Download citation
Download citation
link to html
Reductive coupling of adventitious CO2 by CuI has afforded the title compound, μ-oxalato-1κ2O1,O2:2κ2O1′,O2′-bis­[bis­(1-benzyl-1H-pyrazole-κN2)(trifluoro­methane­sulfonato-κO)copper(II)], [Cu2(CF3O3S)2(C2O4)(C10H10N2)4], which contains centrosymmetric mol­ecules in which the CuII ions, bridged by a planar oxalate ligand, exhibit a distorted square-pyramidal N2(pyrazole)O2(oxalato)O(trifluoro­methane­sulf­on­ate) coordination geometry, with the trifluoro­methane­sulfonate ligand coordinated axially. The mol­ecule exhibits five intra­molecular C—H...O,F hydrogen bonds per asymmetric unit, which help to stabilize the mol­ecule and to orient the benzyl and trifluoro­methane­sulfonate groups. Inter­molecular C—H...O hydrogen bonds link the mol­ecules to form two-dimensional layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680502739X/tk6256sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680502739X/tk6256Isup2.hkl
Contains datablock I

CCDC reference: 287734

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.111
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.98 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu - O11 .. 5.48 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C11 - C11_a ... 1.53 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As part of our continuing interest in the chemistry of Cu-containing complexes (Stibrany, Fikar et al., 2002; Stibrany et al., 2003, 2004), we attempted to prepare a tris(N-benzylpyrazole) complex of CuI and obtained instead the oxalate-containing title compound, (I), in which the oxalate ion appears to have been formed by the reductive coupling of adventitious CO2. Reductive coupling of CO2, induced by metal complexes, to afford oxalate is rare, and we are aware of only one such example, the salt µ-oxalato-1κ2O,O':2κ2O'',O'''-bis(triallyl-1,4,7- triazacyclononane)copper(II) bis(tetraphenylborate), (II), in which a CuI complex served as the reducing agent (Farrugia et al., 2001). In that case also, the product was originally obtained serendipitously.

Crystals of (I) (Fig. 1) contain discrete neutral centrosymmetric molecules in which each CuII ion is five-coordinate and is bonded to two O atoms from a bridging oxalate group, the imine N atoms of two N-benzylpyrazole ligands, and one O atom from a trifluoromethanesulfonate anion. Five-coordinate copper(II) complexes typically have geometries ranging from trigonal–bipyramidal to square-pyramidal. Energetically, the limiting trigonal–bipyramidal and square-pyramidal forms are often almost equally favorable, with a low activation barrier to interconversion. In the present instance, the observed geometry is best described as distorted square-pyramidal, with atom O1 apical, as indicated by the geometric parameters in Table 1 and by the calculated value of the distortion parameter τ (Addison et al., 1984) of 0.19, which is closer to the ideal value of τ = 0 for a perfect square-pyramidal symmetry than to the ideal value of 1 for an ideal trigonal–bipyramidal geometry.

Structurally characterized examples of species with CuIIO(trifluoromethanesulfonate) bonds are uncommon. The Cambridge Structural Database (CSD, version 5.26; Allen, 2002) lists only a single example, CSD refcode RORFIN (van Albada et al., 1997), a binuclear square-pyramidal dication (two per asymmetric unit), each of which contains a bridging axially bonded trifluoromethanesulfonate ligand. Axial copper(II)—O bond lengths in these cations range from 2.408 (5) to 2.437 (6) Å, all significantly longer than the value of 2.3626 (17) Å for the corresponding bond in (I). The equatorial metal–ligand bond lengths in (I) agree well with those reported for other comparable systems. In particular, the Cu—O(oxalate) bond lengths in Table 1 lie within the range of 1.960 (2)–2.041 (3) Å reported for several distorted square-pyramidal CuII–oxalate complexes (refcodes FEYXUC, HOSTAK, IMIHAN, JOFKEU, QEJQOL, WURYEN and XUFZON), while the Cu—N(pyrazole) linkages are similarly within the range of 1.938 (5)–2.024 (3) Å observed for equatorial Cu—N(pyrazole) linkages in a variety of square-pyramidal complexes (refcodes BENDED, ESIKIA, FAYTOO02, PIBXIO, POWJAM, QOTJAK, REDLER, REDLER01 and RIHYAI).

Molecule (I) exhibits five intramolecular C—H···O,F hydrogen bonds per asymmetric unit (Table 2), one of which is trifurcated (Fig. 2). These hydrogen bonds, which involve the methylene C atoms of the benzyl fragments and a C atom of one of the phenyl rings, help to stabilize the molecule, while serving also to orient the benzyl and trifluoromethanesulfonate groups.

Two unique intermolecular C—H···O hydrogen bonds (Table 2) link the pyrazole and phenyl rings of one ligand to the O atoms of the oxalate and trifluoromethanesulfonate fragments, respectively, to form a two-dimensional network along the a and b unit-cell directions (Fig. 3). When translated along the c unit-cell direction, the resulting layers complete the structure, in which a variety of C—H···F,O and C—H···π interactions complement the ubiquitous van der Waals interactions to complete the packing. There is little, if any, evidence of ππ interactions among the pyrazole and phenyl rings.

Experimental top

A colorless solution containing CuI(CH3CN)4(trifluoromethanesulfonate) (154 mg, 0.41 mmol), N-benzylpyrazole (194 mg, 1.23 mmol), acetonitrile (8 ml) and triethylorthoformate (1 ml) was prepared in a 50 ml flask. The flask was placed in a jar containing some liquid diethyl ether and diethyl ether vapor was diffused into the solution. Although the jar was closed, no special effort was made to exclude air. After approximately two weeks, blue rhomboids of (I) began to deposit.

Refinement top

H atoms were included in the riding-model approximation, with C—H = 0.93 Å (aromatic H) and 0.97 Å (methylene H), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 25% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code: (i) 2 − x, 1 − y, −z.]
[Figure 2] Fig. 2. A view of (I), showing the intramolecular hydrogen-bonding scheme (dashed lines). [Symmetry code: (i) 2 − x, 1 − y, −z.]
[Figure 3] Fig. 3. A view of the structure of (I) approximately normal to (001). Dashed lines indicate C—H···O hydrogen bonds.
µ-oxalato-1κ2O1,O2:2κ2O1',O2'-bis[bis(1-benzyl-1H-pyrazole- κN2)(trifluoromethanesulfonato-κO)copper(II)] top
Crystal data top
[Cu2(CF3O3S)2(C2O4)(C10H10N2)4]Z = 1
Mr = 1146.05F(000) = 584
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8432 (5) ÅCell parameters from 978 reflections
b = 11.0190 (5) Åθ = 3.5–25.0°
c = 11.4895 (5) ŵ = 1.06 mm1
α = 87.389 (4)°T = 298 K
β = 75.577 (4)°Rhomboid, blue
γ = 65.539 (4)°0.51 × 0.41 × 0.28 mm
V = 1207.60 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4166 independent reflections
Radiation source: fine-focus sealed tube3841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1212
Tmin = 0.552, Tmax = 0.744k = 1213
12405 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.5052P]
where P = (Fo2 + 2Fc2)/3
4166 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(CF3O3S)2(C2O4)(C10H10N2)4]γ = 65.539 (4)°
Mr = 1146.05V = 1207.60 (11) Å3
Triclinic, P1Z = 1
a = 10.8432 (5) ÅMo Kα radiation
b = 11.0190 (5) ŵ = 1.06 mm1
c = 11.4895 (5) ÅT = 298 K
α = 87.389 (4)°0.51 × 0.41 × 0.28 mm
β = 75.577 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4166 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
3841 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.744Rint = 0.018
12405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4166 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.87628 (3)0.66336 (3)0.18987 (2)0.03501 (13)
S0.94478 (6)0.34381 (6)0.29384 (5)0.03783 (17)
F11.1663 (2)0.12834 (18)0.3042 (2)0.0849 (6)
F21.1277 (2)0.2934 (2)0.42237 (19)0.0823 (6)
F31.21141 (18)0.2921 (2)0.2332 (2)0.0746 (5)
O10.91087 (19)0.48368 (17)0.31679 (16)0.0457 (4)
O110.82342 (16)0.58593 (16)0.06792 (14)0.0385 (4)
O121.06845 (17)0.56675 (17)0.08787 (14)0.0392 (4)
O20.8657 (2)0.29151 (19)0.38333 (18)0.0554 (5)
O30.9633 (2)0.3058 (2)0.17093 (17)0.0565 (5)
N110.9346 (2)0.7739 (2)0.27735 (18)0.0404 (5)
N121.0489 (2)0.7376 (2)0.32118 (18)0.0405 (5)
N310.6780 (2)0.7552 (2)0.28507 (18)0.0398 (5)
N320.5597 (2)0.8206 (2)0.2480 (2)0.0490 (5)
C11.1211 (3)0.2601 (3)0.3153 (3)0.0528 (7)
C111.0707 (2)0.4946 (2)0.0058 (2)0.0339 (5)
C131.0562 (3)0.8459 (3)0.3621 (3)0.0547 (7)
H131.12470.84590.39730.066*
C140.9455 (3)0.9561 (3)0.3431 (3)0.0573 (7)
H140.92371.04500.36180.069*
C150.8730 (3)0.9071 (3)0.2903 (3)0.0517 (6)
H150.79190.95990.26670.062*
C211.3528 (3)0.5934 (3)0.1795 (3)0.0541 (7)
H211.29780.63160.12580.065*
C221.4941 (3)0.5621 (3)0.1445 (3)0.0593 (7)
H221.53360.58040.06800.071*
C231.5769 (3)0.5042 (3)0.2220 (3)0.0583 (7)
H231.67240.48280.19790.070*
C241.5189 (3)0.4781 (3)0.3344 (3)0.0580 (7)
H241.57510.43810.38690.070*
C251.3765 (3)0.5112 (3)0.3706 (2)0.0488 (6)
H251.33760.49430.44800.059*
C261.2918 (3)0.5686 (2)0.2938 (2)0.0399 (5)
C271.1380 (3)0.5980 (2)0.3325 (2)0.0420 (5)
H27A1.11920.54140.28350.050*
H27B1.11480.57660.41570.050*
C330.4481 (3)0.8550 (3)0.3418 (4)0.0718 (10)
H330.35540.90190.33880.086*
C340.4921 (4)0.8102 (4)0.4422 (3)0.0750 (10)
H340.43710.81890.52040.090*
C350.6363 (3)0.7488 (3)0.4036 (3)0.0548 (7)
H350.69600.70860.45330.066*
C410.7551 (3)0.9249 (3)0.0121 (3)0.0612 (8)
H410.80040.84070.02810.073*
C420.8153 (5)1.0140 (5)0.0117 (4)0.0862 (12)
H420.90130.99030.06760.103*
C430.7466 (6)1.1404 (5)0.0487 (5)0.1004 (15)
H430.78681.20130.03380.121*
C440.6189 (6)1.1745 (4)0.1304 (4)0.0908 (13)
H440.57211.25900.17010.109*
C450.5611 (4)1.0847 (3)0.1530 (3)0.0691 (9)
H450.47501.10830.20870.083*
C460.6285 (3)0.9591 (3)0.0946 (2)0.0487 (6)
C470.5646 (3)0.8599 (3)0.1238 (3)0.0549 (7)
H47A0.47040.89890.11270.066*
H47B0.61920.78120.06870.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03158 (19)0.03487 (19)0.03713 (19)0.01049 (13)0.01124 (12)0.00256 (12)
S0.0340 (3)0.0324 (3)0.0424 (3)0.0086 (2)0.0109 (2)0.0029 (2)
F10.0659 (12)0.0408 (9)0.1328 (18)0.0004 (8)0.0401 (12)0.0125 (10)
F20.0679 (12)0.1021 (16)0.0754 (12)0.0206 (11)0.0413 (10)0.0037 (11)
F30.0375 (9)0.0739 (12)0.0964 (14)0.0148 (8)0.0038 (9)0.0016 (10)
O10.0467 (10)0.0328 (9)0.0533 (10)0.0119 (7)0.0135 (8)0.0034 (7)
O110.0312 (8)0.0427 (9)0.0386 (8)0.0123 (7)0.0079 (7)0.0039 (7)
O120.0339 (8)0.0457 (9)0.0395 (9)0.0167 (7)0.0102 (7)0.0053 (7)
O20.0545 (11)0.0471 (10)0.0625 (12)0.0234 (9)0.0085 (9)0.0105 (9)
O30.0611 (12)0.0510 (11)0.0494 (10)0.0126 (9)0.0178 (9)0.0041 (8)
N110.0386 (11)0.0355 (10)0.0469 (11)0.0117 (9)0.0161 (9)0.0023 (9)
N120.0399 (11)0.0409 (11)0.0468 (11)0.0187 (9)0.0176 (9)0.0018 (9)
N310.0354 (10)0.0355 (10)0.0441 (11)0.0083 (8)0.0136 (9)0.0005 (8)
N320.0336 (11)0.0426 (12)0.0645 (14)0.0078 (9)0.0170 (10)0.0086 (10)
C10.0442 (15)0.0441 (15)0.0631 (17)0.0082 (12)0.0201 (13)0.0040 (12)
C110.0343 (12)0.0348 (11)0.0336 (11)0.0145 (9)0.0105 (9)0.0053 (9)
C130.0593 (17)0.0528 (16)0.0645 (17)0.0313 (14)0.0221 (14)0.0026 (13)
C140.0706 (19)0.0393 (14)0.0658 (18)0.0257 (14)0.0176 (15)0.0039 (13)
C150.0547 (16)0.0374 (13)0.0591 (16)0.0117 (12)0.0200 (13)0.0025 (11)
C210.0542 (16)0.0634 (17)0.0479 (15)0.0263 (14)0.0164 (12)0.0096 (13)
C220.0599 (18)0.0651 (18)0.0542 (16)0.0344 (15)0.0012 (14)0.0013 (14)
C230.0410 (15)0.0556 (17)0.076 (2)0.0223 (13)0.0061 (14)0.0076 (14)
C240.0413 (15)0.0668 (18)0.0694 (18)0.0194 (14)0.0251 (14)0.0018 (15)
C250.0458 (14)0.0574 (16)0.0442 (13)0.0203 (12)0.0150 (11)0.0037 (12)
C260.0408 (13)0.0413 (13)0.0422 (12)0.0187 (11)0.0153 (10)0.0003 (10)
C270.0407 (13)0.0406 (13)0.0498 (14)0.0186 (11)0.0173 (11)0.0056 (10)
C330.0348 (15)0.0578 (18)0.098 (3)0.0033 (13)0.0045 (16)0.0112 (17)
C340.0545 (19)0.068 (2)0.068 (2)0.0067 (16)0.0109 (16)0.0061 (17)
C350.0555 (16)0.0507 (16)0.0453 (14)0.0133 (13)0.0054 (12)0.0005 (12)
C410.0645 (19)0.0611 (18)0.0498 (15)0.0176 (15)0.0158 (14)0.0046 (13)
C420.088 (3)0.104 (3)0.072 (2)0.049 (2)0.017 (2)0.028 (2)
C430.145 (5)0.085 (3)0.115 (4)0.076 (3)0.065 (3)0.051 (3)
C440.123 (4)0.0448 (19)0.106 (3)0.027 (2)0.046 (3)0.0111 (19)
C450.070 (2)0.0401 (16)0.077 (2)0.0032 (14)0.0194 (17)0.0013 (14)
C460.0517 (15)0.0404 (14)0.0491 (14)0.0076 (12)0.0257 (12)0.0078 (11)
C470.0524 (16)0.0494 (15)0.0648 (17)0.0137 (13)0.0328 (14)0.0107 (13)
Geometric parameters (Å, º) top
Cu—O121.9771 (16)C21—H210.9300
Cu—O111.9834 (16)C22—C231.370 (5)
Cu—N111.990 (2)C22—H220.9300
Cu—N311.992 (2)C23—C241.363 (5)
Cu—O12.3626 (17)C23—H230.9300
S—O21.428 (2)C24—C251.385 (4)
S—O31.433 (2)C24—H240.9300
S—O11.4490 (18)C25—C261.377 (4)
S—C11.822 (3)C25—H250.9300
F1—C11.327 (3)C26—C271.511 (3)
F2—C11.327 (4)C27—H27A0.9700
F3—C11.330 (4)C27—H27B0.9700
O11—C11i1.250 (3)C33—C341.352 (5)
O12—C111.250 (3)C33—H330.9300
N11—C151.335 (3)C34—C351.381 (4)
N11—N121.353 (3)C34—H340.9300
N12—C131.342 (3)C35—H350.9300
N12—C271.459 (3)C41—C461.372 (4)
N31—C351.332 (4)C41—C421.372 (6)
N31—N321.351 (3)C41—H410.9300
N32—C331.333 (4)C42—C431.396 (7)
N32—C471.467 (4)C42—H420.9300
C11—O11i1.250 (3)C43—C441.376 (7)
C11—C11i1.527 (4)C43—H430.9300
C13—C141.365 (4)C44—C451.360 (6)
C13—H130.9300C44—H440.9300
C14—C151.377 (4)C45—C461.380 (4)
C14—H140.9300C45—H450.9300
C15—H150.9300C46—C471.505 (4)
C21—C221.377 (4)C47—H47A0.9700
C21—C261.387 (4)C47—H47B0.9700
O12—Cu—O1183.76 (6)C23—C22—H22119.8
O12—Cu—N1192.34 (8)C21—C22—H22119.8
O11—Cu—N11164.51 (8)C24—C23—C22119.8 (3)
O12—Cu—N31176.05 (7)C24—C23—H23120.1
O11—Cu—N3192.30 (7)C22—C23—H23120.1
N11—Cu—N3191.52 (8)C23—C24—C25120.1 (3)
O12—Cu—O190.13 (7)C23—C24—H24120.0
O11—Cu—O196.14 (7)C25—C24—H24120.0
N11—Cu—O198.86 (8)C26—C25—C24120.9 (3)
N31—Cu—O190.07 (7)C26—C25—H25119.5
O2—S—O3116.45 (13)C24—C25—H25119.5
O2—S—O1114.14 (12)C25—C26—C21118.2 (2)
O3—S—O1114.53 (11)C25—C26—C27120.3 (2)
O2—S—C1103.23 (13)C21—C26—C27121.5 (2)
O3—S—C1103.09 (13)N12—C27—C26112.3 (2)
O1—S—C1102.91 (12)N12—C27—H27A109.1
S—O1—Cu132.08 (11)C26—C27—H27A109.1
C11i—O11—Cu111.29 (14)N12—C27—H27B109.1
C11—O12—Cu111.28 (14)C26—C27—H27B109.1
C15—N11—N12105.6 (2)H27A—C27—H27B107.9
C15—N11—Cu124.21 (18)N32—C33—C34108.7 (3)
N12—N11—Cu129.73 (15)N32—C33—H33125.6
C13—N12—N11110.3 (2)C34—C33—H33125.6
C13—N12—C27127.1 (2)C33—C34—C35105.1 (3)
N11—N12—C27122.21 (19)C33—C34—H34127.5
C35—N31—N32105.8 (2)C35—C34—H34127.5
C35—N31—Cu123.64 (18)N31—C35—C34110.5 (3)
N32—N31—Cu130.18 (17)N31—C35—H35124.8
C33—N32—N31110.0 (2)C34—C35—H35124.8
C33—N32—C47128.1 (2)C46—C41—C42120.6 (3)
N31—N32—C47121.4 (2)C46—C41—H41119.7
F2—C1—F1108.5 (2)C42—C41—H41119.7
F2—C1—F3106.9 (3)C41—C42—C43119.5 (4)
F1—C1—F3107.0 (2)C41—C42—H42120.3
F2—C1—S112.1 (2)C43—C42—H42120.3
F1—C1—S111.0 (2)C44—C43—C42119.7 (4)
F3—C1—S111.2 (2)C44—C43—H43120.2
O11i—C11—O12126.9 (2)C42—C43—H43120.2
O11i—C11—C11i116.3 (2)C45—C44—C43120.0 (4)
O12—C11—C11i116.7 (2)C45—C44—H44120.0
N12—C13—C14108.0 (2)C43—C44—H44120.0
N12—C13—H13126.0C44—C45—C46120.9 (4)
C14—C13—H13126.0C44—C45—H45119.6
C13—C14—C15105.2 (2)C46—C45—H45119.6
C13—C14—H14127.4C41—C46—C45119.4 (3)
C15—C14—H14127.4C41—C46—C47120.6 (3)
N11—C15—C14110.9 (3)C45—C46—C47120.0 (3)
N11—C15—H15124.5N32—C47—C46111.4 (2)
C14—C15—H15124.5N32—C47—H47A109.3
C22—C21—C26120.7 (3)C46—C47—H47A109.3
C22—C21—H21119.7N32—C47—H47B109.3
C26—C21—H21119.7C46—C47—H47B109.3
C23—C22—C21120.3 (3)H47A—C47—H47B108.0
O2—S—O1—Cu136.62 (14)O2—S—C1—F3176.4 (2)
O3—S—O1—Cu1.19 (19)O3—S—C1—F354.7 (2)
C1—S—O1—Cu112.29 (16)O1—S—C1—F364.6 (2)
O12—Cu—O1—S59.49 (15)Cu—O12—C11—O11i174.42 (19)
O11—Cu—O1—S24.25 (15)Cu—O12—C11—C11i5.4 (3)
N11—Cu—O1—S151.88 (15)N11—N12—C13—C141.0 (3)
N31—Cu—O1—S116.57 (15)C27—N12—C13—C14174.1 (2)
O12—Cu—O11—C11i6.67 (15)N12—C13—C14—C150.4 (4)
N11—Cu—O11—C11i82.8 (3)N12—N11—C15—C140.8 (3)
N31—Cu—O11—C11i173.11 (16)Cu—N11—C15—C14173.3 (2)
O1—Cu—O11—C11i82.79 (16)C13—C14—C15—N110.2 (4)
O11—Cu—O12—C116.57 (15)C26—C21—C22—C230.9 (5)
N11—Cu—O12—C11171.54 (16)C21—C22—C23—C240.3 (5)
O12—Cu—N11—C15127.3 (2)C22—C23—C24—C250.6 (5)
O11—Cu—N11—C1552.3 (4)C23—C24—C25—C261.0 (4)
N31—Cu—N11—C1551.9 (2)C24—C25—C26—C210.5 (4)
O1—Cu—N11—C15142.2 (2)C24—C25—C26—C27177.1 (3)
O12—Cu—N11—N1243.4 (2)C22—C21—C26—C250.4 (4)
O11—Cu—N11—N12118.4 (3)C22—C21—C26—C27178.0 (3)
N31—Cu—N11—N12137.4 (2)C13—N12—C27—C2649.6 (3)
O1—Cu—N11—N1247.1 (2)N11—N12—C27—C26138.0 (2)
C15—N11—N12—C131.1 (3)C25—C26—C27—N12125.4 (3)
Cu—N11—N12—C13173.07 (19)C21—C26—C27—N1257.1 (3)
C15—N11—N12—C27174.6 (2)N31—N32—C33—C341.0 (4)
Cu—N11—N12—C2713.4 (3)C47—N32—C33—C34172.7 (3)
O11—Cu—N31—C35130.9 (2)N32—C33—C34—C350.8 (4)
N11—Cu—N31—C3564.2 (2)N32—N31—C35—C340.2 (3)
O1—Cu—N31—C3534.7 (2)Cu—N31—C35—C34173.6 (2)
O11—Cu—N31—N3240.8 (2)C33—C34—C35—N310.4 (4)
N11—Cu—N31—N32124.2 (2)C46—C41—C42—C430.2 (6)
O1—Cu—N31—N32137.0 (2)C41—C42—C43—C440.5 (6)
C35—N31—N32—C330.8 (3)C42—C43—C44—C450.8 (7)
Cu—N31—N32—C33173.6 (2)C43—C44—C45—C460.3 (6)
C35—N31—N32—C47173.1 (2)C42—C41—C46—C450.7 (5)
Cu—N31—N32—C4714.1 (4)C42—C41—C46—C47178.0 (3)
O2—S—C1—F264.0 (2)C44—C45—C46—C410.4 (5)
O3—S—C1—F2174.3 (2)C44—C45—C46—C47178.2 (3)
O1—S—C1—F255.0 (2)C33—N32—C47—C46107.3 (4)
O2—S—C1—F157.4 (2)N31—N32—C47—C4663.6 (3)
O3—S—C1—F164.2 (2)C41—C46—C47—N32113.1 (3)
O1—S—C1—F1176.4 (2)C45—C46—C47—N3265.5 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···F30.972.543.313 (3)136
C27—H27A···O10.972.533.240 (4)130
C27—H27A···O120.972.423.154 (3)132
C41—H41···O3i0.932.573.327 (4)139
C47—H47B···O110.972.363.109 (4)133
C14—H14···O2ii0.932.533.454 (4)172
C23—H23···O11iii0.932.523.253 (4)135
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(CF3O3S)2(C2O4)(C10H10N2)4]
Mr1146.05
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.8432 (5), 11.0190 (5), 11.4895 (5)
α, β, γ (°)87.389 (4), 75.577 (4), 65.539 (4)
V3)1207.60 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.51 × 0.41 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.552, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
12405, 4166, 3841
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.111, 1.00
No. of reflections4166
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Cu—O121.9771 (16)Cu—N311.992 (2)
Cu—O111.9834 (16)Cu—O12.3626 (17)
Cu—N111.990 (2)
O12—Cu—O1183.76 (6)N11—Cu—N3191.52 (8)
O12—Cu—N1192.34 (8)O12—Cu—O190.13 (7)
O11—Cu—N11164.51 (8)O11—Cu—O196.14 (7)
O12—Cu—N31176.05 (7)N11—Cu—O198.86 (8)
O11—Cu—N3192.30 (7)N31—Cu—O190.07 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···F30.972.543.313 (3)136
C27—H27A···O10.972.533.240 (4)130
C27—H27A···O120.972.423.154 (3)132
C41—H41···O3i0.932.573.327 (4)139
C47—H47B···O110.972.363.109 (4)133
C14—H14···O2ii0.932.533.454 (4)172
C23—H23···O11iii0.932.523.253 (4)135
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds