Download citation
Download citation
link to html
The structure of the title complex, [PdCl2(C26H36N2)], represented as LPdCl2, where L denotes the substituted 1,2-ethanedi­imine ligand, is described and compared with those of the analogous LPdClMe and L'PdMe2 complexes (L' is the closely related substituted 2,3-butane­di­imine ligand) previously reported by Tempel, Johnson, Huff, White & Brookhart [J. Am. Chem. Soc. (2000), 122, 6686-6700].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008704/tk6026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008704/tk6026Isup2.hkl
Contains datablock I

CCDC reference: 170740

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.075
  • Data-to-parameter ratio = 21.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.092 Tmax scaled 0.838 Tmin scaled 0.735

Comment top

[It is suggested that sch1.eps, the chemical structural drawing specific to (I) be used solely for the contents page and that sch2.eps, a more generalized representation of (I), (II) and (III) (or something like it) be used in association with the text.]

α-Diimines, RNCR'—CR'NR, have been widely used as ligands in transition metal complexes (van Koten & Vrieze, 1982; Vonzelewsky et al., 1994; Paw et al., 1998, Kaes et al., 2000; Farrell & Vlcek, 2000; van Slageren et al., 2000; Hicks et al., 2001). Several of the α-diimine complexes have found application as catalysts. For example, cationic palladium and nickel(II) complexes of bulky aryl-substituted α-diimines, ArNCR—CRNAr', have been shown to be excellent polymerization catalysts for ethylene and α-alkenes (Gottfried & Brookhart, 2001; Ittel et al., 2000; Tempel et al., 2000; Liimatta et al., 2001; Mecking, 2001; Albietz et al., 2000).

Selected geometric parameters of the title complex, (I), are shown in Table 1, along with data for two previously reported related compounds, chloro[N,N'-bis(2,6-diisopropylphenyl)-1,2-ethanediimine-N,N']methylpalladium, (II), and [N,N'-bis(2,6-diisopropylphenyl)-2,3-butanediimine-N,N']dimethylpalladium, (III) (Tempel et al., 2000).

Compound (I) (Fig. 1) has a square planar geometry, with a distortion mainly arising from the small, 79.29 (6)°, bite angle, N(1)—Pd—N(2), of the chelating diimine ligand. Distortions from square planar geometry in (I) are also indicated by the torsional angles, Cl(2)—Pd—N(1)—C(1) = 32.4 (5) and Cl(1)—Pd—N(2)—C(2) = 14.1 (4)°. The diimine bite angle in (I), although much less than the ideal value of 90°, is noticeably larger than those in (II) [76.2 (4)°] and (III) [74.81 (15)°], other neutral Pd(II) diimine complexes, as well as those in the Pd(0) complexes, [η2-(E)-but-2-enedinitrile](N,N'-diphenyl-1,7,7- trimethylbicyclo[2.2.1]heptane-2,3-diimine-N,N')palladium(0) [77.31 (9)°] (Ellis & Spek, 2001) and [bis((2,6-diisopropylphenyl)imino)acenaphthene](maleic anhydride)palladium(0) [77.78 (19)°] (van Asselt et al., 1994). The diimine bite angle in the cationic complex, [(2,6-bis-diisopropyl-N-(2- pyridinylmethylene)phenylamine)methyl(acetonitrile)palladium] [B(3,5-(CF3)2C6H3)4] [78.8 (2)°] (Meneghetti et al., 1999) is however similar to that in (I). The angles between the plane of the –Pd—N(1)—C(1)—C(2)—N(2)- ring in (I) and the aryl ring planes are 80.66 (5)° [C3—C8] and 82.73 (6)° [C15—C21]. Thus, as in other similar complexes, the bulky isopropyl substituents effectively block approaches to the Pd atom from axial directions. A small degree of electron delocalization in the diimine ligand in (I) is indicated by the bond lengths, N(1)—C(1) = 1.280 (2), C(1)—C(2) = 1.460 (3) and C(2)—N(2) = 1.282 (2) Å. More delocalization in the NC—CN fragments of the ligands is apparent in (II) and (III). The bond lengths in (I) are only slightly different from those in the free ligand, [N,N'-bis(2,6-diisopropylphenyl)-1,2-ethanediimine], for which N—C = 1.265 (4) and C—C = 1.467 (4) Å (Laine et al., 1999).

Experimental top

The N,N'-bis(2,6-diisopropylphenyl)-1,2-ethanediimine ligand (L) was prepared by a modification of a published procedure (tom Dieck & Dietrich, 1984). Methanoic acid (88%, 0.5 ml, 11.5 mmol) and an aqueous solution of glyoxal (40%, 4.6 ml, 39.0 mmol) were successively added to a vigorously stirred suspension of 2,6-diisopropylaniline (14.9 ml, 79 mmol) and freshly dehydrated sodium sulfate (25 g) in CH2Cl2 (100 ml). After 5 min, a further amount of sodium sulfate (25 g) was added, and the reaction mixture was stirred at room temperature for 1 d. The mixture was filtered and the solid extracted with CH2Cl2 (3 x15 ml). The combined organic material was evaporated in vacuo, and the residue recrystallized from ethanol at 293 K; yield 10.3 g, 70%, m.p.376 K.

Dichloro(N,N'-bis(2,6-diisopropylphenyl)-1,2-ethanediimine-N,N')palladium, (I) was prepared by a modification of a published procedure (van der Poel et al., 1980). To a stirred solution of PdCl2(PhCN)2 (0.41 g, 1.07 mmol) (Anderson & Lin, 1990) in CH2Cl2 (50 ml) was added L (0.46 g, 1.22 mmol) at room temperature. After 2 h the reaction mixture was concentrated under vacuo to 5 ml and hexane (15 ml) added to complete the precipitation of the the title compound. This was washed with hexane (3 x 10 ml) and dried in vacuo, yield 0.54 g, 98%, m.p. 551 K (dec). Suitable crystals were obtained from acetone solution. Analysis: Found: C, 56.06, H, 6.85; N, 5.19. Calculated for C26H36Cl2N2Pd: C, 56.64; H, 6.56; N, 5.06%. 1H NMR (200 MHz, CD2Cl2): δ: 1.23(d, 12H, J 6.8 Hz, Me), 1.45(d, 12H, J 6.8 Hz, Me), 3.25(sept, 4H, J 6.8 Hz, Me2CH), 7.27–7.48(m 6H, aryl), 8.15(s, 2H, CH=N).

Refinement top

In the final stages of the refinement one reflection, -2 0 1, showing particularly poor agreement was suppressed. The H atoms were introduced in calculated positions with C—H and Uiso 0.95 Å and 1.2 times Ueq of the non-H to which they are attached (1.00 Å for tertiary C—H and for methyl H 0.98 Å and 1.5 times Ueq).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of 1 showing the atom labels (Farrugia, 1997). Non-H are shown as 50% ellipsoids and H as open circles.
Dichloro[N,N'-bis(2,6-diisopropylphenyl)-1,2-ethanediimine-N,N']palladium top
Crystal data top
C26H36Cl2N2PdF(000) = 1144
Mr = 553.87Dx = 1.341 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 13.7198 (1) ÅCell parameters from 26074 reflections
b = 15.3812 (2) Åθ = 2.9–27.5°
c = 13.8702 (2) ŵ = 0.89 mm1
β = 110.3873 (5)°T = 150 K
V = 2743.64 (6) Å3Block, orange
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf Nonius Kappa CCD area detector
diffractometer
6279 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode5446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scans to fill the Ewald sphereh = 1717
Absorption correction: multi-scan
SORTAV (Blessing, 1995, 1997)
k = 1919
Tmin = 0.673, Tmax = 0.767l = 1718
42903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.8819P]
where P = (Fo2 + 2Fc2)/3
6279 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C26H36Cl2N2PdV = 2743.64 (6) Å3
Mr = 553.87Z = 4
Monoclinic, P21/aMo Kα radiation
a = 13.7198 (1) ŵ = 0.89 mm1
b = 15.3812 (2) ÅT = 150 K
c = 13.8702 (2) Å0.30 × 0.20 × 0.20 mm
β = 110.3873 (5)°
Data collection top
Enraf Nonius Kappa CCD area detector
diffractometer
6279 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995, 1997)
5446 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.767Rint = 0.064
42903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.08Δρmax = 0.78 e Å3
6279 reflectionsΔρmin = 0.90 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model. One reflection, -2 0 1, showing particularly bad agreement omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.612176 (9)0.225029 (8)0.290130 (10)0.01836 (6)
Cl10.77240 (4)0.28007 (3)0.38150 (4)0.02746 (11)
Cl20.68248 (3)0.11819 (3)0.22089 (4)0.02953 (11)
N10.53593 (11)0.31897 (9)0.33622 (11)0.0206 (3)
N20.46306 (11)0.18643 (10)0.21974 (11)0.0205 (3)
C10.43682 (14)0.31157 (12)0.30210 (14)0.0225 (4)
H10.39290.35230.31860.027*
C20.39570 (14)0.23646 (12)0.23614 (15)0.0227 (4)
H20.32320.22530.20700.027*
C30.58259 (13)0.39569 (11)0.39318 (14)0.0214 (4)
C40.62921 (14)0.38883 (12)0.49982 (14)0.0240 (4)
C50.67100 (15)0.46461 (13)0.55253 (16)0.0299 (4)
H50.70030.46370.62550.036*
C60.67074 (16)0.54114 (13)0.50074 (17)0.0341 (5)
H60.70010.59210.53840.041*
C70.62821 (16)0.54458 (13)0.39465 (17)0.0320 (5)
H70.63060.59750.36020.038*
C80.58203 (14)0.47178 (12)0.33766 (15)0.0260 (4)
C90.63350 (15)0.30219 (13)0.55356 (15)0.0273 (4)
H90.62880.25580.50160.033*
C100.5410 (2)0.28990 (17)0.5888 (2)0.0477 (6)
H10A0.54280.33440.63990.071*
H10B0.54450.23210.61960.071*
H10C0.47640.29530.52970.071*
C110.73590 (19)0.28819 (16)0.64243 (19)0.0448 (6)
H11A0.79400.29420.61730.067*
H11B0.73670.22980.67100.067*
H11C0.74260.33160.69610.067*
C120.53502 (16)0.47515 (14)0.22028 (16)0.0329 (5)
H120.51920.41400.19530.039*
C130.4337 (2)0.5247 (2)0.1841 (2)0.0652 (8)
H13A0.44690.58590.20430.098*
H13B0.38620.49980.21550.098*
H13C0.40240.52070.10910.098*
C140.6102 (2)0.5121 (2)0.1719 (2)0.0657 (9)
H14A0.57710.51210.09680.099*
H14B0.67310.47630.19160.099*
H14C0.62870.57180.19610.099*
C150.42556 (13)0.11318 (12)0.15163 (14)0.0224 (4)
C160.42388 (15)0.03194 (13)0.19458 (15)0.0261 (4)
C170.38161 (17)0.03591 (14)0.12665 (17)0.0342 (5)
H170.37660.09210.15300.041*
C180.34683 (18)0.02313 (15)0.02186 (17)0.0402 (5)
H180.31790.07040.02310.048*
C190.35369 (17)0.05750 (15)0.01823 (16)0.0369 (5)
H190.33110.06480.09070.044*
C200.39305 (15)0.12845 (13)0.04545 (15)0.0281 (4)
C210.46761 (16)0.01495 (13)0.30958 (15)0.0299 (4)
H210.50030.07000.34430.036*
C220.38379 (18)0.01118 (16)0.35314 (18)0.0406 (5)
H22A0.33350.03630.34270.061*
H22B0.41610.02310.42690.061*
H22C0.34800.06350.31780.061*
C230.55257 (17)0.05454 (16)0.33385 (18)0.0407 (5)
H23A0.52170.11030.30450.061*
H23B0.58570.06040.40860.061*
H23C0.60480.03750.30400.061*
C240.3999 (2)0.21771 (14)0.00139 (17)0.0367 (5)
H240.43970.25650.05970.044*
C250.2920 (3)0.2568 (2)0.0492 (3)0.0636 (8)
H25A0.29850.31550.07400.095*
H25B0.25660.25980.00100.095*
H25C0.25160.22030.10730.095*
C260.4583 (2)0.21448 (18)0.0742 (2)0.0518 (7)
H26A0.52830.19110.03950.078*
H26B0.46350.27330.09930.078*
H26C0.42070.17700.13240.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01454 (9)0.01930 (9)0.02050 (9)0.00002 (4)0.00517 (6)0.00211 (5)
Cl10.0162 (2)0.0299 (3)0.0344 (3)0.00308 (16)0.00648 (18)0.00687 (19)
Cl20.0217 (2)0.0316 (3)0.0355 (3)0.00201 (18)0.01033 (19)0.0109 (2)
N10.0208 (7)0.0187 (8)0.0212 (8)0.0005 (6)0.0062 (6)0.0008 (6)
N20.0197 (7)0.0209 (8)0.0198 (7)0.0011 (6)0.0055 (6)0.0016 (6)
C10.0204 (9)0.0213 (9)0.0256 (9)0.0001 (7)0.0078 (7)0.0024 (7)
C20.0171 (9)0.0275 (10)0.0231 (9)0.0030 (7)0.0065 (7)0.0021 (8)
C30.0170 (8)0.0195 (9)0.0269 (9)0.0004 (6)0.0066 (7)0.0047 (7)
C40.0196 (9)0.0246 (9)0.0261 (10)0.0017 (7)0.0056 (7)0.0023 (8)
C50.0276 (10)0.0291 (10)0.0271 (10)0.0009 (8)0.0020 (8)0.0083 (8)
C60.0287 (10)0.0237 (10)0.0432 (13)0.0034 (8)0.0039 (9)0.0119 (9)
C70.0313 (11)0.0195 (9)0.0417 (12)0.0014 (8)0.0083 (9)0.0003 (8)
C80.0225 (9)0.0231 (9)0.0304 (10)0.0002 (7)0.0066 (8)0.0001 (8)
C90.0275 (10)0.0271 (10)0.0248 (10)0.0003 (8)0.0059 (8)0.0016 (8)
C100.0429 (14)0.0492 (15)0.0579 (16)0.0027 (11)0.0264 (13)0.0133 (12)
C110.0409 (14)0.0429 (13)0.0395 (14)0.0001 (10)0.0002 (11)0.0107 (10)
C120.0355 (11)0.0316 (11)0.0284 (11)0.0040 (8)0.0071 (9)0.0034 (9)
C130.0470 (16)0.097 (2)0.0394 (15)0.0215 (15)0.0005 (12)0.0078 (15)
C140.0515 (17)0.103 (3)0.0402 (15)0.0163 (16)0.0134 (12)0.0181 (16)
C150.0164 (8)0.0231 (9)0.0243 (9)0.0011 (7)0.0028 (7)0.0063 (7)
C160.0233 (9)0.0249 (10)0.0273 (10)0.0016 (7)0.0051 (8)0.0041 (8)
C170.0374 (12)0.0231 (10)0.0371 (12)0.0047 (8)0.0065 (9)0.0062 (9)
C180.0432 (13)0.0340 (12)0.0360 (12)0.0035 (10)0.0042 (10)0.0168 (10)
C190.0405 (12)0.0391 (12)0.0235 (10)0.0029 (9)0.0015 (9)0.0091 (9)
C200.0270 (10)0.0303 (10)0.0231 (10)0.0033 (8)0.0038 (8)0.0021 (8)
C210.0331 (11)0.0244 (10)0.0280 (10)0.0040 (8)0.0052 (8)0.0008 (8)
C220.0392 (13)0.0456 (14)0.0384 (13)0.0029 (10)0.0152 (10)0.0018 (11)
C230.0317 (12)0.0469 (13)0.0405 (13)0.0044 (10)0.0090 (9)0.0118 (11)
C240.0508 (14)0.0325 (12)0.0246 (11)0.0058 (9)0.0102 (10)0.0029 (9)
C250.067 (2)0.0621 (17)0.069 (2)0.0348 (15)0.0334 (16)0.0289 (16)
C260.0567 (17)0.0558 (16)0.0497 (16)0.0100 (12)0.0269 (13)0.0116 (12)
Geometric parameters (Å, º) top
Pd—N12.0142 (15)C13—H13B0.9800
Pd—N22.0248 (14)C13—H13C0.9800
Pd—Cl22.2799 (5)C14—H14A0.9800
Pd—Cl12.2834 (5)C14—H14B0.9800
N1—C11.280 (2)C14—H14C0.9800
N1—C31.440 (2)C15—C161.388 (3)
N2—C21.282 (2)C15—C201.402 (3)
N2—C151.445 (2)C16—C171.390 (3)
C1—C21.460 (3)C16—C211.518 (3)
C1—H10.9500C17—C181.377 (3)
C2—H20.9500C17—H170.9500
C3—C41.396 (3)C18—C191.376 (3)
C3—C81.400 (3)C18—H180.9500
C4—C51.389 (3)C19—C201.389 (3)
C4—C91.518 (3)C19—H190.9500
C5—C61.378 (3)C20—C241.519 (3)
C5—H50.9500C21—C221.527 (3)
C6—C71.382 (3)C21—C231.530 (3)
C6—H60.9500C21—H211.0000
C7—C81.390 (3)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C121.529 (3)C22—H22C0.9800
C9—C101.522 (3)C23—H23A0.9800
C9—C111.527 (3)C23—H23B0.9800
C9—H91.0000C23—H23C0.9800
C10—H10A0.9800C24—C251.524 (4)
C10—H10B0.9800C24—C261.526 (3)
C10—H10C0.9800C24—H241.0000
C11—H11A0.9800C25—H25A0.9800
C11—H11B0.9800C25—H25B0.9800
C11—H11C0.9800C25—H25C0.9800
C12—C131.510 (3)C26—H26A0.9800
C12—C141.523 (3)C26—H26B0.9800
C12—H121.0000C26—H26C0.9800
C13—H13A0.9800
N1—Pd—N279.29 (6)C12—C13—H13C109.5
N1—Pd—Cl2173.44 (4)H13A—C13—H13C109.5
N2—Pd—Cl295.17 (4)H13B—C13—H13C109.5
N1—Pd—Cl193.66 (4)C12—C14—H14A109.5
N2—Pd—Cl1172.75 (4)C12—C14—H14B109.5
Cl2—Pd—Cl191.963 (17)H14A—C14—H14B109.5
C1—N1—C3119.19 (15)C12—C14—H14C109.5
C1—N1—Pd114.91 (12)H14A—C14—H14C109.5
C3—N1—Pd125.54 (11)H14B—C14—H14C109.5
C2—N2—C15118.00 (15)C16—C15—C20123.71 (17)
C2—N2—Pd114.08 (12)C16—C15—N2118.47 (16)
C15—N2—Pd127.86 (11)C20—C15—N2117.82 (16)
N1—C1—C2115.54 (16)C15—C16—C17116.76 (18)
N1—C1—H1122.2C15—C16—C21123.11 (17)
C2—C1—H1122.2C17—C16—C21120.11 (18)
N2—C2—C1116.18 (16)C18—C17—C16121.2 (2)
N2—C2—H2121.9C18—C17—H17119.4
C1—C2—H2121.9C16—C17—H17119.4
C4—C3—C8123.98 (17)C19—C18—C17120.5 (2)
C4—C3—N1118.12 (16)C19—C18—H18119.7
C8—C3—N1117.85 (16)C17—C18—H18119.7
C5—C4—C3116.55 (18)C18—C19—C20121.2 (2)
C5—C4—C9122.68 (17)C18—C19—H19119.4
C3—C4—C9120.77 (17)C20—C19—H19119.4
C6—C5—C4121.10 (19)C19—C20—C15116.56 (19)
C6—C5—H5119.4C19—C20—C24121.27 (18)
C4—C5—H5119.4C15—C20—C24122.17 (18)
C5—C6—C7120.73 (19)C16—C21—C22112.61 (17)
C5—C6—H6119.6C16—C21—C23110.07 (17)
C7—C6—H6119.6C22—C21—C23110.49 (17)
C6—C7—C8120.96 (19)C16—C21—H21107.8
C6—C7—H7119.5C22—C21—H21107.8
C8—C7—H7119.5C23—C21—H21107.8
C7—C8—C3116.54 (18)C21—C22—H22A109.5
C7—C8—C12121.19 (18)C21—C22—H22B109.5
C3—C8—C12122.26 (17)H22A—C22—H22B109.5
C4—C9—C10111.88 (17)C21—C22—H22C109.5
C4—C9—C11112.79 (17)H22A—C22—H22C109.5
C10—C9—C11111.0 (2)H22B—C22—H22C109.5
C4—C9—H9106.9C21—C23—H23A109.5
C10—C9—H9106.9C21—C23—H23B109.5
C11—C9—H9106.9H23A—C23—H23B109.5
C9—C10—H10A109.5C21—C23—H23C109.5
C9—C10—H10B109.5H23A—C23—H23C109.5
H10A—C10—H10B109.5H23B—C23—H23C109.5
C9—C10—H10C109.5C20—C24—C25110.8 (2)
H10A—C10—H10C109.5C20—C24—C26111.60 (19)
H10B—C10—H10C109.5C25—C24—C26110.8 (2)
C9—C11—H11A109.5C20—C24—H24107.8
C9—C11—H11B109.5C25—C24—H24107.8
H11A—C11—H11B109.5C26—C24—H24107.8
C9—C11—H11C109.5C24—C25—H25A109.5
H11A—C11—H11C109.5C24—C25—H25B109.5
H11B—C11—H11C109.5H25A—C25—H25B109.5
C13—C12—C14110.6 (2)C24—C25—H25C109.5
C13—C12—C8111.64 (19)H25A—C25—H25C109.5
C14—C12—C8112.51 (18)H25B—C25—H25C109.5
C13—C12—H12107.3C24—C26—H26A109.5
C14—C12—H12107.3C24—C26—H26B109.5
C8—C12—H12107.3H26A—C26—H26B109.5
C12—C13—H13A109.5C24—C26—H26C109.5
C12—C13—H13B109.5H26A—C26—H26C109.5
H13A—C13—H13B109.5H26B—C26—H26C109.5
N2—Pd—N1—C10.30 (13)C5—C4—C9—C1138.1 (3)
Cl1—Pd—N1—C1178.56 (13)C3—C4—C9—C11141.58 (19)
N2—Pd—N1—C3173.32 (15)C7—C8—C12—C1373.6 (3)
Cl1—Pd—N1—C38.41 (14)C3—C8—C12—C13107.5 (2)
N1—Pd—N2—C20.29 (13)C7—C8—C12—C1451.4 (3)
Cl2—Pd—N2—C2176.15 (13)C3—C8—C12—C14127.5 (2)
N1—Pd—N2—C15177.36 (15)C2—N2—C15—C1698.9 (2)
Cl2—Pd—N2—C150.92 (15)Pd—N2—C15—C1684.2 (2)
C3—N1—C1—C2173.76 (16)C2—N2—C15—C2081.3 (2)
Pd—N1—C1—C20.3 (2)Pd—N2—C15—C2095.69 (18)
C15—N2—C2—C1177.63 (16)C20—C15—C16—C173.8 (3)
Pd—N2—C2—C10.3 (2)N2—C15—C16—C17176.32 (17)
N1—C1—C2—N20.0 (3)C20—C15—C16—C21174.76 (18)
C1—N1—C3—C4104.4 (2)N2—C15—C16—C215.1 (3)
Pd—N1—C3—C482.89 (19)C15—C16—C17—C182.3 (3)
C1—N1—C3—C878.2 (2)C21—C16—C17—C18176.3 (2)
Pd—N1—C3—C894.59 (18)C16—C17—C18—C190.4 (4)
C8—C3—C4—C54.3 (3)C17—C18—C19—C201.8 (4)
N1—C3—C4—C5178.36 (16)C18—C19—C20—C150.4 (3)
C8—C3—C4—C9175.39 (17)C18—C19—C20—C24179.5 (2)
N1—C3—C4—C91.9 (3)C16—C15—C20—C192.5 (3)
C3—C4—C5—C63.3 (3)N2—C15—C20—C19177.63 (17)
C9—C4—C5—C6176.43 (19)C16—C15—C20—C24177.60 (19)
C4—C5—C6—C70.4 (3)N2—C15—C20—C242.3 (3)
C5—C6—C7—C81.9 (3)C15—C16—C21—C22114.8 (2)
C6—C7—C8—C30.9 (3)C17—C16—C21—C2266.7 (2)
C6—C7—C8—C12179.89 (19)C15—C16—C21—C23121.5 (2)
C4—C3—C8—C72.3 (3)C17—C16—C21—C2357.1 (2)
N1—C3—C8—C7179.58 (16)C19—C20—C24—C2570.4 (3)
C4—C3—C8—C12176.70 (17)C15—C20—C24—C25109.4 (2)
N1—C3—C8—C120.6 (3)C19—C20—C24—C2653.5 (3)
C5—C4—C9—C1087.9 (2)C15—C20—C24—C26126.6 (2)
C3—C4—C9—C1092.4 (2)

Experimental details

Crystal data
Chemical formulaC26H36Cl2N2Pd
Mr553.87
Crystal system, space groupMonoclinic, P21/a
Temperature (K)150
a, b, c (Å)13.7198 (1), 15.3812 (2), 13.8702 (2)
β (°) 110.3873 (5)
V3)2743.64 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf Nonius Kappa CCD area detector
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1995, 1997)
Tmin, Tmax0.673, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
42903, 6279, 5446
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.08
No. of reflections6279
No. of parameters288
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.90

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, °) for (I), (II) and (III). top
(I)(II)(III)
Pd—X2.2834 (5)2.300 (4)2.033 (5)
Pd—Y2.2799 (5)2.020 (11)2.023 (6)
Pd—N12.0142 (15)2.033 (9)2.133 (4)
Pd—N22.0248 (14)2.208 (9)2.145 (4)
N1—C11.280 (2)1.315 (16)1.317 (6)
C1—C21.460 (3)1.434 (17)1.366 (8)
C2—N21.282 (2)1.262 (18)1.297 (6)
X—Pd—N193.66 (4)99.9 (3)100.17 (19)
X—Pd—N2172.75 (4)174.9 (3)174.3 (2)
Y—Pd—N1173.44 (4)170.4 (5)174.97 (19)
Y—Pd—N295.17 (4)94.3 (4)99.6 (2)
N1—Pd—N279.29 (6)76.2 (4)74.81 (15)
X—Pd—Y91.963 (17)89.7 (4)85.5 (2)
Pd—N1—C1114.91 (12)117.6 (8)114.2 (3)
N1—C1—C2115.54 (16)115.3 (12)118.2 (4)
C1—C2—N2116.18 (16)119.5 (11)118.1 (4)
C2—N2—Pd114.08 (12)111.3 (8)114.7 (3)
Atom labels are primarily those of (I) with X = Cl1 and Y = Cl2, X = Cl, Y = Me for (II) and X = Y = Me for (III). Data for (II) and (III) from Tempel et al., 2000.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds