metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[3-methyl­pyridinium [(μ2-di­hydrogen phosphito)bis­(μ3-hydrogen phosphito)dizinc]]

crossmark logo

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, United Kingdom, and bEaStCHEM, School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, United Kingdom
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 17 April 2024; accepted 18 April 2024; online 26 April 2024)

In the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, the constituent ZnO4, HPO3 and H2PO3 polyhedra of the inorganic component are linked into (010) sheets by Zn—O—P bonds (mean angle = 134.4°) and the layers are reinforced by O—H⋯O hydrogen bonds. The protonated templates are anchored to the inorganic sheets via bifurcated N—H⋯(O,O) hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The family of zincophosphite (ZnPO) networks templated or ligated by organic species now encompasses well over 200 crystal structures in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In continuation of our ongoing studies of these systems (Holmes et al., 2018[Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411-1416.]; Wark et al., 2023[Wark, S., Lyons, M. J., Slawin, A. M. Z. & Harrison, W. T. A. (2023). Acta Cryst. E79, 272-279.]), we describe the synthesis and structure of the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, (I), where C6H8N+ is the 3-picolinium (or 3-methyl­pyridinium) cation.

The asymmetric unit of (I) (Fig. 1[link]), which crystallizes in the triclinic space group P[\overline{1}], consists of two Zn2+ ions, two [HPO3]2− hydrogen phosphite anions, one [H2PO3] di­hydrogen phosphite anion and one C7H8N+ cation. The zinc coordination polyhedra are ZnO4 tetra­hedra, with mean Zn—O separations of 1.934 and 1.942 Å for Zn1 and Zn2, respectively. The spread of bond angles about the metal ions [100.45 (13)–114.37 (14)° for Zn1 and 102.86 (14)–112.73 (14)° for Zn2] indicate modest degrees of distortion, with τ4′ values (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]) of 0.95 (Zn1) and 0.96 (Zn2), where a value of 1.00 corresponds to a regular tetra­hedron. The [HPO3]2− groups adopt their usual tetra­hedral (including the H atom) or pseudo-pyramidal (excluding H) shape and the mean P—O separations are 1.506 Å for P1 and 1.516 Å for P2. The O—P—O bond angles around P1 show a larger than typical range of 107.52 (19)–114.3 (2)°, with the smallest O1—P1—O2 angle associated with the bifurcated hydrogen bond from the protonated template (Fig. 1[link]), whereas the P2 bond angles are tightly clustered [112.38 (19)–112.74 (18)°]. The [H2PO3] di­hydrogen phosphite group containing atom P3 includes a notably longer vertex [P3—O9 = 1.543 (3) Å] to the protonated O atom. Apart from O9, each O atom in (I) is bonded to one Zn and one P atom: the Zn—O—P bond angles vary from 128.89 (18) to 138.6 (2)°, with a mean of 134.4°, which is typical for this class of material (Wark et al., 2023[Wark, S., Lyons, M. J., Slawin, A. M. Z. & Harrison, W. T. A. (2023). Acta Cryst. E79, 272-279.]). The geometrical parameters for the organic cation are as expected (e.g. Sivakumar et al., 2016[Sivakumar, P., Niranjana Devi, R., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160979.]).

[Figure 1]
Figure 1
The asymmetric unit of (I), expanded to show the complete zinc-atom coordination spheres, showing 50% displacement ellipsoids. [Symmetry codes: (i) −x, −y + 1, −z; (ii) x − 1, y, z; (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1.] Hydrogen bonds are indicated by double-dashed lines.

In the extended structure of (I), the constituent ZnO4, HPO3 and H2PO3 polyhedra are linked by Zn—O—P bonds into infinite (010) sheets (Fig. 2[link]). Polyhedral 4- and 8-rings are present and the zinc and phospho­rus nodes strictly alternate. The most distinctive building unit is a centrosymmetric 8-ring incorporating two bifurcated 4-rings reinforced by a pair of O9—H1O⋯O4 intra-layer hydrogen bonds (Fig. 3[link]). These are linked by 4-rings involving the Zn2—O6—P2 bonds into [100] chains and crosslinked in the [001] direction by Zn1—O2—P1 bonds into the (010) sheets. The template inter­acts with the inorganic layers via an unusual bifurcated N1—H1B⋯(O1,O2) link (Fig. 1[link]): the vast majority of template-to-framework hydrogen bonds are associated with a single acceptor O atom. Some weak nonclassical C—H⋯O inter­actions occur, as listed in Table 1[link]. As is normal, the P—H unit does not participate in hydrogen bonding (Katinaitė & Harrison, 2017[Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759-762.]). There are no aromatic ππ stacking inter­actions in (I)>, the shortest centroid–centroid separation being greater than 5.68 Å, and inter-layer cohesion must be largely due to van der Waals forces.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.88 2.20 2.992 (6) 150
N1—H1B⋯O2 0.88 2.24 2.947 (6) 138
O9—H1O⋯O4i 0.85 1.78 2.630 (4) 177
C1—H1A⋯O5ii 0.95 2.34 3.285 (6) 175
C5—H5⋯O4iii 0.95 2.59 3.368 (6) 140
C5—H5⋯O6iii 0.95 2.52 3.300 (7) 140
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The unit-cell packing in (I), viewed down [100]. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Detail of an infinite (010) polyhedral layer in (I), showing the bifurcated 8-ring reinforced by pairwise O—H⋯O hydrogen bonds (double-dashed lines). [Symmetry code: (i) x − 1, y, z.]

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to April 2024) revealed 217 crystal structures containing zinc cations and hydrogen phosphite anions based on a search for a Zn—O—P—H fragment. Structures containing zinc and a di­hydrogen phosphite unit are uncommon with just three examples found, viz. bis­(μ2-hydrogen phosphito-O,O′)(hydrogen phosphito-O)(2,2′-bi­pyrid­yl)zinc(II) (CSD refocde BEJHUU; Lin et al., 2003[Lin, Z.-E., Zhang, J., Zheng, S.-T., Wei, Q.-H. & Yang, G.-Y. (2003). Solid State Sci. 5, 1435-1438.]), bis­(μ2-hydrogen phosphito-O,O′)(hydrogen phosphito-O)(4,4′-dimethyl-2,2′-bipyrid­yl)dizinc(II) (GICCOL; Lin et al., 2007[Lin, Z.-E., Fan, W., Gu, J. & Okubo, T. (2007). J. Solid State Chem. 180, 981-987.]) and catena-[1-azonio-4-aza­bicyclo­[2.2.2]octane tris­(μ3-hydrogen phosphito)(μ2-hydrogen phosphito)(1,4-di­aza­bi­cyclo­[2.2.2]octane-N)trizinc(II)] (XIZJEW; Liu et al., 2008[Liu, L., Zhang, L.-R., Wang, X.-F., Li, G.-H., Liu, Y.-L. & Pang, W.-Q. (2008). Dalton Trans. pp. 2009-2014.]). Compounds BEJHUU and GICCOL are closely related `zero-dimensional' bimetallic clusters with bulky chelating ligands, while XIZJEW features the organic species acting both as a ligand (via a Zn—N bond) and a protonated template.

Synthesis and crystallization

Compound (I) was prepared by mixing 0.41 g of ZnO, 0.82 g of H3PO3 and 0.47 g of 3-picoline (Zn:P:template molar ratio ≃ 1:2:1), which were placed in a 50 ml polypropyl­ene bottle with 20 ml of water and shaken well to result in a white slurry. The bottle was placed in a 353 K oven for 48 h and then removed and allowed to cool to room temperature over about 2 h. The solids were recovered by vacuum filtration to result in a mass of rod-like colourless crystals accompanied by some white solids. IR (diamond window): 3400–2800 cm−1 (O—H, N—H stretch), 2450 cm−1 (P—H stretch; Ma et al., 2007[Ma, Y., Li, N., Xiang, S. & Guan, N. (2007). J. Phys. Chem. C, 111, 18361-18366.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located in a difference map and refined as riding in its as-found relative location. The P-, N- and C-bound H atoms were located geometrically (P—H = 1.32, N—H = 0.88 and C—H = 0.95–0.98 Å) and refined as riding atoms. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(N, O or P) or 1.5Ueq(methyl C) was applied in all cases. Two peaks greater than 1 e Å−3 were found in the final difference map for (I) in the vicinity of the Zn atoms, but they did not correspond to plausible chemical features.

Table 2
Experimental details

Crystal data
Chemical formula (C6H8N)[Zn2(HPO3)2(H2PO3)]
Mr 465.82
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.8428 (5), 9.2779 (6), 9.9343 (4)
α, β, γ (°) 79.126 (4), 82.732 (4), 67.279 (6)
V3) 736.99 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.62
Crystal size (mm) 0.12 × 0.03 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14787, 3442, 2491
Rint 0.066
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.02
No. of reflections 3442
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −0.89
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Poly[3-methylpyridinium [(µ2-dihydrogen phosphito)bis(µ3-hydrogen phosphito)dizinc]] top
Crystal data top
(C6H8N)[Zn2(HPO3)2(H2PO3)]Z = 2
Mr = 465.82F(000) = 464
Triclinic, P1Dx = 2.099 Mg m3
a = 8.8428 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2779 (6) ÅCell parameters from 6732 reflections
c = 9.9343 (4) Åθ = 2.1–29.4°
α = 79.126 (4)°µ = 3.62 mm1
β = 82.732 (4)°T = 173 K
γ = 67.279 (6)°Bar, colourless
V = 736.99 (8) Å30.12 × 0.03 × 0.01 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
2491 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.066
ω scansθmax = 29.6°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2024)
h = 1112
Tmin = 0.850, Tmax = 1.000k = 1212
14787 measured reflectionsl = 1312
3442 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0819P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3442 reflectionsΔρmax = 1.43 e Å3
191 parametersΔρmin = 0.89 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.15526 (6)0.48844 (6)0.17897 (5)0.02409 (17)
Zn20.24043 (6)0.62310 (6)0.40311 (5)0.02507 (18)
P10.12600 (13)0.63180 (14)0.10765 (11)0.0231 (3)
H10.0969280.7784510.0466880.028*
P20.57579 (14)0.67732 (15)0.38453 (12)0.0249 (3)
H20.5854060.8175290.3434550.030*
P30.05587 (14)0.79747 (15)0.60236 (12)0.0268 (3)
H30.0928350.9506940.5954710.032*
O10.2488 (4)0.5969 (4)0.2136 (3)0.0339 (8)
O20.2100 (4)0.5268 (4)0.0006 (3)0.0354 (8)
O30.0360 (4)0.6260 (4)0.1659 (4)0.0336 (8)
O40.6946 (4)0.5953 (4)0.4998 (3)0.0292 (7)
O50.6265 (4)0.5929 (4)0.2609 (3)0.0347 (8)
O60.3994 (4)0.7076 (4)0.4335 (3)0.0296 (7)
O70.0241 (4)0.7586 (4)0.4650 (3)0.0374 (8)
O80.0481 (4)0.7208 (4)0.7225 (4)0.0386 (8)
O90.2216 (4)0.7747 (5)0.6275 (4)0.0495 (10)
H1O0.2488330.7142800.5886860.059*
C10.5538 (6)0.2241 (8)0.0263 (6)0.0480 (15)
H1A0.5013660.2707840.0575450.058*
C20.6748 (6)0.0729 (7)0.0373 (5)0.0398 (13)
C30.7424 (6)0.0139 (6)0.1628 (5)0.0365 (12)
H3A0.8227790.0902500.1772800.044*
C40.6958 (7)0.1029 (7)0.2676 (5)0.0424 (13)
H40.7457140.0616800.3529820.051*
C50.5791 (7)0.2484 (7)0.2484 (6)0.0462 (15)
H50.5463170.3110690.3200350.055*
C60.7301 (10)0.0189 (10)0.0812 (7)0.076 (2)
H6A0.6456930.0244500.1486500.113*
H6B0.7475830.1301360.0477710.113*
H6C0.8329920.0107060.1244660.113*
N10.5110 (5)0.3034 (5)0.1310 (6)0.0501 (13)
H1B0.4326890.3979220.1210740.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0207 (3)0.0390 (3)0.0137 (3)0.0117 (2)0.0011 (2)0.0071 (2)
Zn20.0217 (3)0.0384 (3)0.0167 (3)0.0109 (2)0.0002 (2)0.0094 (2)
P10.0208 (6)0.0313 (6)0.0170 (6)0.0083 (5)0.0011 (4)0.0064 (5)
P20.0231 (6)0.0367 (7)0.0183 (6)0.0141 (5)0.0002 (5)0.0067 (5)
P30.0226 (6)0.0356 (7)0.0231 (6)0.0106 (5)0.0001 (5)0.0079 (5)
O10.0318 (18)0.056 (2)0.0185 (17)0.0173 (16)0.0047 (14)0.0113 (15)
O20.0284 (17)0.058 (2)0.0178 (17)0.0078 (16)0.0033 (14)0.0176 (16)
O30.0247 (17)0.0344 (18)0.044 (2)0.0114 (15)0.0067 (15)0.0161 (16)
O40.0279 (17)0.0387 (19)0.0237 (17)0.0145 (15)0.0031 (14)0.0055 (14)
O50.0205 (16)0.066 (2)0.0187 (16)0.0148 (16)0.0025 (13)0.0153 (16)
O60.0215 (16)0.046 (2)0.0266 (17)0.0132 (15)0.0041 (13)0.0192 (15)
O70.0236 (17)0.054 (2)0.0286 (19)0.0059 (16)0.0002 (14)0.0126 (16)
O80.045 (2)0.043 (2)0.0290 (19)0.0170 (17)0.0059 (16)0.0032 (16)
O90.034 (2)0.080 (3)0.052 (2)0.033 (2)0.0135 (17)0.038 (2)
C10.026 (3)0.069 (4)0.040 (3)0.017 (3)0.007 (2)0.016 (3)
C20.036 (3)0.057 (4)0.033 (3)0.025 (3)0.008 (2)0.014 (3)
C30.025 (2)0.033 (3)0.043 (3)0.007 (2)0.000 (2)0.005 (2)
C40.046 (3)0.057 (4)0.029 (3)0.029 (3)0.004 (2)0.005 (3)
C50.054 (4)0.052 (4)0.044 (4)0.034 (3)0.029 (3)0.021 (3)
C60.088 (5)0.115 (6)0.053 (4)0.062 (5)0.024 (4)0.047 (4)
N10.030 (2)0.033 (2)0.066 (4)0.000 (2)0.024 (2)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O31.923 (3)P3—O91.543 (3)
Zn1—O8i1.930 (4)P3—H31.3200
Zn1—O2ii1.939 (3)O9—H1O0.8542
Zn1—O5iii1.945 (3)C1—N11.318 (8)
Zn2—O61.931 (3)C1—C21.392 (8)
Zn2—O11.931 (3)C1—H1A0.9500
Zn2—O71.938 (3)C2—C31.374 (8)
Zn2—O4iv1.967 (3)C2—C61.504 (8)
P1—O31.493 (3)C3—C41.375 (8)
P1—O11.511 (3)C3—H3A0.9500
P1—O21.513 (3)C4—C51.341 (8)
P1—H11.3200C4—H40.9500
P2—O61.507 (3)C5—N11.304 (8)
P2—O51.509 (3)C5—H50.9500
P2—O41.533 (3)C6—H6A0.9800
P2—H21.3200C6—H6B0.9800
P3—O81.492 (4)C6—H6C0.9800
P3—O71.496 (3)N1—H1B0.8800
O3—Zn1—O8i114.37 (14)P1—O3—Zn1138.2 (2)
O3—Zn1—O2ii112.19 (15)P2—O4—Zn2iv128.89 (18)
O8i—Zn1—O2ii109.65 (15)P2—O5—Zn1v129.60 (18)
O3—Zn1—O5iii107.88 (14)P2—O6—Zn2134.27 (19)
O8i—Zn1—O5iii111.45 (15)P3—O7—Zn2134.0 (2)
O2ii—Zn1—O5iii100.45 (13)P3—O8—Zn1i138.6 (2)
O6—Zn2—O1111.84 (14)P3—O9—H1O125.5
O6—Zn2—O7108.97 (14)N1—C1—C2120.7 (5)
O1—Zn2—O7112.00 (13)N1—C1—H1A119.6
O6—Zn2—O4iv108.32 (13)C2—C1—H1A119.6
O1—Zn2—O4iv102.86 (14)C3—C2—C1115.7 (5)
O7—Zn2—O4iv112.73 (14)C3—C2—C6122.1 (6)
O3—P1—O1114.3 (2)C1—C2—C6122.1 (6)
O3—P1—O2115.04 (19)C2—C3—C4121.2 (5)
O1—P1—O2107.52 (19)C2—C3—H3A119.4
O3—P1—H1106.4C4—C3—H3A119.4
O1—P1—H1106.4C5—C4—C3119.5 (5)
O2—P1—H1106.4C5—C4—H4120.3
O6—P2—O5112.30 (17)C3—C4—H4120.3
O6—P2—O4112.74 (18)N1—C5—C4119.7 (5)
O5—P2—O4112.38 (19)N1—C5—H5120.2
O6—P2—H2106.3C4—C5—H5120.2
O5—P2—H2106.3C2—C6—H6A109.5
O4—P2—H2106.3C2—C6—H6B109.5
O8—P3—O7116.5 (2)H6A—C6—H6B109.5
O8—P3—O9111.5 (2)C2—C6—H6C109.5
O7—P3—O9111.4 (2)H6A—C6—H6C109.5
O8—P3—H3105.5H6B—C6—H6C109.5
O7—P3—H3105.5C5—N1—C1123.2 (5)
O9—P3—H3105.5C5—N1—H1B118.4
P1—O1—Zn2136.5 (2)C1—N1—H1B118.4
P1—O2—Zn1ii135.1 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.882.202.992 (6)150
N1—H1B···O20.882.242.947 (6)138
O9—H1O···O4iii0.851.782.630 (4)177
C1—H1A···O5vi0.952.343.285 (6)175
C5—H5···O4iv0.952.593.368 (6)140
C5—H5···O6iv0.952.523.300 (7)140
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+1, z+1; (vi) x+1, y+1, z.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411–1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759–762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Z.-E., Fan, W., Gu, J. & Okubo, T. (2007). J. Solid State Chem. 180, 981–987.  CSD CrossRef CAS Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T., Wei, Q.-H. & Yang, G.-Y. (2003). Solid State Sci. 5, 1435–1438.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, L., Zhang, L.-R., Wang, X.-F., Li, G.-H., Liu, Y.-L. & Pang, W.-Q. (2008). Dalton Trans. pp. 2009–2014.  CSD CrossRef Google Scholar
First citationMa, Y., Li, N., Xiang, S. & Guan, N. (2007). J. Phys. Chem. C, 111, 18361–18366.  Web of Science CrossRef CAS Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Niranjana Devi, R., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160979.  Google Scholar
First citationWark, S., Lyons, M. J., Slawin, A. M. Z. & Harrison, W. T. A. (2023). Acta Cryst. E79, 272–279.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146