Download citation
Download citation
link to html
The title compound, [Mo2O5(C11H10N3O)2]·2CH3CN, is a dinuclear molybdenum complex. It has crystallographic C2 symmetry with the central O atom located on a twofold rotation axis. The Mo atoms, octahedrally coordinated by four O and two N atoms, are bridged by a μ-O and two μ-pyrazolonyl groups. An intermolecular N—H...O hydrogen bond stabilizes the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014428/tk6034sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014428/tk6034Isup2.hkl
Contains datablock I

CCDC reference: 175324

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.088
  • Data-to-parameter ratio = 22.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C26 H26 Mo2 N8 O7 Atom count from _chemical_formula_moiety:C4 H6 N2

Comment top

Ferrocene-based scorpionate ligands can serve as building blocks for the generation of redox-active, metal-containing polymers (Jäkle et al., 1996; Fabrizi de Biani et al., 1997; Herdtweck et al., 1998). Molybdenum is a multivalent element and can be coordinated in various ways. When this element is employed as a central metal of the polymer, some novel and peculiar physical properties may be expected. We tried to synthesize the monomer FcTpPhMo(CO)2(η3-C4H7) [Fc = ferrocenyl, TpPh = tris(4-phenylpyrazolyl)borate, C4H7 = 2-methylallyl; for the preparation of 4-phenyl pyrazole, see Tolf et al. (1979)], starting from FcTpPhLi and Mo(CO)6, followed by treatement with 3-bromo-2-methylpropene. Due to a leakage in the apparatus, the reaction mixture came into contact with air and moisture. As a result, the target compound was not obtained but, the title complex, (I), was isolated instead. Formation of (I) occurred via a complete breakdown of the scorpionate ligand, accompanied by molybdenum oxidation, as well as oxidative CH activation at the pyrazolyl moiety. Moreover, nucleophilic attack on acetonitrile by a pyrazolyl N atom led to the incorporation of solvent molecules into the complex.

Complex (I) (Fig. 1), characterized as its diacetonitrile adduct, has crystallographic C2 symmetry with the central O atom located on a twofold rotation axis. The Mo atoms are octahedrally coordinated by four O atoms and two N atoms. The two MoO double bonds, Mo1O2 and Mo1O3, are almost of equal length (Table 1), but the fact that O2 acts as an acceptor for an intermolecular hydrogen bond (Table 2) is reflected by its elongated distance to Mo. The O atom bridging the Mo atoms displays an angle of 144.69 (9)°. The longest bond to Mo is established by O15, which also forms a double bond to the pyrazolone ring. The length of this double bond is in agreement with 175 comparable structures retrieved from the Cambridge Structural Database (Version 5.21, April 2001; Allen & Kennard, 1993). For these structures, the following mean values were found: CO 1.25 (4) Å, C—C 1.43 (3) Å and CC 1.37 (3) Å. In contrast to parent pyrazole, which exhibits two C—C bonds of equal length [1.37 (2) Å], the C13—C14 and C14—C15 bond distances in (I) are significantly different from each other, i.e. 1.364 (2) and 1.460 (2) Å, respectively. These alternating bonds indicate the aromatic system of the pyrazole ring to be severely perturbed as is to be expected for a pyrazolone moiety. The pyrazolone and the phenyl ring are not coplanar, the dihedral angle between them is 21.41 (9)°. The gaps between the molecules of (I) are occupied by acetonitrile solvent molecules which form several weak hydrogen bonds (Table 2).

Experimental top

FcTpPhLi (0.31 g, 0.50 mmol) and Mo(CO)6 (0.20 g, 0.75 mmol) were dissolved in acetonitrile (25 ml) and the mixture was refluxed for 6 h. After filtration, the filtrate was driven off under reduced pressure. The residue was dissolved in toluene (30 ml) and then 3-bromo-2-methylpropene (0.10 ml, 0.99 mmol) was added. The mixture was kept under reflux for 7 h, then cooled to 293 K. The solvent was removed in vacuo and the solid residue washed with hexane (15 ml). The crude product was recrystallized from CH3CN/toluene (1:2). Upon standing in air for several days, the title complex was obtained as yellow crystals as the diacetonitrile adduct. 1H NMR (250.1 MHz, DMSO-d6): δ = 2.07 (s, 3H, CH3CN), 2.19 (s, 6H, CH3C=NH), 7.34 (mult, 6H, Ph—H3,4,5), 7.74 [d, 4H, J(HH) = 6.9 Hz, Ph—H2,6], 8.54 (s, 2H, pz-H).

Refinement top

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(N), 1.2 Ueq(C) or 1.5Ueq(Cmethyl)] using a riding model with N—H = 0.88 Å, aromatic C—H = 0.95 Å or methyl C—H = 0.98 Å. The methyl groups was allowed to rotate about their local threefold axes.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level.
(I) top
Crystal data top
[Mo2O5(C11H10N3O)2]·2CH3CNDx = 1.718 Mg m3
Mr = 754.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 85437 reflections
a = 14.2861 (4) Åθ = 4.3–61.3°
b = 11.8522 (4) ŵ = 0.92 mm1
c = 17.2215 (6) ÅT = 173 K
V = 2915.97 (16) Å3Needle, yellow
Z = 40.50 × 0.14 × 0.08 mm
F(000) = 1512
Data collection top
Stoe IPDSII two-circle
diffractometer
4464 independent reflections
Radiation source: fine-focus sealed tube3841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: empirical
(MULABS; Spek, 1990; Blessing, 1995)
h = 2020
Tmin = 0.657, Tmax = 0.930k = 1616
83661 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.018P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4464 reflectionsΔρmax = 0.74 e Å3
198 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (5)
Crystal data top
[Mo2O5(C11H10N3O)2]·2CH3CNV = 2915.97 (16) Å3
Mr = 754.43Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 14.2861 (4) ŵ = 0.92 mm1
b = 11.8522 (4) ÅT = 173 K
c = 17.2215 (6) Å0.50 × 0.14 × 0.08 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
4464 independent reflections
Absorption correction: empirical
(MULABS; Spek, 1990; Blessing, 1995)
3841 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.930Rint = 0.056
83661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
4464 reflectionsΔρmin = 0.72 e Å3
198 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.547352 (10)0.054912 (11)0.152042 (7)0.02119 (7)
O10.50000.10373 (13)0.25000.0240 (3)
O20.48649 (9)0.12357 (10)0.07992 (7)0.0274 (2)
O30.65325 (10)0.12211 (12)0.15252 (7)0.0325 (3)
N110.60061 (10)0.09185 (12)0.21902 (8)0.0233 (3)
N120.63504 (10)0.18120 (11)0.17592 (8)0.0252 (3)
C130.66131 (12)0.26856 (14)0.22357 (10)0.0269 (3)
H130.68670.33870.20720.032*
C140.64454 (12)0.23725 (14)0.29848 (9)0.0246 (3)
C150.60419 (11)0.12426 (13)0.29397 (9)0.0220 (3)
O150.57534 (11)0.06202 (10)0.34972 (6)0.0244 (2)
C160.62718 (11)0.17082 (14)0.09717 (9)0.0249 (3)
N160.59352 (10)0.07560 (12)0.07263 (8)0.0247 (3)
H160.58930.06370.02230.030*
C170.65401 (14)0.26909 (16)0.04797 (10)0.0316 (3)
H17A0.65570.24600.00660.047*
H17B0.71600.29630.06360.047*
H17C0.60800.32960.05460.047*
C210.66059 (12)0.30409 (14)0.36933 (9)0.0257 (3)
C220.72393 (13)0.39399 (15)0.36913 (10)0.0291 (3)
H220.75880.41040.32350.035*
C230.73628 (14)0.45969 (15)0.43561 (11)0.0316 (4)
H230.77940.52070.43500.038*
C240.68558 (15)0.43611 (14)0.50278 (11)0.0318 (4)
H240.69320.48180.54760.038*
C250.62409 (14)0.34591 (16)0.50396 (10)0.0330 (4)
H250.59040.32890.55010.040*
C260.61143 (13)0.28003 (15)0.43799 (10)0.0296 (3)
H260.56910.21820.43940.036*
N1L0.6401 (3)0.5477 (2)0.19500 (15)0.0729 (8)
C2L0.62611 (19)0.5964 (2)0.25022 (15)0.0489 (5)
C3L0.6073 (2)0.6587 (2)0.32048 (17)0.0555 (6)
H3L10.58680.73520.30720.083*
H3L20.66440.66260.35190.083*
H3L30.55800.62050.35000.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02475 (10)0.02034 (10)0.01850 (10)0.00079 (4)0.00086 (4)0.00117 (4)
O10.0329 (8)0.0200 (7)0.0193 (6)0.0000.0001 (6)0.000
O20.0353 (6)0.0248 (5)0.0221 (5)0.0017 (5)0.0015 (5)0.0023 (4)
O30.0321 (7)0.0343 (7)0.0313 (6)0.0080 (5)0.0010 (5)0.0019 (5)
N110.0261 (6)0.0236 (6)0.0202 (6)0.0046 (5)0.0005 (5)0.0010 (5)
N120.0306 (7)0.0245 (6)0.0205 (6)0.0046 (5)0.0017 (5)0.0012 (5)
C130.0296 (8)0.0255 (7)0.0255 (7)0.0058 (6)0.0007 (6)0.0015 (6)
C140.0252 (7)0.0248 (7)0.0237 (7)0.0036 (6)0.0009 (6)0.0017 (5)
C150.0213 (6)0.0240 (7)0.0209 (6)0.0008 (5)0.0020 (5)0.0014 (5)
O150.0274 (6)0.0251 (6)0.0208 (6)0.0025 (4)0.0020 (4)0.0014 (4)
C160.0254 (7)0.0273 (7)0.0220 (6)0.0001 (6)0.0016 (5)0.0011 (5)
N160.0274 (7)0.0277 (6)0.0191 (6)0.0017 (5)0.0014 (5)0.0002 (5)
C170.0380 (9)0.0303 (8)0.0267 (7)0.0045 (7)0.0015 (7)0.0041 (6)
C210.0277 (8)0.0249 (7)0.0244 (7)0.0015 (6)0.0018 (6)0.0020 (6)
C220.0331 (8)0.0270 (8)0.0274 (7)0.0050 (6)0.0009 (6)0.0005 (6)
C230.0372 (9)0.0251 (7)0.0326 (8)0.0058 (7)0.0037 (7)0.0027 (6)
C240.0397 (10)0.0269 (8)0.0288 (8)0.0013 (6)0.0050 (7)0.0061 (6)
C250.0374 (9)0.0346 (9)0.0270 (7)0.0018 (7)0.0036 (7)0.0056 (6)
C260.0314 (8)0.0295 (8)0.0279 (7)0.0062 (6)0.0018 (6)0.0032 (6)
N1L0.114 (3)0.0609 (15)0.0436 (12)0.0231 (15)0.0080 (14)0.0042 (10)
C2L0.0597 (15)0.0427 (11)0.0443 (11)0.0124 (10)0.0011 (11)0.0039 (9)
C3L0.0561 (15)0.0525 (14)0.0580 (14)0.0154 (12)0.0064 (12)0.0124 (12)
Geometric parameters (Å, º) top
Mo1—O31.7098 (14)C17—H17A0.9800
Mo1—O21.7206 (12)C17—H17B0.9800
Mo1—O11.9074 (5)C17—H17C0.9800
Mo1—N162.1676 (14)C21—C221.398 (2)
Mo1—N112.2216 (13)C21—C261.405 (2)
Mo1—O15i2.2347 (14)C22—C231.396 (2)
O1—Mo1i1.9074 (5)C22—H220.9500
N11—C151.3476 (19)C23—C241.393 (3)
N11—N121.3836 (18)C23—H230.9500
N12—C161.3664 (19)C24—C251.384 (3)
N12—C131.373 (2)C24—H240.9500
C13—C141.364 (2)C25—C261.390 (2)
C13—H130.9500C25—H250.9500
C14—C151.460 (2)C26—H260.9500
C14—C211.473 (2)N1L—C2L1.131 (4)
C15—O151.2790 (19)C2L—C3L1.442 (4)
O15—Mo1i2.2347 (14)C3L—H3L10.9800
C16—N161.297 (2)C3L—H3L20.9800
C16—C171.490 (2)C3L—H3L30.9800
N16—H160.8800
O3—Mo1—O2103.31 (6)C16—N16—Mo1121.87 (11)
O3—Mo1—O199.69 (5)C16—N16—H16119.1
O2—Mo1—O1108.40 (5)Mo1—N16—H16119.1
O3—Mo1—N1693.80 (6)C16—C17—H17A109.5
O2—Mo1—N1692.05 (5)C16—C17—H17B109.5
O1—Mo1—N16151.94 (6)H17A—C17—H17B109.5
O3—Mo1—N1193.39 (6)C16—C17—H17C109.5
O2—Mo1—N11156.66 (5)H17A—C17—H17C109.5
O1—Mo1—N1184.25 (5)H17B—C17—H17C109.5
N16—Mo1—N1170.40 (5)C22—C21—C26118.72 (15)
O3—Mo1—O15i169.42 (6)C22—C21—C14120.58 (15)
O2—Mo1—O15i83.52 (5)C26—C21—C14120.69 (15)
O1—Mo1—O15i85.52 (4)C23—C22—C21120.34 (17)
N16—Mo1—O15i77.73 (5)C23—C22—H22119.8
N11—Mo1—O15i77.88 (5)C21—C22—H22119.8
Mo1i—O1—Mo1144.69 (9)C24—C23—C22120.23 (17)
C15—N11—N12106.39 (12)C24—C23—H23119.9
C15—N11—Mo1137.18 (11)C22—C23—H23119.9
N12—N11—Mo1116.26 (9)C25—C24—C23119.82 (16)
C16—N12—C13133.11 (14)C25—C24—H24120.1
C16—N12—N11115.75 (13)C23—C24—H24120.1
C13—N12—N11110.71 (13)C24—C25—C26120.29 (17)
C14—C13—N12108.19 (14)C24—C25—H25119.9
C14—C13—H13125.9C26—C25—H25119.9
N12—C13—H13125.9C25—C26—C21120.58 (16)
C13—C14—C15105.58 (14)C25—C26—H26119.7
C13—C14—C21127.59 (15)C21—C26—H26119.7
C15—C14—C21126.80 (14)N1L—C2L—C3L179.5 (3)
O15—C15—N11122.84 (14)C2L—C3L—H3L1109.5
O15—C15—C14128.05 (14)C2L—C3L—H3L2109.5
N11—C15—C14109.11 (13)H3L1—C3L—H3L2109.5
C15—O15—Mo1i126.89 (10)C2L—C3L—H3L3109.5
N16—C16—N12115.60 (14)H3L1—C3L—H3L3109.5
N16—C16—C17126.14 (15)H3L2—C3L—H3L3109.5
N12—C16—C17118.21 (15)
O3—Mo1—O1—Mo1i123.39 (5)C21—C14—C15—O150.0 (3)
O2—Mo1—O1—Mo1i128.97 (5)C13—C14—C15—N111.53 (19)
N16—Mo1—O1—Mo1i5.81 (9)C21—C14—C15—N11179.73 (16)
N11—Mo1—O1—Mo1i30.92 (4)N11—C15—O15—Mo1i35.8 (2)
O15i—Mo1—O1—Mo1i47.33 (3)C14—C15—O15—Mo1i143.96 (14)
O3—Mo1—N11—C1594.33 (17)C13—N12—C16—N16175.46 (17)
O2—Mo1—N11—C15129.65 (17)N11—N12—C16—N163.9 (2)
O1—Mo1—N11—C155.08 (16)C13—N12—C16—C172.3 (3)
N16—Mo1—N11—C15172.85 (17)N11—N12—C16—C17173.86 (15)
O15i—Mo1—N11—C1591.72 (17)N12—C16—N16—Mo12.6 (2)
O3—Mo1—N11—N1291.18 (12)C17—C16—N16—Mo1175.03 (13)
O2—Mo1—N11—N1244.8 (2)O3—Mo1—N16—C1692.75 (14)
O1—Mo1—N11—N12169.42 (11)O2—Mo1—N16—C16163.76 (14)
N16—Mo1—N11—N121.65 (11)O1—Mo1—N16—C1626.13 (19)
O15i—Mo1—N11—N1282.78 (11)N11—Mo1—N16—C160.50 (13)
C15—N11—N12—C16172.55 (14)O15i—Mo1—N16—C1680.84 (13)
Mo1—N11—N12—C163.56 (18)C13—C14—C21—C2221.7 (3)
C15—N11—N12—C130.84 (18)C15—C14—C21—C22160.49 (17)
Mo1—N11—N12—C13176.95 (11)C13—C14—C21—C26157.20 (19)
C16—N12—C13—C14171.97 (18)C15—C14—C21—C2620.6 (3)
N11—N12—C13—C140.1 (2)C26—C21—C22—C231.3 (3)
N12—C13—C14—C150.98 (19)C14—C21—C22—C23177.60 (17)
N12—C13—C14—C21179.16 (16)C21—C22—C23—C240.1 (3)
N12—N11—C15—O15178.35 (15)C22—C23—C24—C251.2 (3)
Mo1—N11—C15—O153.5 (3)C23—C24—C25—C261.2 (3)
N12—N11—C15—C141.44 (18)C24—C25—C26—C210.1 (3)
Mo1—N11—C15—C14176.29 (12)C22—C21—C26—C251.4 (3)
C13—C14—C15—O15178.24 (17)C14—C21—C26—C25177.57 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O2ii0.882.192.9209 (18)141
C13—H13···N1L0.952.573.358 (3)140
C24—H24···N1Liii0.952.673.379 (3)132
C25—H25···N1Liii0.952.983.531 (3)118
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2O5(C11H10N3O)2]·2CH3CN
Mr754.43
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)14.2861 (4), 11.8522 (4), 17.2215 (6)
V3)2915.97 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.50 × 0.14 × 0.08
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correctionEmpirical
(MULABS; Spek, 1990; Blessing, 1995)
Tmin, Tmax0.657, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
83661, 4464, 3841
Rint0.056
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.05
No. of reflections4464
No. of parameters198
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.72

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991).

Selected geometric parameters (Å, º) top
Mo1—O31.7098 (14)N11—C151.3476 (19)
Mo1—O21.7206 (12)N12—C131.373 (2)
Mo1—O11.9074 (5)C13—C141.364 (2)
Mo1—N162.1676 (14)C14—C151.460 (2)
Mo1—N112.2216 (13)C15—O151.2790 (19)
Mo1—O15i2.2347 (14)C16—N161.297 (2)
O3—Mo1—O2103.31 (6)O1—Mo1—N1184.25 (5)
O3—Mo1—O199.69 (5)N16—Mo1—N1170.40 (5)
O2—Mo1—O1108.40 (5)O3—Mo1—O15i169.42 (6)
O3—Mo1—N1693.80 (6)O2—Mo1—O15i83.52 (5)
O2—Mo1—N1692.05 (5)O1—Mo1—O15i85.52 (4)
O1—Mo1—N16151.94 (6)N16—Mo1—O15i77.73 (5)
O3—Mo1—N1193.39 (6)N11—Mo1—O15i77.88 (5)
O2—Mo1—N11156.66 (5)Mo1i—O1—Mo1144.69 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O2ii0.882.192.9209 (18)141
C13—H13···N1L0.952.573.358 (3)140.1
C24—H24···N1Liii0.952.673.379 (3)131.7
C25—H25···N1Liii0.952.983.531 (3)118.4
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds