Download citation
Download citation
link to html
The title compound, (C6H5C2H4NH3)2[PbI4], crystallizes as an organic–inorganic hybrid-perovskite, with Pb located on a centre of inversion. As such, it consists of layers of tilted corner-sharing iodo­plumbate octahedra, parallel to the bc plane. Adjacent inorganic layers are separated by organic 1-phenyl­ethyl­ammonium layers. The individual organic cations are linked to the inorganic layer by hydrogen bonds, and to adjacent cations by π–π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019025/tk6084sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019025/tk6084Isup2.hkl
Contains datablock I

CCDC reference: 200737

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.024
  • wR factor = 0.057
  • Data-to-parameter ratio = 27.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C16 H24 I4 N2 Pb1 Atom count from _chemical_formula_moiety:C160 H240 N20

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2002).

Bis(1-phenylethylammonium)Tetraiodoplumbate(II) top
Crystal data top
(C8H12N)2[PbI4]F(000) = 856
Mr = 959.16Dx = 2.676 Mg m3
Monoclinic, P21/aMelting point = 165–168 K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71073 Å
a = 8.7935 (11) ÅCell parameters from 870 reflections
b = 9.3913 (11) Åθ = 3.0–28.2°
c = 14.6428 (18) ŵ = 12.27 mm1
β = 100.093 (2)°T = 293 K
V = 1190.5 (3) Å3Rhomboid, orange
Z = 20.3 × 0.26 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2950 independent reflections
Radiation source: fine-focus sealed tube2580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: numerical
(XPREP; Bruker, 1999)
h = 1111
Tmin = 0.072, Tmax = 0.161k = 912
8011 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.4657P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
2950 reflectionsΔρmax = 0.83 e Å3
107 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00101 (9)
Special details top

Experimental. Numerical integration absroption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5275 (6)0.9595 (7)0.2491 (4)0.0549 (13)
H10.42660.91290.23350.066*
C20.5922 (6)0.9284 (6)0.3509 (3)0.0487 (12)
C30.7301 (7)0.9928 (5)0.3970 (4)0.0523 (13)
H30.7871.05220.36490.063*
C40.7787 (6)0.9662 (6)0.4900 (4)0.0518 (12)
H40.86931.00710.52140.062*
C50.6927 (6)0.8793 (6)0.5356 (4)0.0537 (12)
H50.72530.86160.59850.064*
C60.5606 (7)0.8180 (6)0.4911 (4)0.0563 (13)
H60.50420.75890.52360.068*
C70.5103 (6)0.8422 (6)0.3999 (4)0.0563 (13)
H70.41930.79990.37030.068*
C80.5062 (8)1.1141 (7)0.2261 (4)0.0757 (19)
H8A0.46481.12460.16130.114*
H8B0.6041.16190.24010.114*
H8C0.4361.15520.26210.114*
I10.19412 (3)0.30343 (3)0.00066 (2)0.04323 (9)
I20.54813 (4)0.52588 (3)0.220390 (19)0.04376 (9)
Pb0.50.500.03565 (8)
N10.6330 (5)0.8960 (5)0.1876 (3)0.0491 (10)
HNA0.64730.80380.20050.059*
HNB0.72370.94070.19810.059*
HNC0.58980.90630.12830.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (3)0.065 (3)0.055 (3)0.005 (3)0.014 (2)0.004 (3)
C20.050 (3)0.052 (3)0.043 (2)0.015 (2)0.008 (2)0.009 (2)
C30.058 (3)0.052 (3)0.051 (3)0.007 (2)0.022 (2)0.001 (2)
C40.042 (3)0.056 (3)0.056 (3)0.001 (2)0.007 (2)0.008 (2)
C50.063 (3)0.051 (3)0.047 (3)0.012 (3)0.011 (2)0.003 (2)
C60.062 (3)0.043 (3)0.067 (3)0.003 (2)0.018 (3)0.001 (2)
C70.052 (3)0.049 (3)0.068 (3)0.000 (2)0.010 (3)0.011 (3)
C80.100 (5)0.064 (4)0.068 (4)0.027 (4)0.028 (3)0.020 (3)
I10.03643 (16)0.04865 (19)0.04418 (16)0.00984 (12)0.00588 (11)0.00068 (12)
I20.04740 (18)0.04987 (18)0.03303 (15)0.00212 (13)0.00435 (12)0.00037 (12)
Pb0.03496 (13)0.04045 (13)0.03161 (12)0.00200 (9)0.00605 (9)0.00309 (9)
N10.048 (2)0.057 (3)0.041 (2)0.0059 (19)0.0057 (17)0.0068 (19)
Geometric parameters (Å, º) top
C1—C81.495 (8)C7—H70.93
C1—N11.523 (6)C8—H8A0.96
C1—C21.528 (7)C8—H8B0.96
C1—H10.98C8—H8C0.96
C2—C71.368 (7)I1—Pb3.2609 (4)
C2—C31.416 (8)I1—Pbi3.3227 (4)
C3—C41.377 (8)I2—Pb3.1896 (5)
C3—H30.93Pb—I2ii3.1896 (5)
C4—C51.364 (7)Pb—I1ii3.2609 (4)
C4—H40.93Pb—I1iii3.3227 (4)
C5—C61.356 (8)Pb—I1iv3.3227 (4)
C5—H50.93N1—HNA0.89
C6—C71.349 (7)N1—HNB0.89
C6—H60.93N1—HNC0.89
C8—C1—N1108.2 (4)H8A—C8—H8B109.5
C8—C1—C2114.6 (5)C1—C8—H8C109.5
N1—C1—C2109.9 (4)H8A—C8—H8C109.5
C8—C1—H1108H8B—C8—H8C109.5
N1—C1—H1108Pb—I1—Pbi155.425 (11)
C2—C1—H1108I2ii—Pb—I2180.000 (12)
C7—C2—C3119.2 (5)I2ii—Pb—I189.469 (8)
C7—C2—C1119.0 (5)I2—Pb—I190.531 (8)
C3—C2—C1121.6 (5)I2ii—Pb—I1ii90.531 (8)
C4—C3—C2119.0 (5)I2—Pb—I1ii89.469 (8)
C4—C3—H3120.5I1—Pb—I1ii180
C2—C3—H3120.5I2ii—Pb—I1iii95.230 (8)
C5—C4—C3119.3 (5)I2—Pb—I1iii84.770 (8)
C5—C4—H4120.3I1—Pb—I1iii93.532 (9)
C3—C4—H4120.3I1ii—Pb—I1iii86.468 (9)
C6—C5—C4121.3 (5)I2ii—Pb—I1iv84.770 (8)
C6—C5—H5119.3I2—Pb—I1iv95.230 (8)
C4—C5—H5119.3I1—Pb—I1iv86.468 (9)
C7—C6—C5120.6 (5)I1ii—Pb—I1iv93.532 (9)
C7—C6—H6119.7I1iii—Pb—I1iv180.000 (10)
C5—C6—H6119.7C1—N1—HNA109.5
C6—C7—C2120.5 (5)C1—N1—HNB109.5
C6—C7—H7119.8HNA—N1—HNB109.5
C2—C7—H7119.8C1—N1—HNC109.5
C1—C8—H8A109.5HNA—N1—HNC109.5
C1—C8—H8B109.5HNB—N1—HNC109.5
C8—C1—C2—C7123.1 (6)C4—C5—C6—C70.2 (8)
N1—C1—C2—C7114.8 (5)C5—C6—C7—C20.3 (8)
C8—C1—C2—C353.3 (7)C3—C2—C7—C60.4 (8)
N1—C1—C2—C368.9 (6)C1—C2—C7—C6176.8 (5)
C7—C2—C3—C40.4 (7)Pbi—I1—Pb—I2ii85.71 (2)
C1—C2—C3—C4176.8 (5)Pbi—I1—Pb—I294.29 (2)
C2—C3—C4—C50.4 (8)Pbi—I1—Pb—I1iii179.08 (3)
C3—C4—C5—C60.3 (8)Pbi—I1—Pb—I1iv0.92 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HNA···I20.892.783.605 (4)154
N1—HNB···I2v0.892.833.671 (4)158
N1—HNC···I1iii0.893.003.710 (4)138
Symmetry codes: (iii) x+1/2, y+1/2, z; (v) x+1/2, y+3/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds