Download citation
Download citation
link to html
The title compound, [Sn(C6H3Cl2)4], crystallizes in the monoclinic space group C2/c, with the mol­ecules having no symmetry. In contrast, its isostere [3,5-(CH3)2C6H3]4Sn, (II), crystallizes in the tetragonal space group P \overline 421c.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018439/tk6129sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018439/tk6129Isup2.hkl
Contains datablock I

CCDC reference: 222823

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.050
  • wR factor = 0.123
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT052_ALERT_1_A (Proper) Absorption Correction Method Missing .. ?
Alert level C PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) = 1.15 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The crystal stuctures of most of the tetraaryltin(IV) compounds reported to date (Lloyd & Brock, 1997; Schürmann et al., 1999; Wharf & Bélanger-Gariépy, 2003) are in close-packed tetragonal space groups, viz. P-421c, I-4 and P-42/n. In these structures, the Ar4Sn molecules are located on sites of −4 symmetry, the molecular conformation with the lowest energy, as determined previously for Ar4Si analogues (Hutchings et al., 1974). This also the case for (C6F5)4Sn (Karipides et al., 1974) and (m-CH3C6H4)4Sn (Karipides & Oertel, 1977), both of which crystallize in I41/a. Deviations from tetragonal symmetry appear to require larger, more obtrusive, ring substituents, examples being [p-CH3S(O2)C6H4]4Sn (Wharf et al., 1990) and (p-CH3CH2C6H4)4Sn (Wharf & Lebuis, 2000), which both crystallize in C2/c with molecules having 2 symmetry, and others with no molecular symmetry, such as (p-CH3CH2OC6H4)4Sn in P21/c (Wharf & Simard, 1991), and both (m-CH3OC6H4)4Sn in C2/c and (o-CH3OC6H4)4Sn in P-1 (Wharf & Simard, 1995).

Desiraju et al. (1986) have proposed that since the Cl atom and the methyl group have almost the same volume, they act as isosteres, with chlorine/methyl analogues being effectively isomorphous. One such example is the toluene and chlorobenzene solvates of 2,3,7,8-tetraphenyl-1,9,10-anthyridine (Madhavi, et al., 1997). However, Ng (1997) found that (p-ClC6H4)4Sn crystallizes in P-1, with no molecular symmetry, and is clearly not isomorphous with (p-CH3C6H4)4Sn in I-4 (Karipides & Wolfe, 1975). We present here the title compound, (I), which has been investigated for comparison with its methyl analogue [3,5-(CH3)2C6H3]4Sn, (II) (Wharf & Bélanger-Gariépy, 2003).

Compound (I) crystallizes in space group C2/c with the molecules having no symmetry and in this way resembles (m-CH3OC6H4)4Sn. However, the Sn—C distances are identical [2.134 (6)–2.135 (6) Å], while the distortion from tetrahedral geometry at the Sn atom is small [105.9 (2)—113.8 (2)°; Fig. 1 and Table 1]. Intermolecular contacts are all greater than the van der Waals distances, the shortest Cl—Cl distance being 3.60 Å and the shortest H—Cl distance being 3.03 Å.

Violations of the chloro–methyl exchange rule are observed when intermolecular directional forces or weak `bonds' are present (Desiraju, 1986). Schürmann et al. (1999) have proposed weak C—H—Cl interactions – still greater than the van der Waals – as a possible rationale for the different packing of (p-ClC6H4)4Sn and (p-CH3C6H4)4Sn. For (I), the packing diagram (Fig. 2) does not show any clear set of such directed interactions, meaning a more detailed comparison of the structures of (I) and (II) is required for the basis of the crystal structure differences to be determined.

Experimental top

The title compound was prepared as described by Wharf & Simard (1997). Suitable crystals were obtained from recrystallization of an acetone solution of the compound.

Refinement top

H atoms were constrained to the parent site using a riding model, with C—H distances of 0.93 Å and Uiso(H) values of 1.2Ueq(parent atom).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985)'; cell refinement: MSC/AFC Diffractometer Control Software; data reduction: DARTD2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: ORTEPII (Johnson, 1976) in NRCVAX; software used to prepare material for publication: NRCVAX and SHELXL96.

Figures top
[Figure 1] Fig. 1. ORTEP (SHELXTL, 1997) drawing of (I). Displacement ellipsoids correspond to 30% probability.
[Figure 2] Fig. 2. Packing diagram for (I), viewed along the b axis. H atoms have been omitted for clarity.
Tetrakis(3,5-dichlorophenyl)tin(IV) top
Crystal data top
C24H12Cl8SnF(000) = 2736
Mr = 702.63Dx = 1.766 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C2ycCell parameters from 25 reflections
a = 24.861 (8) Åθ = 12.5–15.5°
b = 11.908 (3) ŵ = 1.79 mm1
c = 18.139 (4) ÅT = 293 K
β = 100.16 (2)°Irregular shape, colourless
V = 5286 (2) Å30.55 × 0.47 × 0.45 mm
Z = 8
Data collection top
Rigaku AFC6S
diffractometer
3632 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.099
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 3131
Absorption correction: ψ scan
(ABSN in NRCVAX; Gabe et al, 1989)
k = 1515
Tmin = 0.354, Tmax = 0.449l = 2222
19754 measured reflections3 standard reflections every 250 reflections
5195 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5195 reflectionsΔρmax = 0.70 e Å3
299 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL96, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00069 (9)
Crystal data top
C24H12Cl8SnV = 5286 (2) Å3
Mr = 702.63Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.861 (8) ŵ = 1.79 mm1
b = 11.908 (3) ÅT = 293 K
c = 18.139 (4) Å0.55 × 0.47 × 0.45 mm
β = 100.16 (2)°
Data collection top
Rigaku AFC6S
diffractometer
3632 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSN in NRCVAX; Gabe et al, 1989)
Rint = 0.099
Tmin = 0.354, Tmax = 0.4493 standard reflections every 250 reflections
19754 measured reflections intensity decay: 2.3%
5195 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.06Δρmax = 0.70 e Å3
5195 reflectionsΔρmin = 0.94 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.883604 (16)0.13574 (3)0.15916 (2)0.04155 (17)
Cl10.77220 (10)0.17261 (18)0.41056 (14)0.0900 (7)
Cl20.82029 (9)0.55295 (15)0.27881 (12)0.0789 (6)
Cl31.02826 (11)0.50289 (18)0.1122 (2)0.1204 (11)
Cl41.07935 (8)0.08600 (17)0.03834 (11)0.0697 (5)
Cl50.97003 (8)0.19490 (17)0.38142 (11)0.0728 (5)
Cl60.88133 (9)0.34074 (16)0.10667 (12)0.0777 (6)
Cl70.81048 (9)0.14844 (19)0.16107 (11)0.0788 (6)
Cl80.66112 (7)0.06735 (16)0.01098 (11)0.0664 (5)
C110.8521 (2)0.2317 (5)0.2415 (3)0.0442 (14)
C120.8269 (3)0.1779 (6)0.2943 (4)0.0536 (16)
H120.82680.09990.29650.064*
C130.8021 (2)0.2396 (6)0.3437 (4)0.0515 (16)
C140.7998 (3)0.3558 (5)0.3397 (4)0.0529 (16)
H140.78200.39700.37160.063*
C150.8246 (3)0.4082 (5)0.2874 (4)0.0504 (15)
C160.8512 (2)0.3482 (5)0.2389 (3)0.0462 (14)
H160.86840.38600.20470.055*
C210.9551 (2)0.2063 (5)0.1273 (3)0.0434 (14)
C220.9681 (3)0.3209 (6)0.1332 (5)0.064 (2)
H220.94590.37040.15400.077*
C231.0140 (3)0.3600 (5)0.1081 (5)0.069 (2)
C241.0478 (3)0.2898 (6)0.0777 (4)0.0601 (18)
H241.07820.31760.06030.072*
C251.0357 (2)0.1779 (5)0.0736 (4)0.0476 (15)
C260.9901 (2)0.1353 (5)0.0984 (3)0.0416 (13)
H260.98310.05860.09550.050*
C310.8998 (2)0.0331 (5)0.1958 (4)0.0458 (14)
C320.9270 (2)0.0570 (5)0.2687 (4)0.0471 (15)
H320.93750.00100.30250.057*
C330.9381 (3)0.1664 (5)0.2895 (4)0.0495 (15)
C340.9244 (2)0.2550 (5)0.2424 (4)0.0501 (16)
H340.93210.32860.25790.060*
C350.8984 (3)0.2305 (5)0.1705 (4)0.0543 (17)
C360.8843 (2)0.1219 (5)0.1468 (3)0.0485 (15)
H360.86480.10860.09900.058*
C410.8224 (2)0.1255 (4)0.0607 (3)0.0407 (13)
C420.7682 (2)0.1035 (5)0.0675 (3)0.0440 (14)
H420.75880.09590.11460.053*
C430.7290 (2)0.0930 (5)0.0043 (4)0.0457 (14)
C440.7415 (3)0.1043 (5)0.0661 (4)0.0532 (16)
H440.71490.09570.10870.064*
C450.7954 (3)0.1291 (5)0.0717 (3)0.0513 (16)
C460.8354 (2)0.1384 (5)0.0096 (3)0.0439 (14)
H460.87130.15320.01490.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0399 (2)0.0394 (2)0.0458 (3)0.00261 (18)0.00886 (17)0.00493 (19)
Cl10.1108 (18)0.0703 (13)0.1079 (18)0.0104 (12)0.0715 (15)0.0044 (12)
Cl20.1084 (16)0.0439 (9)0.0967 (15)0.0166 (10)0.0515 (13)0.0073 (9)
Cl30.0983 (18)0.0484 (12)0.224 (3)0.0214 (11)0.054 (2)0.0187 (15)
Cl40.0636 (11)0.0769 (12)0.0750 (12)0.0067 (9)0.0296 (9)0.0139 (10)
Cl50.0791 (13)0.0694 (12)0.0633 (12)0.0118 (10)0.0056 (10)0.0110 (10)
Cl60.1018 (16)0.0541 (11)0.0793 (14)0.0082 (10)0.0216 (12)0.0227 (9)
Cl70.0880 (14)0.1046 (16)0.0475 (10)0.0097 (12)0.0222 (9)0.0052 (10)
Cl80.0422 (9)0.0668 (12)0.0883 (13)0.0105 (8)0.0062 (9)0.0033 (10)
C110.039 (3)0.046 (3)0.047 (4)0.006 (3)0.009 (3)0.008 (3)
C120.049 (4)0.052 (4)0.060 (4)0.006 (3)0.010 (3)0.012 (3)
C130.049 (4)0.057 (4)0.053 (4)0.005 (3)0.021 (3)0.005 (3)
C140.054 (4)0.051 (4)0.060 (4)0.006 (3)0.027 (3)0.006 (3)
C150.053 (4)0.043 (3)0.056 (4)0.008 (3)0.012 (3)0.003 (3)
C160.048 (3)0.048 (4)0.044 (3)0.007 (3)0.012 (3)0.001 (3)
C210.039 (3)0.042 (3)0.050 (4)0.004 (3)0.009 (3)0.002 (3)
C220.051 (4)0.045 (4)0.099 (6)0.005 (3)0.017 (4)0.010 (4)
C230.054 (4)0.038 (3)0.118 (7)0.010 (3)0.020 (4)0.001 (4)
C240.041 (4)0.064 (4)0.077 (5)0.007 (3)0.015 (3)0.004 (4)
C250.040 (3)0.052 (4)0.051 (4)0.004 (3)0.009 (3)0.005 (3)
C260.045 (3)0.041 (3)0.037 (3)0.005 (3)0.001 (2)0.003 (3)
C310.040 (3)0.045 (3)0.056 (4)0.003 (3)0.017 (3)0.001 (3)
C320.045 (3)0.041 (3)0.055 (4)0.001 (3)0.010 (3)0.003 (3)
C330.045 (3)0.055 (4)0.049 (4)0.004 (3)0.012 (3)0.001 (3)
C340.051 (4)0.044 (4)0.058 (4)0.000 (3)0.018 (3)0.008 (3)
C350.064 (4)0.041 (3)0.064 (5)0.007 (3)0.028 (4)0.013 (3)
C360.056 (4)0.046 (4)0.046 (4)0.007 (3)0.019 (3)0.002 (3)
C410.044 (3)0.034 (3)0.046 (3)0.006 (3)0.010 (3)0.003 (3)
C420.050 (4)0.035 (3)0.047 (4)0.002 (3)0.009 (3)0.001 (3)
C430.044 (3)0.032 (3)0.063 (4)0.003 (3)0.013 (3)0.002 (3)
C440.053 (4)0.040 (3)0.063 (4)0.006 (3)0.000 (3)0.006 (3)
C450.067 (4)0.048 (4)0.042 (3)0.012 (3)0.016 (3)0.002 (3)
C460.041 (3)0.036 (3)0.054 (4)0.005 (3)0.007 (3)0.006 (3)
Geometric parameters (Å, º) top
Sn1—C312.134 (6)C22—H220.9300
Sn1—C112.135 (5)C23—C241.368 (10)
Sn1—C412.135 (6)C24—C251.365 (9)
Sn1—C212.135 (6)C24—H240.9300
Cl1—C131.725 (6)C25—C261.387 (8)
Cl2—C151.733 (7)C26—H260.9300
Cl3—C231.737 (7)C31—C361.391 (8)
Cl4—C251.740 (6)C31—C321.403 (9)
Cl5—C331.750 (7)C32—C331.371 (9)
Cl6—C351.752 (6)C32—H320.9300
Cl7—C451.741 (6)C33—C341.362 (9)
Cl8—C431.741 (6)C34—C351.381 (9)
C11—C161.388 (8)C34—H340.9300
C11—C121.391 (8)C35—C361.388 (9)
C12—C131.385 (8)C36—H360.9300
C12—H120.9300C41—C461.380 (8)
C13—C141.386 (8)C41—C421.399 (8)
C14—C151.370 (9)C42—C431.372 (8)
C14—H140.9300C42—H420.9300
C15—C161.386 (8)C43—C441.374 (9)
C16—H160.9300C44—C451.393 (9)
C21—C261.383 (8)C44—H440.9300
C21—C221.402 (9)C45—C461.368 (9)
C22—C231.383 (9)C46—H460.9300
C31—Sn1—C11111.0 (2)C21—C26—C25120.4 (6)
C31—Sn1—C41105.9 (2)C21—C26—H26119.8
C11—Sn1—C41108.7 (2)C25—C26—H26119.8
C31—Sn1—C21109.6 (2)C36—C31—C32118.8 (6)
C11—Sn1—C21113.8 (2)C36—C31—Sn1120.1 (5)
C41—Sn1—C21107.5 (2)C32—C31—Sn1121.1 (4)
C16—C11—C12118.4 (5)C33—C32—C31119.4 (6)
C16—C11—Sn1121.2 (4)C33—C32—H32120.3
C12—C11—Sn1120.0 (4)C31—C32—H32120.3
C13—C12—C11120.5 (6)C34—C33—C32123.2 (6)
C13—C12—H12119.7C34—C33—Cl5118.0 (5)
C11—C12—H12119.7C32—C33—Cl5118.8 (5)
C12—C13—C14120.9 (6)C33—C34—C35116.9 (6)
C12—C13—Cl1120.4 (5)C33—C34—H34121.6
C14—C13—Cl1118.7 (5)C35—C34—H34121.6
C15—C14—C13118.2 (6)C34—C35—C36122.6 (6)
C15—C14—H14120.9C34—C35—Cl6118.9 (5)
C13—C14—H14120.9C36—C35—Cl6118.4 (6)
C14—C15—C16121.8 (6)C35—C36—C31118.9 (6)
C14—C15—Cl2119.1 (5)C35—C36—H36120.5
C16—C15—Cl2119.0 (5)C31—C36—H36120.5
C15—C16—C11120.1 (6)C46—C41—C42119.3 (5)
C15—C16—H16120.0C46—C41—Sn1121.2 (4)
C11—C16—H16120.0C42—C41—Sn1119.5 (4)
C26—C21—C22118.2 (6)C43—C42—C41119.7 (6)
C26—C21—Sn1118.2 (4)C43—C42—H42120.1
C22—C21—Sn1123.6 (5)C41—C42—H42120.1
C23—C22—C21119.6 (6)C42—C43—C44121.6 (6)
C23—C22—H22120.2C42—C43—Cl8120.8 (5)
C21—C22—H22120.2C44—C43—Cl8117.6 (5)
C24—C23—C22121.9 (6)C43—C44—C45117.8 (6)
C24—C23—Cl3118.8 (6)C43—C44—H44121.1
C22—C23—Cl3119.3 (6)C45—C44—H44121.1
C25—C24—C23118.4 (6)C46—C45—C44121.7 (6)
C25—C24—H24120.8C46—C45—Cl7120.8 (5)
C23—C24—H24120.8C44—C45—Cl7117.6 (5)
C24—C25—C26121.5 (6)C45—C46—C41119.8 (6)
C24—C25—Cl4119.3 (5)C45—C46—H46120.1
C26—C25—Cl4119.1 (5)C41—C46—H46120.1
C31—Sn1—C11—C16164.0 (5)C11—Sn1—C31—C36135.8 (5)
C41—Sn1—C11—C1679.9 (5)C41—Sn1—C31—C3618.0 (5)
C21—Sn1—C11—C1639.8 (6)C21—Sn1—C31—C3697.6 (5)
C31—Sn1—C11—C1222.7 (6)C11—Sn1—C31—C3245.4 (5)
C41—Sn1—C11—C1293.4 (5)C41—Sn1—C31—C32163.2 (5)
C21—Sn1—C11—C12146.9 (5)C21—Sn1—C31—C3281.1 (5)
C16—C11—C12—C130.7 (9)C36—C31—C32—C330.6 (9)
Sn1—C11—C12—C13174.2 (5)Sn1—C31—C32—C33178.1 (4)
C11—C12—C13—C142.6 (10)C31—C32—C33—C340.6 (9)
C11—C12—C13—Cl1178.5 (5)C31—C32—C33—Cl5177.9 (5)
C12—C13—C14—C152.4 (10)C32—C33—C34—C350.4 (10)
Cl1—C13—C14—C15178.7 (5)Cl5—C33—C34—C35179.0 (5)
C13—C14—C15—C160.4 (10)C33—C34—C35—C362.8 (9)
C13—C14—C15—Cl2177.6 (5)C33—C34—C35—Cl6178.4 (5)
C14—C15—C16—C111.4 (10)C34—C35—C36—C314.0 (9)
Cl2—C15—C16—C11175.8 (5)Cl6—C35—C36—C31177.1 (5)
C12—C11—C16—C151.2 (9)C32—C31—C36—C352.8 (9)
Sn1—C11—C16—C15172.2 (5)Sn1—C31—C36—C35175.9 (4)
C31—Sn1—C21—C2630.8 (5)C31—Sn1—C41—C46103.2 (5)
C11—Sn1—C21—C26155.8 (4)C11—Sn1—C41—C46137.4 (4)
C41—Sn1—C21—C2683.8 (5)C21—Sn1—C41—C4613.8 (5)
C31—Sn1—C21—C22150.0 (6)C31—Sn1—C41—C4275.7 (5)
C11—Sn1—C21—C2225.0 (6)C11—Sn1—C41—C4243.7 (5)
C41—Sn1—C21—C2295.3 (6)C21—Sn1—C41—C42167.3 (4)
C26—C21—C22—C232.1 (10)C46—C41—C42—C431.1 (8)
Sn1—C21—C22—C23177.1 (6)Sn1—C41—C42—C43177.8 (4)
C21—C22—C23—C240.4 (12)C41—C42—C43—C440.4 (9)
C21—C22—C23—Cl3177.4 (6)C41—C42—C43—Cl8179.2 (4)
C22—C23—C24—C251.1 (12)C42—C43—C44—C451.2 (9)
Cl3—C23—C24—C25178.9 (6)Cl8—C43—C44—C45177.6 (4)
C23—C24—C25—C260.9 (11)C43—C44—C45—C462.2 (9)
C23—C24—C25—Cl4177.7 (6)C43—C44—C45—Cl7177.7 (4)
C22—C21—C26—C252.3 (9)C44—C45—C46—C411.5 (9)
Sn1—C21—C26—C25176.9 (4)Cl7—C45—C46—C41178.4 (4)
C24—C25—C26—C210.8 (9)C42—C41—C46—C450.2 (8)
Cl4—C25—C26—C21179.4 (5)Sn1—C41—C46—C45178.7 (4)

Experimental details

Crystal data
Chemical formulaC24H12Cl8Sn
Mr702.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.861 (8), 11.908 (3), 18.139 (4)
β (°) 100.16 (2)
V3)5286 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.55 × 0.47 × 0.45
Data collection
DiffractometerRigaku AFC6S
diffractometer
Absorption correctionψ scan
(ABSN in NRCVAX; Gabe et al, 1989)
Tmin, Tmax0.354, 0.449
No. of measured, independent and
observed [I > 2σ(I)] reflections
19754, 5195, 3632
Rint0.099
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.06
No. of reflections5195
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.94

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985)', MSC/AFC Diffractometer Control Software, DARTD2 in NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL96 (Sheldrick, 1996), ORTEPII (Johnson, 1976) in NRCVAX, NRCVAX and SHELXL96.

Selected geometric parameters (Å, º) top
Sn1—C312.134 (6)Sn1—C412.135 (6)
Sn1—C112.135 (5)Sn1—C212.135 (6)
C31—Sn1—C11111.0 (2)C26—C21—C22118.2 (6)
C31—Sn1—C41105.9 (2)C26—C21—Sn1118.2 (4)
C11—Sn1—C41108.7 (2)C22—C21—Sn1123.6 (5)
C31—Sn1—C21109.6 (2)C36—C31—C32118.8 (6)
C11—Sn1—C21113.8 (2)C36—C31—Sn1120.1 (5)
C41—Sn1—C21107.5 (2)C32—C31—Sn1121.1 (4)
C16—C11—C12118.4 (5)C46—C41—C42119.3 (5)
C16—C11—Sn1121.2 (4)C46—C41—Sn1121.2 (4)
C12—C11—Sn1120.0 (4)C42—C41—Sn1119.5 (4)
C31—Sn1—C11—C16164.0 (5)C11—Sn1—C31—C36135.8 (5)
C41—Sn1—C11—C1679.9 (5)C41—Sn1—C31—C3618.0 (5)
C21—Sn1—C11—C1639.8 (6)C21—Sn1—C31—C3697.6 (5)
C31—Sn1—C11—C1222.7 (6)C11—Sn1—C31—C3245.4 (5)
C41—Sn1—C11—C1293.4 (5)C41—Sn1—C31—C32163.2 (5)
C21—Sn1—C11—C12146.9 (5)C21—Sn1—C31—C3281.1 (5)
Sn1—C11—C12—C13174.2 (5)Sn1—C31—C32—C33178.1 (4)
Sn1—C11—C16—C15172.2 (5)Sn1—C31—C36—C35175.9 (4)
C31—Sn1—C21—C2630.8 (5)C31—Sn1—C41—C46103.2 (5)
C11—Sn1—C21—C26155.8 (4)C11—Sn1—C41—C46137.4 (4)
C41—Sn1—C21—C2683.8 (5)C21—Sn1—C41—C4613.8 (5)
C31—Sn1—C21—C22150.0 (6)C31—Sn1—C41—C4275.7 (5)
C11—Sn1—C21—C2225.0 (6)C11—Sn1—C41—C4243.7 (5)
C41—Sn1—C21—C2295.3 (6)C21—Sn1—C41—C42167.3 (4)
Sn1—C21—C22—C23177.1 (6)Sn1—C41—C46—C45178.7 (4)
Sn1—C21—C26—C25176.9 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds