Download citation
Download citation
link to html
In the title mol­ecule, C16H12O2, the phenyl and quinone rings are effectively planar, with maximum deviations from planarity of 0.007 (2) and 0.008 (1) Å, respectively. The γ-pyrone ring makes a dihedral angle of 8.9 (3)° with the 2-phenyl substituent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008571/tk6019sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008571/tk6019Isup2.hkl
Contains datablock I

CCDC reference: 170763

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.127
  • Data-to-parameter ratio = 16.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.30 From the CIF: _reflns_number_total 2758 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2922 Completeness (_total/calc) 94.39% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Flavones and related compounds are known to exhibit a wide range of interesting biological activities. (Agullo et al., 1997; Carlo et al., 1993; Miksicek, 1993; Wang et al., 1999). 6-Methylflavone is one of a number of flavones that have interesting modulatory activities at GABA-A receptors. (Medina et al., 1998; Campbell, 2001). The title compound, (I), was synthesized as part of an on-going structure–activity study to determine the properties of these compounds that confer this activity in order to aid the design of more active compounds.

All bond lengths and angles in (I) (Fig. 1) are as expected. Rings AC and B are planar; the maximum deviations are 0.008 (2) and 0.007 (1) Å from the ring planes AC and B, respectively.

The average C—C bond length for rings A and B are 1.394 (2) and 1.383 (2) Å, respectively. The dihedral angle between the phenyl and the γ-pyrone ring is small (8.9 (3) Å) as expected in the generally preferred conformation of flavones. The small dihedral angle results in a relatively short C3—C10 bond length of 1.472 (2) Å which is consistent with bond lengths and dihedral angles found in other flavones. Flavone-3'sulfonamide has a dihedral angle of 8.2 (3)° and the C3—C10 bond length of 1.478 (3) Å. (Kendi et al., 2000). In 5-hydroxyflavone, the dihedral angle is 5.2 (9)° and the C3—C10 bond length is 1.465 (4) Å. (Shoja, 1990). 5,7-Dihydroxy-4'-methoxyflavone with a dihedral angle of 3.1° has a C3—C10 bond length of 1.453 (9) Å. (Shoja, 1992). However, in 2'-methyl-3'-nitroflavone, the dihedral angle is 139.8 (2)° and the C3—C10 bond length is 1.491 (8) Å. (Kendi et al., 1996) and in 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone a large dihedral of angle of 164.4 (6)° and a C2—C10 bond length of 1.503 (8) Å are found (Vijayalakshmi et al., 1986).

The small dihedral angle between the phenyl and the γ-pyrone ring and shorter C1'-C2 bond length results in less delocalization of the π electrons in C3—C2—C1—O2, resulting in longer C2=C3 and C4=O2 bond lengths. 6-Methylflavone has a C2=C3 bond length of 1.348 (2) Å and a C4=O2 bond length of 1.237 (2) Å, a situation which is similar to flavone 3'-sulfonamide with a dihedral angle of 5.2 (9)°, and C2=C3 and C4=O2 bond lengths of 1.346 (3) and 1.247 (3) Å, respectively (Kendi et al., 2000). Conversely, 2'-methyl-3'nitro-flavone with the larger dihedral angle of 139.8 (2)° and longer C3—C10 bond length, has shorter C2=C3 and C4=O2 bond lengths of 1.322 (9) and 1.227 (8) Å, respectively (Kendi et al., 1996).

The widening of the O1—C4—C5 angle to 122.32 (13)° and the narrowing of the C2—C1—C5 angle to 114.51 (14)° in the γ-pyrone ring may be attributed to the ring strain caused by the neighbouring Csp2 - Csp2 atoms.

Experimental top

6-Methylflavone was obtained by the Baker-Venkataraman method and the structure confirmed by 1H, and 13C NMR, mass spectrometry and infra-red spectroscopy. The product was recrystallized by slow evaporation from methanol (1.64 g, 60%), m.p. 397–400. λmax/cm-1 2900 (ArC-H), 1640 (C=O), 1450, 1375, 1300, 1220, 1165, 1130, 1085, 1040, 1025, 975, 900, 850, 835, 815, 770, 720, 660; δH (300 MHz; CDCl3) 2.48 (3H, s, CH3), 6.83 (1H, s, C(3)—H), 7.49–7.57 (5H, m, C(2')-H, C(3')-H, C(4')-H), 7.92–7.96 (2H, m, C(7)—H, C(8)—H), 8.03 (1H, symm. m, C(5)—H); δC (75 MHz; CDCl3) 21.01 (CH3), 107.50 (C-8), 117.93 (C-3), 123.72 (C-5a), 125.14 (C-4), 126.33 (C-3'), 129.09 (C-2'), 131.56 (C-5), 132.00 (C-1'), 135.04 (C-7), 135.26 (C-6), 154.63 (C-2), 163.29 (C-8a), 178.55 (C-4); m/z 236 ([M]+, 100%), 235 (31), 208 (51), 134 (29), 106 (19), 105 (28), 78 (12), 77 (14).

Crystals of (I) were mounted using silicone oil which acted as both a coating and an adhesive.

Refinement top

H atoms were included in calculated positions (riding model) with Uiso set at 1.2(CH) and 1.5(CH3) times the Ueq of the parent atoms.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. A general view of the molecular structure of (I). The ellipsoids are drawn at the 50% probability level (Farrugia, 1997).
(I) top
Crystal data top
C16H12O2Dx = 1.335 Mg m3
Mr = 236.26Melting point = 124–127 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.7103 (8) ÅCell parameters from 999 reflections
b = 11.684 (2) Åθ = 1.9–28.3°
c = 21.352 (4) ŵ = 0.09 mm1
β = 90.043 (3)°T = 150 K
V = 1175.1 (3) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.15 mm
F(000) = 496
Data collection top
Bruker SMART 1000 CCD
diffractometer
1644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
ω–scanh = 66
7396 measured reflectionsk = 1015
2758 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0696P)2]
where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H12O2V = 1175.1 (3) Å3
Mr = 236.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7103 (8) ŵ = 0.09 mm1
b = 11.684 (2) ÅT = 150 K
c = 21.352 (4) Å0.25 × 0.15 × 0.15 mm
β = 90.043 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1644 reflections with I > 2σ(I)
7396 measured reflectionsRint = 0.033
2758 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.93Δρmax = 0.26 e Å3
2758 reflectionsΔρmin = 0.20 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1397 (2)0.74957 (9)0.14860 (5)0.0299 (3)
O20.2213 (3)0.43274 (10)0.13297 (6)0.0443 (4)
C10.1137 (4)0.52883 (14)0.13807 (7)0.0310 (4)
C20.0931 (3)0.57314 (14)0.09453 (7)0.0310 (4)
H20.14880.52740.06110.037*
C30.2090 (3)0.67804 (14)0.10033 (7)0.0270 (4)
C40.0587 (3)0.71459 (13)0.19192 (7)0.0271 (4)
C50.1869 (3)0.60763 (13)0.18931 (7)0.0269 (4)
C60.3861 (3)0.57969 (14)0.23574 (7)0.0299 (4)
H60.47180.50800.23490.036*
C70.4586 (3)0.65577 (14)0.28278 (7)0.0295 (4)
C80.3264 (4)0.76346 (14)0.28275 (7)0.0325 (4)
H80.37480.81630.31350.039*
C90.1273 (4)0.79302 (14)0.23852 (7)0.0326 (4)
H90.03990.86440.23980.039*
C100.4199 (3)0.73010 (14)0.05827 (7)0.0280 (4)
C110.5532 (4)0.83208 (15)0.07408 (8)0.0371 (4)
H110.50620.86890.11130.045*
C120.7551 (4)0.87919 (16)0.03500 (9)0.0470 (5)
H120.84310.94750.04600.056*
C130.8275 (4)0.82568 (16)0.02031 (8)0.0428 (5)
H130.96490.85750.04630.051*
C140.6961 (4)0.72534 (15)0.03687 (8)0.0385 (4)
H140.74440.68920.07420.046*
C150.4930 (4)0.67802 (15)0.00156 (8)0.0347 (4)
H150.40320.61050.01030.042*
C160.6683 (4)0.62485 (15)0.33332 (8)0.0376 (4)
H16A0.80120.56980.31730.056*
H16B0.76820.69230.34640.056*
H16C0.56890.59270.36840.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0366 (7)0.0238 (6)0.0294 (6)0.0026 (5)0.0080 (5)0.0034 (4)
O20.0555 (9)0.0298 (7)0.0475 (7)0.0131 (6)0.0152 (6)0.0094 (6)
C10.0349 (10)0.0252 (9)0.0328 (9)0.0004 (7)0.0032 (7)0.0013 (7)
C20.0353 (10)0.0283 (9)0.0295 (8)0.0016 (7)0.0065 (7)0.0062 (7)
C30.0291 (9)0.0276 (9)0.0245 (8)0.0046 (7)0.0019 (7)0.0017 (6)
C40.0302 (9)0.0261 (9)0.0249 (8)0.0016 (7)0.0040 (7)0.0011 (6)
C50.0289 (9)0.0242 (9)0.0276 (8)0.0018 (7)0.0020 (7)0.0004 (6)
C60.0294 (9)0.0280 (9)0.0324 (9)0.0016 (7)0.0022 (7)0.0007 (7)
C70.0275 (9)0.0325 (9)0.0287 (8)0.0039 (7)0.0012 (7)0.0039 (7)
C80.0423 (11)0.0288 (9)0.0263 (8)0.0060 (8)0.0054 (8)0.0028 (7)
C90.0423 (11)0.0242 (9)0.0313 (9)0.0011 (7)0.0031 (8)0.0017 (7)
C100.0296 (9)0.0263 (9)0.0282 (8)0.0031 (7)0.0008 (7)0.0025 (7)
C110.0442 (11)0.0315 (10)0.0356 (9)0.0023 (8)0.0097 (8)0.0050 (8)
C120.0560 (13)0.0359 (11)0.0492 (11)0.0126 (9)0.0181 (9)0.0044 (9)
C130.0466 (12)0.0402 (11)0.0418 (10)0.0028 (9)0.0160 (9)0.0068 (8)
C140.0489 (12)0.0370 (11)0.0297 (9)0.0051 (9)0.0090 (8)0.0011 (8)
C150.0422 (11)0.0310 (10)0.0309 (8)0.0007 (8)0.0043 (8)0.0022 (7)
C160.0373 (11)0.0405 (11)0.0351 (9)0.0023 (8)0.0091 (8)0.0015 (8)
Geometric parameters (Å, º) top
O1—C31.3667 (18)C8—H80.9300
O1—C41.3773 (18)C9—H90.9300
O2—C11.2365 (19)C10—C111.388 (2)
C1—C21.443 (2)C10—C151.398 (2)
C1—C51.471 (2)C11—C121.380 (2)
C2—C31.347 (2)C11—H110.9300
C2—H20.9300C12—C131.379 (2)
C3—C101.471 (2)C12—H120.9300
C4—C51.389 (2)C13—C141.372 (3)
C4—C91.391 (2)C13—H130.9300
C5—C61.404 (2)C14—C151.377 (2)
C6—C71.384 (2)C14—H140.9300
C6—H60.9300C15—H150.9300
C7—C81.404 (2)C16—H16A0.9600
C7—C161.507 (2)C16—H16B0.9600
C8—C91.375 (2)C16—H16C0.9600
C3—O1—C4119.18 (12)C8—C9—H9120.5
O2—C1—C2123.07 (15)C4—C9—H9120.5
O2—C1—C5122.52 (15)C11—C10—C15118.19 (15)
C2—C1—C5114.41 (14)C11—C10—C3120.79 (14)
C3—C2—C1122.72 (14)C15—C10—C3121.03 (15)
C3—C2—H2118.6C12—C11—C10120.46 (15)
C1—C2—H2118.6C12—C11—H11119.8
C2—C3—O1121.92 (14)C10—C11—H11119.8
C2—C3—C10126.41 (14)C13—C12—C11120.51 (18)
O1—C3—C10111.67 (13)C13—C12—H12119.7
O1—C4—C5122.36 (13)C11—C12—H12119.7
O1—C4—C9116.30 (14)C14—C13—C12119.76 (16)
C5—C4—C9121.34 (14)C14—C13—H13120.1
C4—C5—C6118.14 (14)C12—C13—H13120.1
C4—C5—C1119.39 (14)C13—C14—C15120.20 (16)
C6—C5—C1122.47 (14)C13—C14—H14119.9
C7—C6—C5121.90 (15)C15—C14—H14119.9
C7—C6—H6119.0C14—C15—C10120.86 (16)
C5—C6—H6119.0C14—C15—H15119.6
C6—C7—C8117.75 (14)C10—C15—H15119.6
C6—C7—C16121.85 (15)C7—C16—H16A109.5
C8—C7—C16120.40 (14)C7—C16—H16B109.5
C9—C8—C7121.87 (15)H16A—C16—H16B109.5
C9—C8—H8119.1C7—C16—H16C109.5
C7—C8—H8119.1H16A—C16—H16C109.5
C8—C9—C4118.99 (15)H16B—C16—H16C109.5
O2—C1—C2—C3179.85 (17)C5—C6—C7—C16178.81 (15)
C5—C1—C2—C30.1 (2)C6—C7—C8—C91.2 (3)
C1—C2—C3—O10.7 (3)C16—C7—C8—C9177.86 (15)
C1—C2—C3—C10179.86 (15)C7—C8—C9—C41.1 (3)
C4—O1—C3—C21.4 (2)O1—C4—C9—C8179.32 (14)
C4—O1—C3—C10179.06 (13)C5—C4—C9—C80.0 (2)
C3—O1—C4—C51.6 (2)C2—C3—C10—C11170.71 (17)
C3—O1—C4—C9177.71 (14)O1—C3—C10—C118.8 (2)
O1—C4—C5—C6179.81 (14)C2—C3—C10—C158.9 (3)
C9—C4—C5—C60.9 (2)O1—C3—C10—C15171.61 (14)
O1—C4—C5—C11.1 (2)C15—C10—C11—C120.9 (3)
C9—C4—C5—C1178.21 (14)C3—C10—C11—C12178.66 (17)
O2—C1—C5—C4179.66 (16)C10—C11—C12—C130.0 (3)
C2—C1—C5—C40.3 (2)C11—C12—C13—C140.5 (3)
O2—C1—C5—C60.6 (3)C12—C13—C14—C150.1 (3)
C2—C1—C5—C6179.39 (15)C13—C14—C15—C100.9 (3)
C4—C5—C6—C70.8 (2)C11—C10—C15—C141.4 (3)
C1—C5—C6—C7178.28 (15)C3—C10—C15—C14178.20 (16)
C5—C6—C7—C80.2 (2)

Experimental details

Crystal data
Chemical formulaC16H12O2
Mr236.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)4.7103 (8), 11.684 (2), 21.352 (4)
β (°) 90.043 (3)
V3)1175.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7396, 2758, 1644
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 0.93
No. of reflections2758
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds