0.0582 (12)0.0097 (11)0.0291 (10)0.0011 (10)
C70.0426 (10)0.0586 (15)0.0498 (11)0.0027 (11)0.0144 (9)0.0122 (12)
C80.0329 (8)0.0391 (12)0.0486 (10)0.0052 (8)0.0205 (7)0.0040 (9)
C90.0356 (8)0.0368 (11)0.0435 (9)0.0036 (9)0.0195 (7)0.0030 (9)
C100.128 (3)0.0491 (17)0.0420 (12)0.0019 (17)0.0258 (13)0.0126 (12)
C110.149 (3)0.065 (2)0.0493 (14)0.015 (2)0.0294 (16)0.0208 (14)
C140.0509 (11)0.0482 (15)0.0826 (15)0.0085 (10)0.0349 (10)0.0016 (13)
C150.0488 (11)0.0385 (13)0.0685 (13)0.0050 (10)0.0300 (9)0.0008 (11)
C160.0360 (8)0.0427 (12)0.0428 (9)0.0034 (9)0.0184 (7)0.0068 (9)
C170.0402 (9)0.0462 (13)0.0392 (9)0.0015 (9)0.0208 (7)0.0042 (9)
C180.0463 (10)0.0531 (14)0.0472 (10)0.0013 (12)0.0197 (8)0.0046 (11)
C190.0664 (14)0.0574 (17)0.0580 (13)0.0007 (14)0.0231 (10)0.0152 (13)
C200.0704 (13)0.0605 (17)0.0564 (12)0.0136 (13)0.0323 (9)0.0076 (12)
C210.0547 (10)0.0677 (17)0.0542 (11)0.0173 (12)0.0323 (8)0.0044 (13)
C220.0439 (9)0.0512 (14)0.0439 (9)0.0063 (10)0.0243 (7)0.0084 (10)
O1W0.0591 (8)0.0311 (8)0.0488 (8)0.0097 (7)0.0131 (7)0.0016 (7)
O2W0.1006 (14)0.0712 (14)0.0781 (12)0.0076 (14)0.0324 (10)0.0021 (13)
O3W0.136 (2)0.100 (2)0.0865 (14)0.0033 (18)0.0371 (14)0.0259 (15)
O4W0.194 (3)0.092 (2)0.0579 (12)0.0093 (19)0.0371 (14)0.0161 (12)
Geometric parameters (Å, º) top
O1A—C1A1.310 (3)C6—H101.020
O1A—H1A0.980C7—C81.524 (3)
O2A—C1A1.206 (3)C7—H111.020
O3A—C2A1.401 (3)C7—H121.020
O3A—H2A0.980C8—C91.527 (3)
O4A—C3A1.413 (2)C8—H131.020
O4A—H3A0.980C9—C161.534 (3)
O5A—C4A1.268 (3)C9—H141.020
O6A—C4A1.232 (3)C10—C111.247 (5)
O12—C91.421 (3)C10—H151.020
O12—H10.980C11—H161.020
N1—C21.510 (3)C11—H171.020
N1—C61.516 (3)C14—C151.406 (4)
N1—C81.515 (3)C14—H181.020
N1—H20.980C15—C161.372 (3)
N13—C141.310 (4)C15—H191.020
N13—C221.362 (3)C16—C171.424 (4)
C1A—C2A1.524 (3)C17—C181.418 (4)
C2A—C3A1.521 (3)C17—C221.424 (3)
C2A—H4A1.020C18—C191.371 (4)
C3A—C4A1.532 (3)C18—H201.020
C3A—H5A1.020C19—C201.404 (4)
C2—C31.526 (3)C19—H211.020
C2—H31.020C20—C211.351 (4)
C2—H41.020C20—H221.020
C3—C41.543 (4)C21—C221.425 (4)
C3—C101.514 (4)C21—H231.020
C3—H51.020O1W—H1W0.980
C4—C51.535 (4)O1W—H2W0.980
C4—C71.527 (4)O2W—H3W0.980
C4—H61.020O2W—H4W0.980
C5—C61.518 (4)O3W—H5W0.980
C5—H71.020O3W—H6W0.980
C5—H81.020O4W—H7W0.980
C6—H91.020O4W—H8W0.980
O1A···O2A2.226 (3)C7···H82.636
O1A···C2A2.354 (3)C7···H132.084
O1A···C3A2.833 (2)C7···H153.037
O1A···H4A2.602C8···C162.481 (4)
O1A···H5A2.474C8···C173.152 (4)
O2A···O3A2.724 (3)C8···H22.052
O2A···C2A2.410 (3)C8···H42.657
O2A···H4A3.012C8···H82.881
O2A···H1A2.229C8···H92.715
O2A···H2A2.779C8···H112.099
O3A···O4A2.793 (3)C8···H122.099
O3A···C1A2.421 (3)C8···H142.107
O3A···C3A2.375 (3)C8···H202.901
O3A···C4A2.880 (3)C9···C152.511 (4)
O3A···O2W2.826 (3)C9···C172.586 (4)
O3A···H4A1.978C9···C183.042 (4)
O3A···H4W1.854C9···H22.569
O4A···O6A2.625 (3)C9···H42.943
O4A···O123.064 (3)C9···H113.027
O4A···N12.936 (3)C9···H122.617
O4A···C1A2.918 (3)C9···H132.008
O4A···C2A2.415 (3)C9···H192.679
O4A···C4A2.405 (3)C9···H202.724
O4A···C23.108 (3)C9···H11.981
O4A···O1W2.822 (3)C9···H3A2.900
O4A···H22.154C10···H33.018
O4A···H33.065C10···H42.477
O4A···H42.825C10···H52.051
O4A···H142.649C10···H62.687
O4A···H5A1.993C10···H122.711
O4A···H12.975C10···H161.967
O4A···H1W3.094C10···H171.967
O5A···O6A2.226 (2)C11···H52.589
O5A···C2A2.836 (3)C11···H151.927
O5A···C3A2.362 (3)C14···C162.402 (4)
O5A···H4A2.547C14···C172.750 (4)
O5A···H5A2.671C14···C222.293 (4)
O6A···N12.784 (3)C14···H192.112
O6A···C3A2.392 (3)C15···C172.404 (4)
O6A···C63.178 (3)C15···C222.733 (4)
O6A···H21.928C15···H123.187
O6A···H92.859C15···H182.092
O6A···H143.119C15···H12.977
O6A···H5A2.995C16···C182.514 (4)
O6A···H4W3.179C16···C222.430 (4)
O12···N13.026 (3)C16···H113.026
O12···C23.075 (3)C16···H123.080
O12···C72.946 (3)C16···H132.505
O12···C82.418 (3)C16···H142.112
O12···C152.715 (4)C16···H192.081
O12···C162.424 (3)C16···H202.751
O12···O1W2.719 (2)C16···H12.786
O12···H23.087C17···C192.414 (4)
O12···H42.346C17···C202.814 (4)
O12···H122.499C17···C212.460 (4)
O12···H141.991C17···H132.675
O12···H192.326C17···H142.807
O12···H3A2.555C17···H202.121
N1···C32.476 (3)C18···C202.422 (4)
N1···C42.545 (3)C18···C212.798 (4)
N1···C52.468 (3)C18···C222.440 (4)
N1···C72.450 (3)C18···H132.542
N1···C92.536 (3)C18···H142.887
N1···H32.086C18···H212.070
N1···H42.086C19···C212.386 (4)
N1···H53.027C19···C222.780 (4)
N1···H83.018C19···H202.079
N1···H92.092C19···H222.108
N1···H102.092C20···C222.413 (4)
N1···H122.953C20···H212.099
N1···H132.104C20···H232.057
N1···H142.694C21···H222.060
N13···C152.394 (4)C22···H232.124
N13···C162.812 (4)O1W···H143.108
N13···C172.444 (3)O1W···H5A3.152
N13···C212.388 (4)O1W···H11.812
N13···H182.005O1W···H3A1.852
N13···H232.588O2W···O3W2.830 (4)
C1A···C3A2.488 (3)O2W···H32.770
C1A···H4A2.075O2W···H102.623
C1A···H5A2.637O2W···H6W1.965
C1A···H1A1.814O3W···O4W2.839 (4)
C1A···H2A2.657O3W···H33.072
C1A···H3A3.105O3W···H4W3.054
C2A···C4A2.503 (3)O3W···H8W3.029
C2A···H5A2.078O4W···H52.635
C2A···H1A3.170O4W···H5W1.966
C2A···H2A1.894O4W···H6W2.897
C2A···H3A2.998H2···H32.303
C2A···H4W3.051H2···H42.401
C3A···H22.964H2···H92.371
C3A···H4A2.109H2···H102.476
C3A···H2A3.183H2···H132.493
C3A···H3A1.968H2···H142.349
C4A···H22.745H2···H3A2.735
C4A···H4A2.699H3···H52.247
C4A···H5A2.104H3···H102.473
C4A···H3A3.102H3···H4W2.904
C4A···H4W3.101H3···H6W2.908
C2···C42.484 (4)H4···H52.858
C2···C52.986 (4)H4···H122.651
C2···C62.454 (4)H4···H152.268
C2···C72.758 (4)H4···H12.995
C2···C82.509 (4)H4···H3A3.001
C2···C102.498 (4)H5···H62.510
C2···H22.036H5···H72.480
C2···H52.113H5···H102.710
C2···H102.575H5···H152.928
C2···H122.849H5···H172.423
C2···H152.679H5···H8W2.607
C3···C52.478 (4)H6···H72.388
C3···C62.768 (4)H6···H82.486
C3···C72.490 (4)H6···H112.335
C3···C83.043 (4)H6···H122.499
C3···C112.485 (4)H6···H153.193
C3···H32.099H7···H92.666
C3···H42.099H7···H102.221
C3···H62.139H8···H92.221
C3···H72.756H8···H102.838
C3···H102.897H8···H112.595
C3···H122.591H8···H132.612
C3···H152.165H9···H132.428
C3···H172.708H10···H3W2.857
C4···C62.485 (4)H11···H132.221
C4···C82.486 (4)H12···H132.853
C4···C102.537 (5)H12···H152.340
C4···H43.028H12···H192.955
C4···H52.108H13···H142.363
C4···H72.108H13···H202.200
C4···H82.108H14···H202.334
C4···H103.035H14···H12.162
C4···H112.101H14···H3A2.365
C4···H122.101H15···H162.205
C4···H132.972H15···H172.846
C4···H152.970H16···H171.767
C5···C72.493 (4)H18···H192.401
C5···C82.750 (4)H19···H12.546
C5···H52.587H20···H212.379
C5···H62.123H21···H222.412
C5···H92.094H22···H232.367
C5···H102.094H4A···H5A2.415
C5···H112.822H4A···H2A2.087
C5···H132.816H5A···H3A2.072
C6···C72.994 (4)H5A···H1W2.785
C6···C82.443 (4)H1···H3A2.205
C6···H22.096H1···H1W2.529
C6···H32.738H1···H2W2.451
C6···H52.900H2A···H4W2.341
C6···H72.093H3A···H1W2.188
C6···H82.093H3A···H2W2.504
C6···H132.534H3W···H6W2.674
C7···C92.575 (4)H4W···H6W2.385
C7···C103.118 (5)H5W···H7W2.759
C7···C163.066 (4)H5W···H8W2.365
C7···H42.893H6W···H8W2.756
C7···H62.103
C1A—O1A—H1A103.8C5—C6—H10109.6
C2A—O3A—H2A104.0H9—C6—H10109.5
C3A—O4A—H3A109.3C4—C7—C8109.1 (2)
C9—O12—H1109.8C4—C7—H11109.6
C2—N1—C6108.4 (2)C4—C7—H12109.6
C2—N1—C8112.1 (2)C8—C7—H11109.6
C2—N1—H2107.8C8—C7—H12109.6
C6—N1—C8107.4 (2)H11—C7—H12109.5
C6—N1—H2112.5N1—C8—C7107.4 (2)
C8—N1—H2108.8N1—C8—C9113.0 (2)
C14—N13—C22118.2 (3)N1—C8—H13110.7
O1A—C1A—O2A124.3 (2)C7—C8—C9115.1 (2)
O1A—C1A—C2A112.1 (2)C7—C8—H13108.3
O2A—C1A—C2A123.5 (2)C9—C8—H13102.2
O3A—C2A—C1A111.7 (2)O12—C9—C8110.1 (2)
O3A—C2A—C3A108.7 (2)O12—C9—C16110.2 (2)
O3A—C2A—H4A108.5O12—C9—H14108.2
C1A—C2A—C3A109.6 (2)C8—C9—C16108.3 (2)
C1A—C2A—H4A107.6C8—C9—H14110.0
C3A—C2A—H4A110.7C16—C9—H14109.9
O4A—C3A—C2A110.8 (2)C3—C10—C11128.0 (3)
O4A—C3A—C4A109.4 (2)C3—C10—H15116.0
O4A—C3A—H5A108.9C11—C10—H15116.0
C2A—C3A—C4A110.2 (2)C10—C11—H16120.0
C2A—C3A—H5A108.1C10—C11—H17120.0
C4A—C3A—H5A109.4H16—C11—H17120.0
O5A—C4A—O6A125.8 (2)N13—C14—C15123.6 (3)
O5A—C4A—C3A114.7 (2)N13—C14—H18118.2
O6A—C4A—C3A119.5 (2)C15—C14—H18118.2
N1—C2—C3109.3 (2)C14—C15—C16119.6 (3)
N1—C2—H3109.5C14—C15—H19120.2
N1—C2—H4109.5C16—C15—H19120.2
C3—C2—H3109.5C9—C16—C15119.5 (2)
C3—C2—H4109.5C9—C16—C17121.9 (2)
H3—C2—H4109.5C15—C16—C17118.6 (2)
C2—C3—C4108.1 (2)C16—C17—C18124.5 (2)
C2—C3—C10110.5 (2)C16—C17—C22117.1 (2)
C2—C3—H5110.7C18—C17—C22118.4 (2)
C4—C3—C10112.2 (3)C17—C18—C19119.9 (3)
C4—C3—H5109.0C17—C18—H20120.0
C10—C3—H5106.5C19—C18—H20120.0
C3—C4—C5107.2 (2)C18—C19—C20121.6 (3)
C3—C4—C7108.4 (2)C18—C19—H21119.2
C3—C4—H6111.5C20—C19—H21119.2
C5—C4—C7109.1 (2)C19—C20—C21120.0 (3)
C5—C4—H6110.8C19—C20—H22120.0
C7—C4—H6109.7C21—C20—H22120.0
C4—C5—C6109.0 (2)C20—C21—C22120.7 (3)
C4—C5—H7109.6C20—C21—H23119.7
C4—C5—H8109.6C22—C21—H23119.7
C6—C5—H7109.6N13—C22—C17122.6 (2)
C6—C5—H8109.6N13—C22—C21118.0 (2)
H7—C5—H8109.5C17—C22—C21119.4 (2)
N1—C6—C5108.8 (2)H1W—O1W—H2W109.6
N1—C6—H9109.6H3W—O2W—H4W108.1
N1—C6—H10109.6H5W—O3W—H6W103.7
C5—C6—H9109.6H7W—O4W—H8W104.1
H1A—O1A—C1A—O2A7.8C3—C4—C5—H8169.4
H1A—O1A—C1A—C2A172.0C7—C4—C5—C667.8 (3)
H2A—O3A—C2A—C1A75.0C7—C4—C5—H7172.3
H2A—O3A—C2A—C3A163.9C7—C4—C5—H852.2
H2A—O3A—C2A—H4A43.5H6—C4—C5—C6171.3
H3A—O4A—C3A—C2A110.7H6—C4—C5—H751.4
H3A—O4A—C3A—C4A127.6H6—C4—C5—H868.7
H3A—O4A—C3A—H5A8.0C3—C4—C7—C872.4 (3)
H1—O12—C9—C8158.6C3—C4—C7—H11167.6
H1—O12—C9—C1681.9C3—C4—C7—H1247.5
H1—O12—C9—H1438.3C5—C4—C7—C844.0 (3)
C6—N1—C2—C349.5 (3)C5—C4—C7—H1175.9
C6—N1—C2—H370.5C5—C4—C7—H12164.0
C6—N1—C2—H4169.4H6—C4—C7—C8165.6
C8—N1—C2—C368.9 (2)H6—C4—C7—H1145.7
C8—N1—C2—H3171.2H6—C4—C7—H1274.5
C8—N1—C2—H451.1C4—C5—C6—N117.2 (3)
H2—N1—C2—C3171.4C4—C5—C6—H9137.1
H2—N1—C2—H351.5C4—C5—C6—H10102.7
H2—N1—C2—H468.6H7—C5—C6—N1137.2
C2—N1—C6—C570.7 (3)H7—C5—C6—H9102.9
C2—N1—C6—H9169.4H7—C5—C6—H1017.3
C2—N1—C6—H1049.3H8—C5—C6—N1102.7
C8—N1—C6—C550.6 (3)H8—C5—C6—H917.2
C8—N1—C6—H969.3H8—C5—C6—H10137.4
C8—N1—C6—H10170.5C4—C7—C8—N123.1 (3)
H2—N1—C6—C5170.3C4—C7—C8—C9149.9 (2)
H2—N1—C6—H950.4C4—C7—C8—H1396.5
H2—N1—C6—H1069.8H11—C7—C8—N1143.1
C2—N1—C8—C744.3 (3)H11—C7—C8—C990.2
C2—N1—C8—C983.7 (2)H11—C7—C8—H1323.5
C2—N1—C8—H13162.4H12—C7—C8—N196.8
C6—N1—C8—C774.6 (2)H12—C7—C8—C929.9
C6—N1—C8—C9157.4 (2)H12—C7—C8—H13143.6
C6—N1—C8—H1343.5N1—C8—C9—O1268.5 (2)
H2—N1—C8—C7163.4N1—C8—C9—C16170.9 (2)
H2—N1—C8—C935.4N1—C8—C9—H1450.6
H2—N1—C8—H1378.5C7—C8—C9—O1255.4 (3)
C22—N13—C14—C151.6 (4)C7—C8—C9—C1665.3 (3)
C22—N13—C14—H18178.4C7—C8—C9—H14174.5
C14—N13—C22—C171.0 (4)H13—C8—C9—O12172.5
C14—N13—C22—C21178.7 (3)H13—C8—C9—C1651.9
O1A—C1A—C2A—O3A177.7 (2)H13—C8—C9—H1468.3
O1A—C1A—C2A—C3A57.1 (2)O12—C9—C16—C1511.8 (3)
O1A—C1A—C2A—H4A63.3O12—C9—C16—C17170.9 (2)
O2A—C1A—C2A—O3A2.6 (3)C8—C9—C16—C15108.8 (3)
O2A—C1A—C2A—C3A123.1 (3)C8—C9—C16—C1768.6 (3)
O2A—C1A—C2A—H4A116.4H14—C9—C16—C15130.9
O3A—C2A—C3A—O4A59.0 (2)H14—C9—C16—C1751.7
O3A—C2A—C3A—C4A62.3 (2)C3—C10—C11—H16180.0
O3A—C2A—C3A—H5A178.2C3—C10—C11—H170.0
C1A—C2A—C3A—O4A63.3 (2)H15—C10—C11—H160.0
C1A—C2A—C3A—C4A175.4 (2)H15—C10—C11—H17180.0
C1A—C2A—C3A—H5A55.9N13—C14—C15—C161.2 (4)
H4A—C2A—C3A—O4A178.1N13—C14—C15—H19178.8
H4A—C2A—C3A—C4A56.9H18—C14—C15—C16178.9
H4A—C2A—C3A—H5A62.7H18—C14—C15—H191.1
O4A—C3A—C4A—O5A174.3 (2)C14—C15—C16—C9175.5 (2)
O4A—C3A—C4A—O6A7.7 (3)C14—C15—C16—C172.0 (4)
C2A—C3A—C4A—O5A52.3 (3)H19—C15—C16—C94.5
C2A—C3A—C4A—O6A129.7 (2)H19—C15—C16—C17178.0
H5A—C3A—C4A—O5A66.4C9—C16—C17—C185.8 (4)
H5A—C3A—C4A—O6A111.6C9—C16—C17—C22173.1 (2)
N1—C2—C3—C417.9 (3)C15—C16—C17—C18176.8 (2)
N1—C2—C3—C10141.0 (2)C15—C16—C17—C224.3 (3)
N1—C2—C3—H5101.3C16—C17—C18—C19176.0 (3)
H3—C2—C3—C4137.9C16—C17—C18—H204.0
H3—C2—C3—C1099.0C22—C17—C18—C192.9 (4)
H3—C2—C3—H518.6C22—C17—C18—H20177.1
H4—C2—C3—C4102.1C16—C17—C22—N134.0 (4)
H4—C2—C3—C1021.0C16—C17—C22—C21175.7 (2)
H4—C2—C3—H5138.7C18—C17—C22—N13177.1 (2)
C2—C3—C4—C570.2 (3)C18—C17—C22—C213.2 (4)
C2—C3—C4—C747.5 (3)C17—C18—C19—C200.3 (4)
C2—C3—C4—H6168.4C17—C18—C19—H21179.7
C10—C3—C4—C5167.8 (3)H20—C18—C19—C20179.7
C10—C3—C4—C774.6 (3)H20—C18—C19—H210.3
C10—C3—C4—H646.3C18—C19—C20—C212.0 (5)
H5—C3—C4—C550.2C18—C19—C20—H22178.0
H5—C3—C4—C7167.8H21—C19—C20—C21178.0
H5—C3—C4—H671.3H21—C19—C20—H222.0
C2—C3—C10—C11137.6 (4)C19—C20—C21—C221.6 (4)
C2—C3—C10—H1542.4C19—C20—C21—H23178.4
C4—C3—C10—C11101.7 (4)H22—C20—C21—C22178.4
C4—C3—C10—H1578.3H22—C20—C21—H231.6
H5—C3—C10—C1117.4C20—C21—C22—N13179.3 (3)
H5—C3—C10—H15162.6C20—C21—C22—C171.0 (4)
C3—C4—C5—C649.4 (3)H23—C21—C22—N130.7
C3—C4—C5—H770.5H23—C21—C22—C17179.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H3A···O120.982.563.064 (3)112
O4A—H3A···O1W0.981.852.822 (3)170
O12—H1···O1W0.981.812.719 (2)152
N1—H2···O4A0.982.152.936 (3)136
N1—H2···O6A0.981.932.784 (3)144
O2W—H4W···O3A0.981.852.826 (3)171
O3W—H5W···O4W0.981.972.839 (4)147
O3W—H6W···O2W0.981.972.831 (4)146
O2W—H3W···O4Wi0.982.433.191 (4)134
O4W—H7W···O2Ai0.982.232.943 (4)129
O4W—H7W···O3Ai0.982.223.141 (3)156
O4W—H8W···O3Wi0.981.712.691 (4)177
O2W—H3W···O2Aii0.982.263.136 (3)148
O1W—H1W···O5Aiii0.981.782.716 (3)158
O1W—H2W···O6Aiv0.981.762.705 (3)162
O1A—H1A···O5Aiv0.981.682.556 (2)146
O3A—H2A···N13v0.981.732.693 (3)169
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z; (iii) x+1, y+1/2, z; (iv) x, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H23N2O+·C4H5O6·4H2O
Mr516.54
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)12.802 (7), 7.0425 (10), 14.97 (1)
β (°) 107.44 (3)
V3)1287.6 (11)
Z2
Radiation typeCu Kα
µ (mm1)0.90
Crystal size (mm)0.42 × 0.22 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.828, 0.999
No. of measured, independent and
observed [I > 2.5σ(I)] reflections
5316, 5096, 4833
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.054, 0.99
No. of reflections4833
No. of parameters326
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24
Absolute structureThe absolute configuration was chosen according to that of the known cinchonine (Oleksyn et al., 1978) and is supported by the refined Rogers parameter (Rogers, 1981).
Rogers parameter0.998 (6)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SDP (Enraf-Nonius, 1985), SIR92 (Altomare et al., 1993), SDP, ORTEP-3 (Farrugia, 1997), PARST (Nardelli, 1983, 1995).

Selected geometric parameters (Å, º) top
O1A—C1A1.310 (3)C9—C161.534 (3)
O2A—C1A1.206 (3)C10—C111.247 (5)
O5A—C4A1.268 (3)C14—C151.406 (4)
O6A—C4A1.232 (3)C15—C161.372 (3)
O12—C91.421 (3)C16—C171.424 (4)
N1—C21.510 (3)C17—C181.418 (4)
N1—C61.516 (3)C17—C221.424 (3)
N1—C81.515 (3)C18—C191.371 (4)
N13—C141.310 (4)C19—C201.404 (4)
N13—C221.362 (3)C20—C211.351 (4)
C3—C101.514 (4)C21—C221.425 (4)
C8—C91.527 (3)
C2—N1—C6108.4 (2)C7—C8—C9115.1 (2)
C2—N1—C8112.1 (2)O12—C9—C8110.1 (2)
C6—N1—C8107.4 (2)O12—C9—C16110.2 (2)
C14—N13—C22118.2 (3)C8—C9—C16108.3 (2)
O1A—C1A—O2A124.3 (2)C3—C10—C11128.0 (3)
O1A—C1A—C2A112.1 (2)N13—C14—C15123.6 (3)
O2A—C1A—C2A123.5 (2)C14—C15—C16119.6 (3)
O5A—C4A—O6A125.8 (2)C9—C16—C15119.5 (2)
O5A—C4A—C3A114.7 (2)C9—C16—C17121.9 (2)
O6A—C4A—C3A119.5 (2)C15—C16—C17118.6 (2)
N1—C2—C3109.3 (2)C16—C17—C22117.1 (2)
N1—C6—C5108.8 (2)N13—C22—C17122.6 (2)
N1—C8—C7107.4 (2)N13—C22—C21118.0 (2)
N1—C8—C9113.0 (2)
O1A—C1A—C2A—C3A57.1 (2)C4—C5—C6—N117.2 (3)
O3A—C2A—C3A—O4A59.0 (2)C4—C7—C8—N123.1 (3)
C1A—C2A—C3A—C4A175.4 (2)N1—C8—C9—O1268.5 (2)
C2A—C3A—C4A—O5A52.3 (3)N1—C8—C9—C16170.9 (2)
N1—C2—C3—C417.9 (3)C8—C9—C16—C15108.8 (3)
C2—C3—C10—C11137.6 (4)C9—C16—C17—C185.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H3A···O120.9802.5553.064 (3)112.3
O4A—H3A···O1W0.9801.8522.822 (3)170.1
O12—H1···O1W0.9801.8122.719 (2)152.3
N1—H2···O4A0.9802.1542.936 (3)135.7
N1—H2···O6A0.9801.9282.784 (3)144.4
O2W—H4W···O3A0.9801.8542.826 (3)170.8
O3W—H5W···O4W0.9801.9662.839 (4)147.1
O3W—H6W···O2W0.9801.9662.831 (4)145.9
O2W—H3W···O4Wi0.9802.4333.191 (4)133.8
O4W—H7W···O2Ai0.9802.2272.943 (4)128.9
O4W—H7W···O3Ai0.9802.2223.141 (3)155.5
O4W—H8W···O3Wi0.9801.7122.691 (4)176.8
O2W—H3W···O2Aii0.9802.2603.136 (3)148.4
O1W—H1W···O5Aiii0.9801.7822.716 (3)158.1
O1W—H2W···O6Aiv0.9801.7572.705 (3)161.7
O1A—H1A···O5Aiv0.9801.6842.556 (2)145.9
O3A—H2A···N13v0.9801.7252.693 (3)168.8
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z; (iii) x+1, y+1/2, z; (iv) x, y+1, z; (v) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds