Download citation
Download citation
link to html
The structure of the mononuclear octahedral rhodium(III) complex, [RhCl3(L)]·2C6H6, with L = 2,6-bis(3,4-di­hydro-2H-pyrrol-5-yl)­pyridine (C13H15N3), possesses a twofold axis passing through Rh, the equatorial Cl atom and the N atom pyridine ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016896/tk6079sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016896/tk6079Isup2.hkl
Contains datablock I

CCDC reference: 198309

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.059
  • Data-to-parameter ratio = 15.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 34 C5 -N2 -RH1 -CL2 -142.00 50.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 35 C5 -N2 -RH1 -CL2 38.00 45.00 2.555 1.555 1.555 1.555 PLAT_732 Alert C Angle Calc 88.68(3), Rep 88.68(1) .... 2.14 s.u-Ratio N2 -RH1 -CL1 1.555 1.555 1.555 PLAT_732 Alert C Angle Calc 91.32(3), Rep 91.32(1) .... 2.14 s.u-Ratio CL1 -RH1 -CL2 1.555 1.555 1.555 PLAT_733 Alert C Torsion Calc 0.3(3), Rep 0.33(14) .... 2.14 s.u-Ratio C5 -C6 -C7 -C6 1.555 1.555 1.555 2.555 PLAT_733 Alert C Torsion Calc 0.3(3), Rep 0.34(14) .... 2.14 s.u-Ratio C6 -C5 -N2 -C5 1.555 1.555 1.555 2.555 PLAT_733 Alert C Torsion Calc 1.9(3), Rep 1.90(13) .... 2.31 s.u-Ratio C4 -N1 -RH1 -N1 1.555 1.555 1.555 2.555 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C25 H27 Cl3 N3 Rh1 Atom count from _chemical_formula_moiety:C37 H39 Cl3 N3 Rh1 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.096 Tmax scaled 0.903 Tmin scaled 0.543
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
7 Alert Level C = Please check

Comment top

In the context of our study on hydrogenation reactions catalysed by transition metals, we have synthesized a rhodium complex containing the tridentate ligand 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (Bernauer & Gretillat, 1989). RhCl3.nH2O reacts with 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (L) in refluxing dichloromethane to afford in good yield [RhCl3(L)]·2C6H6, (I). The coordination of L to the Rh atom can be monitored by 1H NMR; a position inversion and a downfield shift of the pyridinyl H atoms are observed. Thus, free ligand Hpara = 7.80 p.p.m. and Hmeta = 8.15 p.p.m. may be compared with coordinated ligand Hpara = 8.47 p.p.m. and Hmeta = 8.34 p.p.m.

The three N atoms of the tridentate ligand along with three Cl atoms form a distorted octahedral geometry around the metal atom in (I) (Fig. 1 and Table 1). Complex (I) crystallizes with two molecules of C6H6 per asymmetric unit. The bond distances and angles are similar to other [RhCl3(η3-L)] complexes; L = bis(oxazolinyl)pyridine (Nishiyama et al., 1991), L = bis(pyrazolyl)pyridine (Christenson et al., 1995), L = 2,6-bis(ethylidyneimino)pyridine (Haarman et al., 1997), L = 2,3,6-tris(2-pyridyl)-1,3,5-triazine (Paul et al., 1998), L = 2,2':6',2''-terpyridine (Ziegler et al., 1999; Kwong et al., 2001).

The formation of five-membered chelate rings imposes an important distortion around the Rh atom. The N1—Rh1—N(2) [79.54 (5)°] and N1—Rh1—N1i [159.07 (10)°; symmetry code: (i) −x, y, −z + 1/2] angles are significantly smaller than the values of 90 and 180° expected for an ideal octahedral geometry). The equatorial plane formed by atoms L, Rh1 and Cl2 is planar, with an average deviation of 0.042 Å; only atoms C1 and C2 of the pyrrole fragment are out of plane, by −0.100 (2) and 0.088 (2) Å, respectively. The distance between Rh and the central N2 atom of 1.941 (2) Å is shorter than the other Rh—N1 bond of 2.031 (2) Å.

In the crystal structure, there is no meaningful interaction between the complex and the two benzene molecules, one molecule being parallel to the equatorial plane of (I) [4.0 (5)°] and the other being almost perpendicular [67.9 (2)°].

Experimental top

To a dichloromethane solution (15 ml) of RhCl3.nH2O (70 mg) was added dropwise a 5 ml solution of 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (58 mg, 0.27 mmol). The mixture was stirred and refluxed for 2 h. After cooling to room temperature, a brown–orange precipitate was observed. The solid was filtered off and washed twice with cold CH2Cl2 and once with diethyl ether to give [RhCl3{2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine}] in 65% yield [based on 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine]. To a small amount of [RhCl3{2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine}] dissolved in hot benzene was added diethyl ether. Crystals of (I) formed after a few days. 1H NMR (CDCl3, p.p.m.): 8.47 (t, 1H), 8.34 (d, 2H), 4.16 (m, 4H), 3.50 (m, 4H), 2.50 (m, 4H). MS (ESI, m/z): 444; [RhCl3(L)] + Na. Analysis calculated for C19H21Cl3N3Rh: C 45.58, H 4.23, N 8.39%; found: C 45.24, H 8.26, N 4.14%.

Refinement top

H atoms were included in calculated positions and treated in the riding-model approximation.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (Farrugia, 1997). The C6H6 molecules and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[RhCl3{2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine}] benzene solvate top
Crystal data top
[RhCl3(C13H15N3)]·2C6H6F(000) = 1176
Mr = 578.76Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.434 (2) ÅCell parameters from 8000 reflections
b = 10.630 (2) Åθ = 2.6–25.9°
c = 20.948 (4) ŵ = 1.02 mm1
β = 100.12 (3)°T = 153 K
V = 2506.5 (8) Å3Block, yellow
Z = 40.5 × 0.4 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
2341 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 0.81Å pixels mm-1θmax = 25.9°, θmin = 2.6°
ϕ oscillation scansh = 1214
Absorption correction: multi-scan
(Blessing, 1995)
k = 1213
Tmin = 0.495, Tmax = 0.824l = 2425
8616 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[RhCl3(C13H15N3)]·2C6H6V = 2506.5 (8) Å3
Mr = 578.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.434 (2) ŵ = 1.02 mm1
b = 10.630 (2) ÅT = 153 K
c = 20.948 (4) Å0.5 × 0.4 × 0.1 mm
β = 100.12 (3)°
Data collection top
Stoe IPDS
diffractometer
2341 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1964 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.824Rint = 0.049
8616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.98Δρmax = 0.89 e Å3
2341 reflectionsΔρmin = 0.89 e Å3
147 parameters
Special details top

Experimental. A crystal was mounted at 153 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, ϕ oscillation scans 0 − 180°, step Δϕ = 1.2°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1801 (2)0.2301 (2)0.14892 (11)0.0233 (5)
H1A0.12590.18870.11450.028*
H1B0.22620.16670.17560.028*
C20.2621 (2)0.3215 (2)0.12068 (12)0.0261 (5)
H2A0.25490.30960.07420.031*
H2B0.34430.30860.14080.031*
C30.2202 (2)0.4544 (2)0.13595 (11)0.0217 (5)
H3A0.28590.50550.15720.026*
H3B0.18140.49680.09690.026*
C40.1353 (2)0.4272 (2)0.18001 (11)0.0175 (5)
C50.07004 (19)0.51704 (19)0.21466 (10)0.0172 (5)
C60.0721 (2)0.6479 (2)0.21414 (12)0.0227 (5)
H60.12060.69120.19030.027*
C70.00000.7126 (3)0.25000.0239 (7)
H70.00000.80010.25000.029*
C80.4757 (2)0.1200 (2)0.01968 (13)0.0313 (6)
H80.45920.20060.03280.038*
C90.4237 (2)0.0169 (2)0.04405 (12)0.0309 (6)
H90.37270.02810.07360.037*
C100.4483 (2)0.1035 (2)0.02399 (12)0.0316 (6)
H100.41350.17300.04010.038*
C110.0869 (3)0.0523 (3)0.04569 (16)0.0441 (8)
H110.14590.08770.07670.053*
C120.0982 (3)0.0525 (3)0.01880 (16)0.0423 (7)
H120.16480.08840.03140.051*
C130.0119 (3)0.0002 (3)0.06396 (13)0.0429 (8)
H130.01980.00000.10740.051*
N10.11468 (16)0.30933 (16)0.18824 (9)0.0168 (4)
N20.00000.4572 (2)0.25000.0153 (5)
Cl10.16151 (5)0.27971 (5)0.16405 (2)0.02139 (14)
Cl20.00000.05244 (6)0.25000.02382 (19)
Rh10.00000.27462 (2)0.25000.01405 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (13)0.0214 (11)0.0273 (12)0.0019 (9)0.0120 (10)0.0059 (9)
C20.0240 (13)0.0290 (12)0.0283 (13)0.0020 (10)0.0124 (11)0.0006 (10)
C30.0175 (12)0.0230 (11)0.0267 (12)0.0056 (9)0.0093 (10)0.0000 (9)
C40.0137 (11)0.0177 (11)0.0212 (11)0.0024 (8)0.0034 (9)0.0002 (8)
C50.0151 (11)0.0144 (11)0.0223 (11)0.0015 (8)0.0040 (9)0.0001 (8)
C60.0226 (13)0.0142 (11)0.0317 (12)0.0052 (9)0.0059 (11)0.0036 (9)
C70.0251 (18)0.0121 (15)0.0339 (18)0.0000.0032 (15)0.000
C80.0311 (15)0.0276 (13)0.0350 (14)0.0006 (10)0.0052 (12)0.0005 (10)
C90.0248 (14)0.0411 (15)0.0283 (13)0.0034 (11)0.0090 (11)0.0003 (11)
C100.0314 (15)0.0319 (14)0.0315 (14)0.0084 (11)0.0053 (12)0.0077 (11)
C110.0340 (18)0.0380 (16)0.056 (2)0.0151 (12)0.0044 (16)0.0129 (13)
C120.0339 (17)0.0310 (15)0.068 (2)0.0080 (11)0.0260 (16)0.0124 (13)
C130.052 (2)0.0500 (17)0.0302 (14)0.0350 (15)0.0166 (14)0.0141 (13)
N10.0152 (10)0.0147 (9)0.0211 (9)0.0003 (7)0.0050 (8)0.0019 (7)
N20.0112 (13)0.0185 (13)0.0168 (12)0.0000.0038 (11)0.000
Cl10.0185 (3)0.0229 (3)0.0227 (3)0.0040 (2)0.0033 (2)0.0039 (2)
Cl20.0350 (5)0.0096 (3)0.0270 (4)0.0000.0060 (4)0.000
Rh10.01525 (14)0.00957 (13)0.01882 (13)0.0000.00710 (9)0.000
Geometric parameters (Å, º) top
C1—N11.471 (3)C8—H80.9300
C1—C21.539 (3)C9—C101.391 (4)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—C8ii1.379 (4)
C2—C31.543 (3)C10—H100.9300
C2—H2A0.9700C11—C13iii1.373 (5)
C2—H2B0.9700C11—C121.380 (4)
C3—C41.480 (3)C11—H110.9300
C3—H3A0.9700C12—C131.360 (5)
C3—H3B0.9700C12—H120.9300
C4—N11.293 (3)C13—C11iii1.373 (5)
C4—C51.478 (3)C13—H130.9300
C5—N21.343 (3)N1—Rh12.031 (2)
C5—C61.392 (3)N2—C5i1.343 (3)
C6—C71.391 (3)N2—Rh11.941 (2)
C6—H60.9300Cl1—Rh12.3424 (9)
C7—C6i1.391 (3)Cl2—Rh12.3618 (8)
C7—H70.9300Rh1—N1i2.031 (2)
C8—C10ii1.379 (4)Rh1—Cl1i2.3424 (9)
C8—C91.386 (4)
N1—C1—C2104.98 (18)C10—C9—H9120.2
N1—C1—H1A110.8C8ii—C10—C9120.1 (2)
C2—C1—H1A110.8C8ii—C10—H10120.0
N1—C1—H1B110.8C9—C10—H10120.0
C2—C1—H1B110.8C13iii—C11—C12119.8 (3)
H1A—C1—H1B108.8C13iii—C11—H11120.1
C1—C2—C3105.4 (2)C12—C11—H11120.1
C1—C2—H2A110.7C13—C12—C11119.9 (3)
C3—C2—H2A110.7C13—C12—H12120.0
C1—C2—H2B110.7C11—C12—H12120.0
C3—C2—H2B110.7C12—C13—C11iii120.3 (3)
H2A—C2—H2B108.8C12—C13—H13119.9
C4—C3—C2102.30 (18)C11iii—C13—H13119.9
C4—C3—H3A111.3C4—N1—C1110.94 (19)
C2—C3—H3A111.3C4—N1—Rh1114.49 (15)
C4—C3—H3B111.3C1—N1—Rh1134.56 (14)
C2—C3—H3B111.3C5—N2—C5i123.4 (3)
H3A—C3—H3B109.2C5—N2—Rh1118.29 (13)
N1—C4—C3115.3 (2)C5i—N2—Rh1118.29 (13)
N1—C4—C5116.2 (2)N2—Rh1—N179.54 (5)
C3—C4—C5128.55 (19)N2—Rh1—N1i79.54 (5)
N2—C5—C6119.4 (2)N1—Rh1—N1i159.07 (10)
N2—C5—C4111.49 (19)N2—Rh1—Cl1i88.678 (14)
C6—C5—C4129.1 (2)N1—Rh1—Cl1i88.59 (5)
C7—C6—C5118.5 (2)N1i—Rh1—Cl1i90.93 (5)
C7—C6—H6120.7N2—Rh1—Cl188.678 (14)
C5—C6—H6120.7N1—Rh1—Cl190.93 (5)
C6—C7—C6i120.8 (3)N1i—Rh1—Cl188.59 (5)
C6—C7—H7119.6Cl1i—Rh1—Cl1177.36 (3)
C6i—C7—H7119.6N2—Rh1—Cl2180.0
C10ii—C8—C9120.3 (2)N1—Rh1—Cl2100.46 (5)
C10ii—C8—H8119.8N1i—Rh1—Cl2100.46 (5)
C9—C8—H8119.8Cl1i—Rh1—Cl291.322 (14)
C8—C9—C10119.6 (3)Cl1—Rh1—Cl291.322 (14)
C8—C9—H9120.2
N1—C1—C2—C310.5 (2)C6—C5—N2—Rh1179.66 (14)
C1—C2—C3—C49.3 (2)C4—C5—N2—Rh11.00 (19)
C2—C3—C4—N15.1 (2)C5—N2—Rh1—N11.56 (11)
C2—C3—C4—C5176.1 (2)C5i—N2—Rh1—N1178.44 (11)
N1—C4—C5—N20.7 (2)C5—N2—Rh1—N1i178.44 (11)
C3—C4—C5—N2179.50 (19)C5i—N2—Rh1—N1i1.56 (11)
N1—C4—C5—C6178.6 (2)C5—N2—Rh1—Cl1i87.25 (10)
C3—C4—C5—C60.2 (4)C5i—N2—Rh1—Cl1i92.75 (10)
N2—C5—C6—C70.7 (3)C5—N2—Rh1—Cl192.75 (10)
C4—C5—C6—C7178.54 (18)C5i—N2—Rh1—Cl187.25 (10)
C5—C6—C7—C6i0.33 (14)C5—N2—Rh1—Cl2142 (50)
C10ii—C8—C9—C100.2 (4)C5i—N2—Rh1—Cl238 (45)
C8—C9—C10—C8ii0.2 (4)C4—N1—Rh1—N21.90 (14)
C13iii—C11—C12—C130.3 (4)C1—N1—Rh1—N2177.0 (2)
C11—C12—C13—C11iii0.3 (4)C4—N1—Rh1—N1i1.90 (13)
C3—C4—N1—C11.8 (3)C1—N1—Rh1—N1i177.0 (2)
C5—C4—N1—C1177.22 (18)C4—N1—Rh1—Cl1i87.01 (14)
C3—C4—N1—Rh1179.09 (15)C1—N1—Rh1—Cl1i94.1 (2)
C5—C4—N1—Rh11.9 (2)C4—N1—Rh1—Cl190.39 (14)
C2—C1—N1—C47.9 (2)C1—N1—Rh1—Cl188.5 (2)
C2—C1—N1—Rh1173.20 (15)C4—N1—Rh1—Cl2178.10 (14)
C6—C5—N2—C5i0.34 (14)C1—N1—Rh1—Cl23.0 (2)
C4—C5—N2—C5i179.00 (19)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[RhCl3(C13H15N3)]·2C6H6
Mr578.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)11.434 (2), 10.630 (2), 20.948 (4)
β (°) 100.12 (3)
V3)2506.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.5 × 0.4 × 0.1
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.495, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
8616, 2341, 1964
Rint0.049
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 0.98
No. of reflections2341
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.89

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software, INTEGRATE in IPDS Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N1—Rh12.031 (2)Cl1—Rh12.3424 (9)
N2—Rh11.941 (2)Cl2—Rh12.3618 (8)
N2—Rh1—N179.54 (5)N1i—Rh1—Cl1i90.93 (5)
N1—Rh1—N1i159.07 (10)Cl1i—Rh1—Cl1177.36 (3)
N2—Rh1—Cl1i88.678 (14)N1—Rh1—Cl2100.46 (5)
N1—Rh1—Cl1i88.59 (5)Cl1—Rh1—Cl291.322 (14)
Symmetry code: (i) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds