Download citation
Download citation
link to html
The asymmetric unit of the title compound, C9H9Br3, is composed of a single mol­ecule. Two bromo substituents are located on one side of the plane of the aromatic ring and the third is on the opposite side, with the mol­ecular unit exhibiting an approximate noncrystallographic Cs point group. The crystal structure is rich in Br...Br, CH2...Br and CH...[pi] weak inter­molecular contacts which mediate the crystal packing of individual mol­ecules. These inter­actions promote a red-shift of a handful of vibrational modes (associated with the pendant -CH2Br groups) compared with values from theoretical density functional theory (DFT) calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111013618/tp3001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111013618/tp3001Isup2.hkl
Contains datablock I

CCDC reference: 833415

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,3,5-tris(Bromomethyl)benzene top
Crystal data top
C9H9Br3Z = 2
Mr = 356.89F(000) = 336
Triclinic, P1Dx = 2.168 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6061 (2) ÅCell parameters from 4388 reflections
b = 8.2473 (2) Åθ = 2.7–30.3°
c = 14.7545 (4) ŵ = 11.02 mm1
α = 99.756 (2)°T = 150 K
β = 93.909 (2)°Block, colourless
γ = 96.506 (2)°0.12 × 0.04 × 0.03 mm
V = 546.64 (3) Å3
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
4130 independent reflections
Radiation source: fine-focus sealed tube2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 33.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 77
Tmin = 0.352, Tmax = 0.734k = 1212
13782 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.4156P]
where P = (Fo2 + 2Fc2)/3
4130 reflections(Δ/σ)max = 0.003
109 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 1.13 e Å3
Special details top

Geometry. All s.u. (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u.s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42572 (8)0.25156 (5)1.028285 (19)0.04581 (10)
Br20.44135 (7)0.29983 (4)0.546414 (19)0.03728 (9)
Br30.05600 (6)0.42568 (4)0.75227 (2)0.03895 (9)
C10.2003 (6)0.1775 (3)0.83787 (17)0.0245 (5)
C20.3936 (5)0.2199 (3)0.77418 (17)0.0226 (5)
H20.51440.32380.78690.027*
C30.4104 (5)0.1107 (3)0.69209 (16)0.0204 (5)
C40.2333 (5)0.0415 (3)0.67394 (17)0.0228 (5)
H40.24330.11590.61790.027*
C50.0403 (5)0.0859 (3)0.73759 (18)0.0234 (5)
C60.0269 (6)0.0241 (3)0.81938 (18)0.0260 (5)
H60.10200.00580.86310.031*
C70.1755 (7)0.2959 (4)0.9243 (2)0.0385 (7)
H7A0.03120.28680.93930.046*
H7B0.23330.41050.91450.046*
C80.6170 (6)0.1585 (3)0.62449 (17)0.0253 (5)
H8A0.66530.05730.58500.030*
H8B0.80130.21910.65820.030*
C90.1522 (6)0.2484 (3)0.7179 (2)0.0313 (6)
H9A0.21930.27570.65130.038*
H9B0.32750.23980.75280.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0576 (2)0.0520 (2)0.02446 (14)0.00972 (16)0.00629 (13)0.00734 (14)
Br20.0547 (2)0.03606 (17)0.02786 (13)0.01662 (14)0.00969 (12)0.01526 (12)
Br30.02925 (15)0.01889 (13)0.0684 (2)0.00009 (11)0.00106 (14)0.01098 (14)
C10.0247 (13)0.0232 (13)0.0266 (12)0.0043 (10)0.0039 (10)0.0056 (11)
C20.0214 (12)0.0182 (12)0.0286 (12)0.0026 (9)0.0020 (10)0.0056 (10)
C30.0189 (11)0.0198 (12)0.0245 (11)0.0041 (9)0.0010 (9)0.0086 (10)
C40.0239 (12)0.0203 (12)0.0239 (11)0.0050 (10)0.0022 (9)0.0034 (10)
C50.0180 (11)0.0208 (12)0.0316 (12)0.0001 (9)0.0038 (10)0.0097 (11)
C60.0219 (12)0.0269 (14)0.0314 (12)0.0023 (10)0.0053 (10)0.0111 (11)
C70.0419 (17)0.0383 (18)0.0345 (15)0.0070 (14)0.0094 (13)0.0006 (14)
C80.0262 (13)0.0247 (13)0.0273 (12)0.0046 (10)0.0048 (10)0.0095 (11)
C90.0253 (13)0.0262 (14)0.0421 (15)0.0040 (11)0.0079 (11)0.0140 (12)
Geometric parameters (Å, º) top
Br1—C71.965 (3)C4—H40.9500
Br2—C81.970 (2)C5—C61.391 (4)
Br3—C91.954 (3)C5—C91.494 (4)
C1—C61.392 (4)C6—H60.9500
C1—C21.397 (3)C7—H7A0.9900
C1—C71.488 (4)C7—H7B0.9900
C2—C31.394 (3)C8—H8A0.9900
C2—H20.9500C8—H8B0.9900
C3—C41.391 (4)C9—H9A0.9900
C3—C81.494 (3)C9—H9B0.9900
C4—C51.401 (4)
C6—C1—C2119.5 (2)C1—C7—Br1111.5 (2)
C6—C1—C7119.9 (2)C1—C7—H7A109.3
C2—C1—C7120.5 (3)Br1—C7—H7A109.3
C3—C2—C1120.4 (2)C1—C7—H7B109.3
C3—C2—H2119.8Br1—C7—H7B109.3
C1—C2—H2119.8H7A—C7—H7B108.0
C4—C3—C2119.5 (2)C3—C8—Br2110.77 (17)
C4—C3—C8120.8 (2)C3—C8—H8A109.5
C2—C3—C8119.7 (2)Br2—C8—H8A109.5
C3—C4—C5120.6 (2)C3—C8—H8B109.5
C3—C4—H4119.7Br2—C8—H8B109.5
C5—C4—H4119.7H8A—C8—H8B108.1
C6—C5—C4119.3 (2)C5—C9—Br3111.15 (18)
C6—C5—C9120.0 (2)C5—C9—H9A109.4
C4—C5—C9120.7 (2)Br3—C9—H9A109.4
C5—C6—C1120.7 (2)C5—C9—H9B109.4
C5—C6—H6119.6Br3—C9—H9B109.4
C1—C6—H6119.6H9A—C9—H9B108.0
C6—C1—C2—C30.9 (4)C9—C5—C6—C1178.6 (2)
C7—C1—C2—C3178.2 (2)C2—C1—C6—C51.2 (4)
C1—C2—C3—C40.1 (3)C7—C1—C6—C5177.9 (2)
C1—C2—C3—C8179.6 (2)C6—C1—C7—Br185.5 (3)
C2—C3—C4—C50.4 (3)C2—C1—C7—Br195.4 (3)
C8—C3—C4—C5179.9 (2)C4—C3—C8—Br297.1 (2)
C3—C4—C5—C60.1 (4)C2—C3—C8—Br282.5 (3)
C3—C4—C5—C9179.4 (2)C6—C5—C9—Br396.5 (3)
C4—C5—C6—C10.6 (4)C4—C5—C9—Br384.3 (3)
Selected short interactions (Å, °) top
AB···CABB···CA···CAB···CType of interaction
C8—H8B···Cgi0.992.843.493 (3)124C—H···π*
C7—H7A···Br1ii0.992.913.878 (3)166Weak hydrogen bond
C7—H7B···Br1iii0.993.003.896 (3)152Short distance
C7—H7B···Br3iv0.993.053.754 (3)129Short distance
C9—H9···Br2v0.992.993.971 (3)171Short distance
C7—Br1···Br3vi1.954 (3)3.8520 (5)148.14 (10)Undefined Br···Br
C9—Br3···Br1vi1.965 (3)3.8520 (5)109.04 (8)Undefined Br···Br
C8—Br2···Br2vii1.970 (2)3.7813 (5)144.99 (8)Type I Br···Br
Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 2; (iv) x, y + 1, z; (v) -x, -y, -z + 1; (vi) -x + 1, -y, -z + 2; (vii) -x + 1, 1y + 1, -z + 1. Note: (*) The C—H···(ring plane) angle is 36°.
Vibrational spectrum and assignment top
Wavenumber (cm-1)IntensityAssignmentWavenumber (cm-1)IntensityAssignment
3024wνas(CH2)980wδ(Ph)
2972wν(CH)894mγ(CH)
2856wνsym(CH2)857mρ(CH)
1605mν(Ph)704sγ(CH)
1455ma663mγ(CH)
1435ma634mγ(CH)
1401ma582sδ(Ph)
1385sa554mb
1213mω(CH2)530mb
1167mδ(CH)477wγ(Ph—C)
1120mτ(CH2)
Notes: (a) δ(CH2) or [ρ(CH2) + ν(Ph)] (four very close theoretical vibrational modes); (b) δ(Ph—C) and γ(Ph—C) [two very close theoretical vibrational modes below δ(Ph)].
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds