metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,4-Bis(di­phenyl­phosphan­yl)butane-κ2P,P′]di­bromido­palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: yssong@chonnam.ac.kr

(Received 7 January 2014; accepted 13 January 2014; online 18 January 2014)

In the title complex, [PdBr2(C28H28P2)], the PdII ion has a distorted cis-Br2P2 square-planar coordination geometry defined by two P atoms from the chelating 1,4-bis­(di­phenyl­phosphan­yl)butane ligand and two Br anions. The four phenyl rings are inclined to the least-squares plane of the PdBr2P2 unit [maximum deviation = 0.1294 (7) Å], making dihedral angles of 66.3 (2), 87.2 (2), 68.8 (2) and 86.8 (2)°. The butyl­ene chain is in a gauche conformation, with a C—C—C—C torsion angle of 57.0 (8)°. Inter­molecular C—H⋯Br hydrogen bonds link the complex mol­ecules into supra­molecular layers in the ab plane. Weak ππ inter­actions, both intra- and inter­molecular [shortest inter-centroid distance = 4.598 (5) Å], are also noted in the three-dimensional architecture.

Related literature

For the crystal structures of related [MCl2(dppb)] complexes where M = Pd or Pt, and dppb = 1,4-bis­(di­phenyl­phosphan­yl)butane), see: Makhaev et al. (1996[Makhaev, V. D., Dzhabieva, Z. M., Konovalikhin, S. V., Dyachenko, O. A. & Belov, G. P. (1996). Koord. Khim. 22, 598-602.]); Deacon et al. (2005[Deacon, G. B., Elliott, P. W., Erven, A. P. & Meyer, G. (2005). Z. Anorg. Allg. Chem. 631, 843-850.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C28H28P2)]

  • Mr = 692.66

  • Triclinic, [P \overline 1]

  • a = 8.7481 (5) Å

  • b = 10.7677 (6) Å

  • c = 14.4789 (8) Å

  • α = 87.203 (1)°

  • β = 79.389 (1)°

  • γ = 73.929 (1)°

  • V = 1288.15 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 200 K

  • 0.06 × 0.04 × 0.01 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 1.000

  • 8009 measured reflections

  • 4961 independent reflections

  • 3847 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.08

  • 4961 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—P1 2.2676 (16)
Pd1—P2 2.2834 (16)
Pd1—Br1 2.4604 (8)
Pd1—Br2 2.4712 (8)
P1—Pd1—P2 94.32 (6)
Br1—Pd1—Br2 89.15 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br2i 0.95 2.91 3.776 (7) 153
C14—H14A⋯Br1ii 0.99 2.93 3.617 (6) 128
Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

To a solution of K2PdBr4 (0.2526 g, 0.501 mmol) in MeOH (20 ml) was added 1,4-bis­(di­phenyl­phosphanyl)butane (0.2142 g, 0.502 mmol) followed by stirring for 3 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and acetone, and dried at 323 K, to give a yellow powder (0.1412 g). Crystals were obtained by slow evaporation from its CH3NO2 solution held at room temperature.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). The highest peak (1.13 e Å-3) and the deepest hole (-0.96 e Å-3) in the difference Fourier map are located 1.14 and 0.58 Å, respectively, from the Br1 atom. A large number of reflections were omitted from the final cycles of refinement owing to poor agreement.

Results and discussion top

Crystal structures of the related chlorido PdII and PtII complexes, [PdCl2(dppb)] (dppb = 1,4-bis­(di­phenyl­phosphanyl)butane, C28H28P2) (Makhaev et al., 1996) and [PtCl2(dppb)] (Deacon et al., 2005) have been investigated previously.

The PdII ion in the title complex, [PdBr2(dppb)], has a distorted cis-Br2P2 square-planar coordination geometry defined by two P atoms from the chelating dppb ligand and two Br- anions (Fig. 1). The Pd—P and Pd—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the four phenyl rings are inclined to the least-squares plane of the PdBr2P2 unit [maximum deviation = 0.1294 (7) Å], making dihedral angles of 66.3 (2) (C1–C6), 87.2 (2) (C7–C12), 68.8 (2) (C17–C22) and 86.8 (2)° (C23–C28). The torsion angle for the four atoms within the butyl­ene chain indicates that the chain is approximately in the gauche conformation [C13—C14—C15—C16 = 57.0 (8)°]. The complex molecules are stacked in columns along the a axis. In the columns, numerous intra- and inter­molecular ππ inter­actions between the benzene rings are present, the shortest ring centroid-centroid distance being 4.598 (5) Å (Fig. 2). Inter­molecular C—H···Br hydrogen bonds further stabilize the crystal structure (Table 2).

Related literature top

For the crystal structures of related [MCl2(dppb)] complexes where M = Pd or Pt, and dppb = 1,4-bis(diphenylphosphanyl)butane), see: Makhaev et al. (1996); Deacon et al. (2005).

Structure description top

Crystal structures of the related chlorido PdII and PtII complexes, [PdCl2(dppb)] (dppb = 1,4-bis­(di­phenyl­phosphanyl)butane, C28H28P2) (Makhaev et al., 1996) and [PtCl2(dppb)] (Deacon et al., 2005) have been investigated previously.

The PdII ion in the title complex, [PdBr2(dppb)], has a distorted cis-Br2P2 square-planar coordination geometry defined by two P atoms from the chelating dppb ligand and two Br- anions (Fig. 1). The Pd—P and Pd—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the four phenyl rings are inclined to the least-squares plane of the PdBr2P2 unit [maximum deviation = 0.1294 (7) Å], making dihedral angles of 66.3 (2) (C1–C6), 87.2 (2) (C7–C12), 68.8 (2) (C17–C22) and 86.8 (2)° (C23–C28). The torsion angle for the four atoms within the butyl­ene chain indicates that the chain is approximately in the gauche conformation [C13—C14—C15—C16 = 57.0 (8)°]. The complex molecules are stacked in columns along the a axis. In the columns, numerous intra- and inter­molecular ππ inter­actions between the benzene rings are present, the shortest ring centroid-centroid distance being 4.598 (5) Å (Fig. 2). Inter­molecular C—H···Br hydrogen bonds further stabilize the crystal structure (Table 2).

For the crystal structures of related [MCl2(dppb)] complexes where M = Pd or Pt, and dppb = 1,4-bis(diphenylphosphanyl)butane), see: Makhaev et al. (1996); Deacon et al. (2005).

Synthesis and crystallization top

To a solution of K2PdBr4 (0.2526 g, 0.501 mmol) in MeOH (20 ml) was added 1,4-bis­(di­phenyl­phosphanyl)butane (0.2142 g, 0.502 mmol) followed by stirring for 3 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and acetone, and dried at 323 K, to give a yellow powder (0.1412 g). Crystals were obtained by slow evaporation from its CH3NO2 solution held at room temperature.

Refinement details top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). The highest peak (1.13 e Å-3) and the deepest hole (-0.96 e Å-3) in the difference Fourier map are located 1.14 and 0.58 Å, respectively, from the Br1 atom. A large number of reflections were omitted from the final cycles of refinement owing to poor agreement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level and the atom numbering.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex.
[1,4-Bis(diphenylphosphanyl)butane-κ2P,P']dibromidopalladium(II) top
Crystal data top
[PdBr2(C28H28P2)]Z = 2
Mr = 692.66F(000) = 684
Triclinic, P1Dx = 1.786 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7481 (5) ÅCell parameters from 3866 reflections
b = 10.7677 (6) Åθ = 2.4–26.0°
c = 14.4789 (8) ŵ = 3.96 mm1
α = 87.203 (1)°T = 200 K
β = 79.389 (1)°Block, yellow
γ = 73.929 (1)°0.06 × 0.04 × 0.01 mm
V = 1288.15 (13) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4961 independent reflections
Radiation source: fine-focus sealed tube3847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 810
Tmin = 0.859, Tmax = 1.000k = 1213
8009 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0398P)2 + 6.4613P]
where P = (Fo2 + 2Fc2)/3
4961 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[PdBr2(C28H28P2)]γ = 73.929 (1)°
Mr = 692.66V = 1288.15 (13) Å3
Triclinic, P1Z = 2
a = 8.7481 (5) ÅMo Kα radiation
b = 10.7677 (6) ŵ = 3.96 mm1
c = 14.4789 (8) ÅT = 200 K
α = 87.203 (1)°0.06 × 0.04 × 0.01 mm
β = 79.389 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4961 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3847 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.024
8009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 1.13 e Å3
4961 reflectionsΔρmin = 0.96 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.11465 (5)0.83898 (4)0.24341 (3)0.01959 (13)
Br10.02105 (8)0.66561 (7)0.27646 (5)0.03468 (19)
Br20.14937 (9)0.99359 (7)0.23280 (6)0.0411 (2)
P10.33484 (19)0.69181 (14)0.28150 (11)0.0216 (3)
P20.24181 (19)0.99889 (14)0.21058 (11)0.0204 (3)
C10.4032 (7)0.5406 (6)0.2161 (4)0.0241 (13)
C20.3474 (8)0.5242 (6)0.1356 (4)0.0272 (14)
H20.26310.59020.11550.033*
C30.4149 (9)0.4111 (7)0.0844 (5)0.0374 (17)
H30.37770.39970.02860.045*
C40.5372 (10)0.3136 (7)0.1143 (5)0.0409 (18)
H40.58240.23580.07910.049*
C50.5920 (9)0.3292 (7)0.1931 (6)0.0411 (18)
H50.67710.26310.21240.049*
C60.5244 (9)0.4414 (6)0.2458 (5)0.0371 (17)
H60.56070.45080.30230.044*
C70.2871 (7)0.6503 (6)0.4044 (4)0.0238 (13)
C80.2367 (9)0.5413 (7)0.4322 (5)0.0345 (16)
H80.23230.48290.38620.041*
C90.1921 (9)0.5164 (7)0.5277 (5)0.0372 (17)
H90.16060.44010.54670.045*
C100.1941 (9)0.6014 (8)0.5925 (5)0.0406 (18)
H100.16190.58440.65710.049*
C110.2413 (9)0.7116 (8)0.5679 (5)0.044 (2)
H110.24000.77050.61500.053*
C120.2918 (9)0.7370 (7)0.4721 (5)0.0378 (17)
H120.32820.81140.45400.045*
C130.5229 (7)0.7372 (6)0.2743 (4)0.0260 (14)
H13A0.49770.82430.30220.031*
H13B0.59290.67590.31240.031*
C140.6160 (7)0.7384 (7)0.1750 (5)0.0299 (15)
H14A0.70910.77310.17700.036*
H14B0.65990.64820.15210.036*
C150.5194 (8)0.8167 (6)0.1050 (4)0.0276 (14)
H15A0.59170.81280.04330.033*
H15B0.43370.77620.09740.033*
C160.4422 (8)0.9557 (6)0.1317 (5)0.0299 (14)
H16A0.43111.00580.07290.036*
H16B0.51830.98560.16200.036*
C170.1346 (8)1.1362 (6)0.1468 (4)0.0252 (14)
C180.1042 (9)1.1129 (7)0.0585 (5)0.0328 (15)
H180.13551.02710.03480.039*
C190.0289 (9)1.2140 (8)0.0056 (5)0.0402 (18)
H190.00891.19820.05450.048*
C200.0162 (9)1.3367 (7)0.0406 (5)0.0385 (18)
H200.06841.40600.00430.046*
C210.0120 (9)1.3630 (7)0.1278 (5)0.0381 (17)
H210.02021.44910.15100.046*
C220.0887 (8)1.2603 (6)0.1812 (5)0.0303 (15)
H220.10901.27650.24110.036*
C230.2624 (8)1.0629 (5)0.3199 (4)0.0237 (13)
C240.3971 (11)1.0970 (11)0.3321 (6)0.066 (3)
H240.48521.08890.28130.079*
C250.4052 (12)1.1432 (12)0.4179 (7)0.082 (4)
H250.49831.16820.42520.099*
C260.2834 (10)1.1533 (8)0.4913 (6)0.047 (2)
H260.29321.18110.55070.057*
C270.1464 (10)1.1238 (8)0.4807 (5)0.050 (2)
H270.05741.13530.53120.060*
C280.1389 (9)1.0763 (8)0.3940 (5)0.046 (2)
H280.04491.05270.38680.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0200 (2)0.0182 (2)0.0209 (2)0.00528 (18)0.00436 (18)0.00072 (17)
Br10.0327 (4)0.0324 (4)0.0422 (4)0.0135 (3)0.0096 (3)0.0062 (3)
Br20.0281 (4)0.0293 (4)0.0630 (5)0.0029 (3)0.0091 (3)0.0027 (3)
P10.0231 (8)0.0191 (7)0.0231 (8)0.0048 (6)0.0079 (6)0.0026 (6)
P20.0231 (8)0.0182 (7)0.0192 (8)0.0064 (6)0.0013 (6)0.0006 (6)
C10.022 (3)0.024 (3)0.024 (3)0.001 (3)0.005 (3)0.001 (2)
C20.027 (3)0.023 (3)0.028 (3)0.003 (3)0.001 (3)0.002 (3)
C30.044 (4)0.033 (4)0.034 (4)0.009 (3)0.006 (3)0.005 (3)
C40.056 (5)0.025 (3)0.037 (4)0.014 (3)0.010 (4)0.013 (3)
C50.030 (4)0.031 (4)0.051 (5)0.007 (3)0.002 (3)0.005 (3)
C60.039 (4)0.024 (3)0.047 (4)0.001 (3)0.018 (3)0.000 (3)
C70.021 (3)0.028 (3)0.019 (3)0.001 (3)0.006 (2)0.004 (2)
C80.043 (4)0.032 (4)0.029 (4)0.010 (3)0.009 (3)0.005 (3)
C90.039 (4)0.038 (4)0.034 (4)0.011 (3)0.005 (3)0.013 (3)
C100.033 (4)0.059 (5)0.024 (4)0.009 (4)0.001 (3)0.016 (3)
C110.043 (4)0.069 (5)0.018 (3)0.008 (4)0.007 (3)0.011 (3)
C120.037 (4)0.043 (4)0.036 (4)0.013 (3)0.012 (3)0.002 (3)
C130.026 (3)0.030 (3)0.026 (3)0.010 (3)0.012 (3)0.008 (3)
C140.012 (3)0.037 (4)0.037 (4)0.001 (3)0.004 (3)0.001 (3)
C150.022 (3)0.036 (4)0.023 (3)0.009 (3)0.004 (3)0.001 (3)
C160.030 (4)0.032 (3)0.028 (3)0.012 (3)0.001 (3)0.007 (3)
C170.033 (4)0.021 (3)0.022 (3)0.010 (3)0.007 (3)0.012 (2)
C180.042 (4)0.031 (4)0.028 (4)0.012 (3)0.010 (3)0.002 (3)
C190.043 (4)0.056 (5)0.029 (4)0.020 (4)0.013 (3)0.003 (3)
C200.042 (4)0.035 (4)0.047 (4)0.020 (3)0.019 (4)0.025 (3)
C210.041 (4)0.023 (3)0.051 (5)0.007 (3)0.012 (4)0.004 (3)
C220.036 (4)0.028 (3)0.029 (4)0.013 (3)0.005 (3)0.000 (3)
C230.030 (3)0.017 (3)0.024 (3)0.002 (3)0.007 (3)0.002 (2)
C240.048 (5)0.123 (9)0.043 (5)0.054 (6)0.001 (4)0.022 (5)
C250.062 (6)0.152 (11)0.058 (6)0.071 (7)0.001 (5)0.037 (7)
C260.059 (5)0.049 (5)0.036 (4)0.007 (4)0.021 (4)0.014 (4)
C270.048 (5)0.068 (6)0.033 (4)0.019 (4)0.004 (4)0.023 (4)
C280.036 (4)0.073 (6)0.036 (4)0.029 (4)0.001 (3)0.018 (4)
Geometric parameters (Å, º) top
Pd1—P12.2676 (16)C13—H13A0.9900
Pd1—P22.2834 (16)C13—H13B0.9900
Pd1—Br12.4604 (8)C14—C151.514 (9)
Pd1—Br22.4712 (8)C14—H14A0.9900
P1—C71.814 (6)C14—H14B0.9900
P1—C11.819 (6)C15—C161.499 (9)
P1—C131.826 (6)C15—H15A0.9900
P2—C231.816 (6)C15—H15B0.9900
P2—C171.827 (6)C16—H16A0.9900
P2—C161.860 (7)C16—H16B0.9900
C1—C21.381 (9)C17—C221.374 (9)
C1—C61.395 (9)C17—C181.401 (9)
C2—C31.383 (9)C18—C191.383 (10)
C2—H20.9500C18—H180.9500
C3—C41.392 (10)C19—C201.364 (10)
C3—H30.9500C19—H190.9500
C4—C51.350 (11)C20—C211.387 (10)
C4—H40.9500C20—H200.9500
C5—C61.386 (10)C21—C221.403 (9)
C5—H50.9500C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.382 (9)C23—C281.357 (9)
C7—C121.400 (9)C23—C241.369 (10)
C8—C91.399 (9)C24—C251.382 (12)
C8—H80.9500C24—H240.9500
C9—C101.349 (11)C25—C261.344 (12)
C9—H90.9500C25—H250.9500
C10—C111.371 (11)C26—C271.358 (11)
C10—H100.9500C26—H260.9500
C11—C121.414 (10)C27—C281.397 (10)
C11—H110.9500C27—H270.9500
C12—H120.9500C28—H280.9500
C13—C141.518 (9)
P1—Pd1—P294.32 (6)C14—C13—H13B108.8
P1—Pd1—Br185.65 (4)P1—C13—H13B108.8
P2—Pd1—Br1179.19 (5)H13A—C13—H13B107.7
P1—Pd1—Br2169.15 (5)C15—C14—C13115.2 (5)
P2—Pd1—Br291.00 (4)C15—C14—H14A108.5
Br1—Pd1—Br289.15 (3)C13—C14—H14A108.5
C7—P1—C1106.6 (3)C15—C14—H14B108.5
C7—P1—C13103.2 (3)C13—C14—H14B108.5
C1—P1—C13101.9 (3)H14A—C14—H14B107.5
C7—P1—Pd1108.0 (2)C16—C15—C14114.5 (6)
C1—P1—Pd1116.4 (2)C16—C15—H15A108.6
C13—P1—Pd1119.3 (2)C14—C15—H15A108.6
C23—P2—C17106.4 (3)C16—C15—H15B108.6
C23—P2—C16109.1 (3)C14—C15—H15B108.6
C17—P2—C16100.2 (3)H15A—C15—H15B107.6
C23—P2—Pd1109.2 (2)C15—C16—P2118.6 (4)
C17—P2—Pd1114.5 (2)C15—C16—H16A107.7
C16—P2—Pd1116.8 (2)P2—C16—H16A107.7
C2—C1—C6119.5 (6)C15—C16—H16B107.7
C2—C1—P1122.4 (5)P2—C16—H16B107.7
C6—C1—P1118.0 (5)H16A—C16—H16B107.1
C1—C2—C3119.6 (6)C22—C17—C18119.8 (6)
C1—C2—H2120.2C22—C17—P2122.2 (5)
C3—C2—H2120.2C18—C17—P2118.0 (5)
C2—C3—C4120.2 (7)C19—C18—C17120.4 (6)
C2—C3—H3119.9C19—C18—H18119.8
C4—C3—H3119.9C17—C18—H18119.8
C5—C4—C3120.4 (6)C20—C19—C18119.2 (7)
C5—C4—H4119.8C20—C19—H19120.4
C3—C4—H4119.8C18—C19—H19120.4
C4—C5—C6120.1 (7)C19—C20—C21121.8 (6)
C4—C5—H5119.9C19—C20—H20119.1
C6—C5—H5119.9C21—C20—H20119.1
C5—C6—C1120.2 (7)C20—C21—C22118.9 (6)
C5—C6—H6119.9C20—C21—H21120.6
C1—C6—H6119.9C22—C21—H21120.6
C8—C7—C12119.8 (6)C17—C22—C21119.9 (6)
C8—C7—P1122.0 (5)C17—C22—H22120.0
C12—C7—P1118.1 (5)C21—C22—H22120.0
C7—C8—C9120.3 (6)C28—C23—C24118.1 (6)
C7—C8—H8119.8C28—C23—P2118.4 (5)
C9—C8—H8119.8C24—C23—P2123.5 (6)
C10—C9—C8119.6 (7)C23—C24—C25120.2 (8)
C10—C9—H9120.2C23—C24—H24119.9
C8—C9—H9120.2C25—C24—H24119.9
C9—C10—C11121.9 (6)C26—C25—C24121.0 (8)
C9—C10—H10119.1C26—C25—H25119.5
C11—C10—H10119.1C24—C25—H25119.5
C10—C11—C12119.6 (7)C25—C26—C27120.1 (7)
C10—C11—H11120.2C25—C26—H26119.9
C12—C11—H11120.2C27—C26—H26119.9
C7—C12—C11118.7 (7)C26—C27—C28118.7 (7)
C7—C12—H12120.6C26—C27—H27120.7
C11—C12—H12120.6C28—C27—H27120.7
C14—C13—P1114.0 (4)C23—C28—C27121.7 (7)
C14—C13—H13A108.8C23—C28—H28119.1
P1—C13—H13A108.8C27—C28—H28119.1
P2—Pd1—P1—C7116.6 (2)C9—C10—C11—C121.0 (11)
Br1—Pd1—P1—C764.2 (2)C8—C7—C12—C111.2 (10)
Br2—Pd1—P1—C72.6 (4)P1—C7—C12—C11174.5 (5)
P2—Pd1—P1—C1123.6 (2)C10—C11—C12—C72.1 (11)
Br1—Pd1—P1—C155.6 (2)C7—P1—C13—C14162.9 (5)
Br2—Pd1—P1—C1117.2 (3)C1—P1—C13—C1452.4 (5)
P2—Pd1—P1—C130.7 (2)Pd1—P1—C13—C1477.4 (5)
Br1—Pd1—P1—C13178.5 (2)P1—C13—C14—C1552.1 (7)
Br2—Pd1—P1—C13119.9 (3)C13—C14—C15—C1657.0 (8)
P1—Pd1—P2—C2375.1 (2)C14—C15—C16—P285.3 (6)
Br1—Pd1—P2—C23163 (3)C23—P2—C16—C15115.9 (5)
Br2—Pd1—P2—C2395.4 (2)C17—P2—C16—C15132.6 (5)
P1—Pd1—P2—C17165.7 (2)Pd1—P2—C16—C158.3 (6)
Br1—Pd1—P2—C1777 (3)C23—P2—C17—C221.6 (6)
Br2—Pd1—P2—C1723.8 (2)C16—P2—C17—C22111.9 (6)
P1—Pd1—P2—C1649.1 (2)Pd1—P2—C17—C22122.3 (5)
Br1—Pd1—P2—C1639 (3)C23—P2—C17—C18179.4 (5)
Br2—Pd1—P2—C16140.4 (2)C16—P2—C17—C1865.9 (6)
C7—P1—C1—C2133.2 (5)Pd1—P2—C17—C1859.9 (6)
C13—P1—C1—C2118.9 (6)C22—C17—C18—C190.3 (10)
Pd1—P1—C1—C212.7 (6)P2—C17—C18—C19177.6 (6)
C7—P1—C1—C651.2 (6)C17—C18—C19—C200.4 (11)
C13—P1—C1—C656.7 (6)C18—C19—C20—C210.3 (12)
Pd1—P1—C1—C6171.7 (5)C19—C20—C21—C220.1 (11)
C6—C1—C2—C31.5 (10)C18—C17—C22—C210.1 (10)
P1—C1—C2—C3174.1 (5)P2—C17—C22—C21177.6 (5)
C1—C2—C3—C40.7 (10)C20—C21—C22—C170.1 (11)
C2—C3—C4—C50.6 (11)C17—P2—C23—C2885.7 (6)
C3—C4—C5—C61.3 (12)C16—P2—C23—C28167.1 (6)
C4—C5—C6—C12.2 (12)Pd1—P2—C23—C2838.4 (6)
C2—C1—C6—C52.2 (11)C17—P2—C23—C2495.2 (7)
P1—C1—C6—C5173.5 (6)C16—P2—C23—C2412.1 (8)
C1—P1—C7—C828.5 (6)Pd1—P2—C23—C24140.7 (7)
C13—P1—C7—C8135.4 (6)C28—C23—C24—C250.2 (15)
Pd1—P1—C7—C897.3 (5)P2—C23—C24—C25178.9 (8)
C1—P1—C7—C12155.9 (5)C23—C24—C25—C261.2 (18)
C13—P1—C7—C1248.9 (6)C24—C25—C26—C273.2 (17)
Pd1—P1—C7—C1278.3 (5)C25—C26—C27—C283.5 (14)
C12—C7—C8—C90.7 (10)C24—C23—C28—C270.3 (13)
P1—C7—C8—C9176.3 (5)P2—C23—C28—C27179.4 (7)
C7—C8—C9—C101.9 (11)C26—C27—C28—C232.1 (13)
C8—C9—C10—C111.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br2i0.952.913.776 (7)153
C14—H14A···Br1ii0.992.933.617 (6)128
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
Selected geometric parameters (Å, º) top
Pd1—P12.2676 (16)Pd1—Br12.4604 (8)
Pd1—P22.2834 (16)Pd1—Br22.4712 (8)
P1—Pd1—P294.32 (6)Br1—Pd1—Br289.15 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br2i0.952.913.776 (7)153
C14—H14A···Br1ii0.992.933.617 (6)128
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
 

Acknowledgements

This study was financially supported by Chonnam National University, 2009.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeacon, G. B., Elliott, P. W., Erven, A. P. & Meyer, G. (2005). Z. Anorg. Allg. Chem. 631, 843–850.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakhaev, V. D., Dzhabieva, Z. M., Konovalikhin, S. V., Dyachenko, O. A. & Belov, G. P. (1996). Koord. Khim. 22, 598–602.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds