organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

11-[Bis(tri­methyl­sil­yl)amino]-2,4-bis­­(tri­methyl­sil­yl)-7,8,9,10-tetra­hydro-6H-cyclo­hepta­[1,2-b]quinoline

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Düzce University, 81620 Düzce, Turkey, dDepartment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187 Sakarya, Turkey, eDepartment of Maths and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey, and fDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 11 June 2017; accepted 14 June 2017; online 16 June 2017)

In the title compound, C26H48N2Si4, the cyclo­heptane ring adopts a chair conformation, while the quinolinyl ring system is almost planar [maximum deviation = 0.040 (3) Å for one of the C atoms carrying a Me3Si group]. In the crystal, in the absence of classical hydrogen bonding, the packing is dominated by van der Waals forces. One of the N-bound tri­methyl­silyl groups is disordered by rotation about the C—SiMe3 bond, and was modelled over two sets of sites in the ratio 0.873 (8):0.127 (8).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tacrine (9-amino-1,2,3,4-tetra­hydro­acridine) inhibits acetyl­cholinesterase, and has been used as a drug for treating Alzheimer's disease (Recanatini et al., 2000[Recanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Valenti, P., Andrisano, V., Bartolini, M. & Cavrini, V. (2000). J. Med. Chem. 43, 2007-2018.]; Peçanha et al., 2001[Peçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408-412.]; Katzman, 1986[Katzman, R. N. (1986). N. Engl. J. Med. 314, 964-973.]; Shutske et al., 1988[Shutske, G. M., Pierrat, F. A., Cornfeldt, M. L., Szewczak, M. R., Huger, F. P., Bores, G. M., Haroutunian, V. & Davis, K. L. (1988). J. Med. Chem. 31, 1278-1279.]) since 1993. However, serious side-effects have restricted its use against this disease (McKenna et al., 1997[McKenna, M. T., Proctor, G. R., Young, L. C. & Harvey, A. L. (1997). J. Med. Chem. 40, 3516-3523.]; da Costa et al., 2009[Costa, J. S. da, Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc. 20, 1448-1454.]). In recent years, several groups have focused upon synthesizing new tacrine derivatives and exploring their inhibitory effects on cancer cell lines and acetyl­cholinesterase in the desire to minimize side effects.

The Friedländer reaction is a well known method for synthesizing quinolines and hetero bicyclic aromatics with N-functionality (Peçanha et al., 2001[Peçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408-412.]; Zong et al., 2006[Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.]). 9-Amino-1,2,3,4-tetra­hydro­acridine-1-ol, an effective anti-Alzheimer's agent, has been prepared by a copper-assisted Friedländer method (Shutske et al., 1989[Shutske, G. M., Pierrat, F. A., Kapples, K. J., Cornfeldt, M. L., Szewczak, M. R., Huger, F. P., Bores, G. M., Haroutunian, V. & Davis, K. L. (1989). J. Med. Chem. 32, 1805-1813.]). A recent study (Ekiz et al., 2016[Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323-5330.]) demonstrated a novel and convenient approach to prepare tacrine derivatives expanding on the restricted studies in the literature. In this study we present the structure of 11-[bis(tri­methyl­sil­yl)amino]-2,4-bis­(tri­methyl­sil­yl)-7,8,9,10-tetra­hydro-6H-cyclo­hepta­[1,2-b] quinoline.

As shown in Fig. 1[link], the cyclo­heptane ring of the title mol­ecule adopts a chair conformation with puckering parameters QT = 0.781 (4) Å, φ(2) 51.3 (5)° and φ(3) = 77.1 (3)°, while the quinoline ring system is almost planar with maximum deviations of 0.040 (3) Å for atom C13 and −0.037 (3) Å for atom C8. The Si3—N2—Si4 angle in the amino-di(tri­methyl­sil­yl) group is wide at 124.33 (15)°. Generally, the observed bond lengths are comparable to those reported for the similar compounds (Glöcklhofer et al., 2014[Glöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst. E70, 77-79.]; Sparrow et al., 2012[Sparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2809.]; Akkurt et al., 2010[Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770-o1771.]).

[Figure 1]
Figure 1
View of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. The minor component of the disordered Me3Si group has been omitted.

In the crystal, in the absence of classical hydrogen bonds, the packing of the mol­ecules is controlled by van der Waals forces (Fig. 2[link]).

[Figure 2]
Figure 2
View of the packing of the title compound down the a axis.

Synthesis and crystallization

The title compound was prepared according to a reported procedure (Ekiz et al., 2016[Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323-5330.]). Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation from its hexa­ne/chloro­form (50:50) solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In the title mol­ecule, each methyl group of one the N2-bound tri­methyl­silyl groups is disordered over two sites, in a 0.873 (8): 0.127 (8) ratio. The Si3—methyl bond lengths were restrained to be equal with a standard uncertainty value = 0.02 Å.

Table 1
Experimental details

Crystal data
Chemical formula C26H48N2Si4
Mr 501.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.4760 (14), 11.5597 (11), 20.883 (2)
β (°) 100.614 (5)
V3) 3197.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.15 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.678, 0.740
No. of measured, independent and observed [I > 2σ(I)] reflections 56997, 6468, 4643
Rint 0.068
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.166, 1.19
No. of reflections 6468
No. of parameters 299
No. of restraints 15
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

11-[Bis(trimethylsilyl)amino]-2,4-bis(trimethylsilyl)-7,8,9,10-tetrahydro-6H-cyclohepta[1,2-b]quinoline top
Crystal data top
C26H48N2Si4F(000) = 1096
Mr = 501.02Dx = 1.041 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9086 reflections
a = 13.4760 (14) Åθ = 2.9–26.5°
b = 11.5597 (11) ŵ = 0.20 mm1
c = 20.883 (2) ÅT = 296 K
β = 100.614 (5)°Prism, colourless
V = 3197.5 (5) Å30.15 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4643 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 26.6°, θmin = 2.9°
Tmin = 0.678, Tmax = 0.740h = 1616
56997 measured reflectionsk = 1414
6468 independent reflectionsl = 2626
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.078 w = 1/[σ2(Fo2) + (0.0279P)2 + 4.8053P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max = 0.001
S = 1.19Δρmax = 0.27 e Å3
6468 reflectionsΔρmin = 0.34 e Å3
299 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All H atoms were placed in idealized positions and refined as riding atoms with C—H bond lengths fixed to 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.20359 (9)0.87480 (8)0.47603 (5)0.0498 (3)
Si20.11596 (8)0.40010 (9)0.41068 (5)0.0504 (3)
Si30.46955 (9)0.31878 (9)0.62008 (6)0.0565 (4)
Si40.29921 (9)0.37413 (9)0.69699 (5)0.0537 (3)
N10.3448 (2)0.7656 (2)0.58641 (13)0.0403 (9)
N20.3825 (2)0.4130 (2)0.64494 (13)0.0411 (9)
C10.4295 (2)0.6191 (3)0.65948 (15)0.0383 (10)
C20.5063 (3)0.5961 (3)0.72000 (18)0.0540 (12)
C30.6139 (3)0.6285 (4)0.7141 (2)0.0681 (16)
C40.6403 (3)0.7561 (4)0.7239 (2)0.0750 (17)
C50.5779 (3)0.8377 (4)0.6755 (2)0.0677 (17)
C60.4654 (3)0.8352 (3)0.67596 (19)0.0535 (14)
C70.4103 (3)0.7357 (3)0.63832 (16)0.0394 (10)
C80.3757 (2)0.5318 (3)0.62370 (15)0.0365 (10)
C90.3072 (2)0.5611 (2)0.56529 (15)0.0323 (9)
C100.2934 (2)0.6801 (3)0.54910 (15)0.0344 (9)
C110.2246 (3)0.7158 (3)0.49251 (16)0.0390 (10)
C120.1755 (3)0.6304 (3)0.45336 (16)0.0427 (11)
C130.1882 (3)0.5101 (3)0.46656 (16)0.0398 (10)
C140.2526 (2)0.4788 (3)0.52293 (15)0.0375 (10)
C150.1850 (5)0.2602 (4)0.4183 (3)0.118 (3)
C160.0093 (4)0.3801 (6)0.4302 (3)0.140 (3)
C170.1043 (5)0.4514 (5)0.3253 (2)0.102 (2)
C180.1013 (4)0.8889 (4)0.4031 (2)0.097 (2)
C190.1606 (4)0.9486 (4)0.5449 (2)0.0740 (17)
C200.3197 (4)0.9444 (4)0.4585 (3)0.086 (2)
C210.5034 (6)0.3687 (7)0.5443 (4)0.121 (4)0.873 (8)
C21A0.450 (4)0.307 (5)0.5296 (8)0.121 (4)0.127 (8)
C220.5879 (4)0.3074 (6)0.6830 (4)0.106 (3)0.873 (8)
C22A0.6023 (15)0.371 (4)0.631 (3)0.106 (3)0.127 (8)
C230.4138 (5)0.1719 (4)0.6112 (4)0.088 (3)0.873 (8)
C23A0.465 (4)0.1645 (18)0.642 (3)0.088 (3)0.127 (8)
C240.2436 (4)0.5072 (4)0.7259 (3)0.094 (2)
C250.3684 (4)0.2976 (5)0.7697 (2)0.093 (2)
C260.1928 (4)0.2838 (4)0.6554 (3)0.0852 (19)
H2A0.504500.514500.730600.0650*
H2B0.487600.639100.755800.0650*
H3A0.660200.584200.746000.0810*
H3B0.624900.605700.671300.0810*
H4A0.632300.778200.767500.0900*
H4B0.710900.766200.721300.0900*
H5A0.602300.916000.684800.0820*
H5B0.588400.818200.632100.0820*
H6A0.455600.830900.720700.0640*
H6B0.435700.907200.657700.0640*
H120.131100.652600.415800.0510*
H140.260300.400700.533500.0450*
H15A0.250800.271300.408000.1760*
H15B0.191500.232100.462200.1760*
H15C0.148200.204900.388800.1760*
H16A0.003000.353600.474300.2100*
H16B0.045000.452400.425300.2100*
H16C0.045800.323900.401200.2100*
H17A0.170400.461900.315200.1530*
H17B0.067800.395300.296300.1530*
H17C0.068600.523700.320400.1530*
H18A0.121600.851300.366600.1460*
H18B0.040800.853300.411800.1460*
H18C0.088800.969300.393300.1460*
H19A0.100600.911700.553400.1110*
H19B0.212600.944100.583000.1110*
H19C0.146501.028300.533900.1110*
H20A0.341100.905300.422800.1280*
H20B0.306101.024100.447200.1280*
H20C0.372200.939800.496300.1280*
H21A0.551200.316200.531300.1810*0.873 (8)
H21B0.444000.372000.511000.1810*0.873 (8)
H21C0.532900.444400.550700.1810*0.873 (8)
H21D0.498400.254600.517600.1810*0.127 (8)
H21E0.382800.278100.513500.1810*0.127 (8)
H21F0.457100.381700.511200.1810*0.127 (8)
H22A0.634000.255200.667900.1590*0.873 (8)
H22B0.618600.382400.690200.1590*0.873 (8)
H22C0.571700.278900.723000.1590*0.873 (8)
H22D0.643400.312400.616100.1590*0.127 (8)
H22E0.605000.440400.606800.1590*0.127 (8)
H22F0.627100.385400.676600.1590*0.127 (8)
H23A0.460900.119200.597600.1320*0.873 (8)
H23B0.398900.147100.652300.1320*0.873 (8)
H23C0.352700.173400.579200.1320*0.873 (8)
H23D0.517000.123100.625700.1320*0.127 (8)
H23E0.476700.157200.688900.1320*0.127 (8)
H23F0.400600.133000.624000.1320*0.127 (8)
H24A0.198100.486200.754300.1420*
H24B0.296600.555000.749100.1420*
H24C0.207500.549000.689100.1420*
H25A0.322200.276900.797700.1380*
H25B0.399000.229000.756300.1380*
H25C0.419900.347500.792800.1380*
H26A0.149500.264700.685600.1280*
H26B0.155100.325900.619300.1280*
H26C0.218800.214000.639800.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0707 (7)0.0310 (5)0.0446 (6)0.0121 (5)0.0024 (5)0.0032 (4)
Si20.0573 (7)0.0422 (5)0.0494 (6)0.0058 (5)0.0038 (5)0.0107 (5)
Si30.0516 (6)0.0393 (5)0.0780 (8)0.0119 (5)0.0106 (6)0.0113 (5)
Si40.0669 (7)0.0403 (5)0.0559 (6)0.0046 (5)0.0169 (5)0.0087 (5)
N10.0456 (17)0.0303 (13)0.0430 (16)0.0026 (12)0.0031 (13)0.0007 (12)
N20.0441 (16)0.0314 (14)0.0453 (16)0.0024 (12)0.0016 (13)0.0099 (12)
C10.0363 (18)0.0391 (17)0.0376 (17)0.0008 (14)0.0018 (14)0.0055 (14)
C20.054 (2)0.050 (2)0.050 (2)0.0032 (18)0.0110 (18)0.0057 (17)
C30.050 (2)0.076 (3)0.070 (3)0.003 (2)0.011 (2)0.003 (2)
C40.054 (3)0.080 (3)0.084 (3)0.023 (2)0.006 (2)0.006 (3)
C50.067 (3)0.065 (3)0.066 (3)0.029 (2)0.001 (2)0.005 (2)
C60.064 (3)0.0396 (19)0.053 (2)0.0100 (18)0.0003 (19)0.0045 (17)
C70.0415 (19)0.0363 (17)0.0397 (18)0.0044 (15)0.0056 (15)0.0006 (14)
C80.0376 (18)0.0309 (16)0.0403 (17)0.0018 (14)0.0057 (14)0.0051 (14)
C90.0332 (17)0.0271 (15)0.0363 (16)0.0021 (13)0.0053 (13)0.0045 (12)
C100.0370 (17)0.0307 (15)0.0356 (16)0.0019 (13)0.0072 (14)0.0018 (13)
C110.0457 (19)0.0315 (16)0.0384 (18)0.0050 (14)0.0041 (15)0.0031 (14)
C120.047 (2)0.0390 (18)0.0384 (18)0.0078 (16)0.0017 (15)0.0013 (15)
C130.0410 (19)0.0351 (17)0.0419 (18)0.0013 (14)0.0043 (15)0.0022 (14)
C140.0397 (18)0.0269 (15)0.0465 (19)0.0019 (13)0.0093 (15)0.0034 (14)
C150.167 (6)0.056 (3)0.115 (5)0.020 (3)0.014 (4)0.025 (3)
C160.092 (4)0.198 (7)0.142 (6)0.075 (5)0.055 (4)0.099 (5)
C170.151 (5)0.090 (4)0.056 (3)0.024 (4)0.004 (3)0.013 (3)
C180.136 (5)0.058 (3)0.077 (3)0.034 (3)0.034 (3)0.005 (2)
C190.093 (3)0.057 (3)0.073 (3)0.023 (2)0.018 (3)0.006 (2)
C200.116 (4)0.047 (2)0.102 (4)0.003 (3)0.041 (3)0.018 (2)
C210.128 (7)0.114 (6)0.148 (6)0.064 (5)0.099 (6)0.067 (5)
C21A0.128 (7)0.114 (6)0.148 (6)0.064 (5)0.099 (6)0.067 (5)
C220.072 (4)0.088 (5)0.145 (7)0.035 (4)0.015 (4)0.005 (4)
C22A0.072 (4)0.088 (5)0.145 (7)0.035 (4)0.015 (4)0.005 (4)
C230.095 (5)0.048 (3)0.126 (6)0.012 (3)0.034 (4)0.008 (3)
C23A0.095 (5)0.048 (3)0.126 (6)0.012 (3)0.034 (4)0.008 (3)
C240.112 (4)0.066 (3)0.124 (5)0.002 (3)0.071 (4)0.006 (3)
C250.123 (5)0.092 (4)0.062 (3)0.011 (3)0.016 (3)0.029 (3)
C260.081 (3)0.081 (3)0.097 (4)0.028 (3)0.025 (3)0.005 (3)
Geometric parameters (Å, º) top
Si1—C111.882 (4)C12—H120.9300
Si1—C181.864 (5)C14—H140.9300
Si1—C191.854 (5)C15—H15A0.9600
Si1—C201.855 (6)C15—H15B0.9600
Si2—C131.873 (4)C15—H15C0.9600
Si2—C151.858 (5)C16—H16A0.9600
Si2—C161.823 (6)C16—H16B0.9600
Si2—C171.858 (4)C16—H16C0.9600
Si3—N21.748 (3)C17—H17A0.9600
Si3—C211.820 (8)C17—H17B0.9600
Si3—C221.875 (7)C17—H17C0.9600
Si3—C231.852 (5)C18—H18A0.9600
Si3—C21A1.864 (17)C18—H18B0.9600
Si3—C22A1.86 (3)C18—H18C0.9600
Si3—C23A1.85 (3)C19—H19A0.9600
Si4—N21.759 (3)C19—H19B0.9600
Si4—C241.860 (5)C19—H19C0.9600
Si4—C251.854 (5)C20—H20A0.9600
Si4—C261.855 (6)C20—H20B0.9600
N1—C71.312 (4)C20—H20C0.9600
N1—C101.366 (4)C21—H21A0.9600
N2—C81.441 (4)C21—H21B0.9600
C1—C21.502 (5)C21—H21C0.9600
C1—C71.427 (5)C21A—H21D0.9600
C1—C81.379 (5)C21A—H21E0.9700
C2—C31.524 (6)C21A—H21F0.9600
C3—C41.522 (6)C22—H22C0.9600
C4—C51.518 (6)C22—H22A0.9600
C5—C61.518 (6)C22—H22B0.9600
C6—C71.509 (5)C22A—H22E0.9500
C8—C91.428 (4)C22A—H22D0.9600
C9—C101.421 (4)C22A—H22F0.9600
C9—C141.410 (4)C23—H23C0.9600
C10—C111.422 (5)C23—H23A0.9600
C11—C121.372 (5)C23—H23B0.9600
C12—C131.422 (5)C23A—H23E0.9700
C13—C141.376 (5)C23A—H23D0.9600
C2—H2A0.9700C23A—H23F0.9500
C2—H2B0.9700C24—H24A0.9600
C3—H3A0.9700C24—H24C0.9600
C3—H3B0.9700C24—H24B0.9600
C4—H4A0.9700C25—H25B0.9600
C4—H4B0.9700C25—H25C0.9600
C5—H5A0.9700C25—H25A0.9600
C5—H5B0.9700C26—H26C0.9600
C6—H6A0.9700C26—H26A0.9600
C6—H6B0.9700C26—H26B0.9600
C11—Si1—C18107.38 (19)Si2—C15—H15A109.00
C11—Si1—C19111.44 (18)Si2—C15—H15B109.00
C11—Si1—C20110.8 (2)Si2—C15—H15C109.00
C18—Si1—C19107.7 (2)H15A—C15—H15B109.00
C18—Si1—C20108.9 (2)H15A—C15—H15C110.00
C19—Si1—C20110.4 (2)H15B—C15—H15C109.00
C13—Si2—C15110.1 (2)Si2—C16—H16A109.00
C13—Si2—C16110.1 (2)Si2—C16—H16B109.00
C13—Si2—C17108.9 (2)Si2—C16—H16C109.00
C15—Si2—C16109.9 (3)H16A—C16—H16B110.00
C15—Si2—C17108.2 (3)H16A—C16—H16C110.00
C16—Si2—C17109.7 (3)H16B—C16—H16C109.00
N2—Si3—C21110.5 (3)Si2—C17—H17A109.00
N2—Si3—C22111.5 (2)Si2—C17—H17B109.00
N2—Si3—C23108.6 (2)Si2—C17—H17C109.00
N2—Si3—C21A111.7 (17)H17A—C17—H17B110.00
N2—Si3—C22A116.4 (14)H17A—C17—H17C109.00
N2—Si3—C23A118.3 (17)H17B—C17—H17C109.00
C21—Si3—C22108.3 (3)Si1—C18—H18A109.00
C21—Si3—C23111.5 (4)Si1—C18—H18B110.00
C22—Si3—C23106.4 (3)Si1—C18—H18C109.00
C21A—Si3—C22A96 (3)H18A—C18—H18B109.00
C21A—Si3—C23A100 (3)H18A—C18—H18C109.00
C22A—Si3—C23A111 (2)H18B—C18—H18C109.00
N2—Si4—C24109.30 (19)Si1—C19—H19A109.00
N2—Si4—C25110.3 (2)Si1—C19—H19B109.00
N2—Si4—C26112.4 (2)Si1—C19—H19C109.00
C24—Si4—C25107.5 (3)H19A—C19—H19B110.00
C24—Si4—C26107.1 (2)H19A—C19—H19C110.00
C25—Si4—C26110.1 (2)H19B—C19—H19C109.00
C7—N1—C10118.3 (3)Si1—C20—H20A110.00
Si3—N2—Si4124.33 (15)Si1—C20—H20B110.00
Si3—N2—C8120.7 (2)Si1—C20—H20C110.00
Si4—N2—C8115.0 (2)H20A—C20—H20B109.00
C2—C1—C7119.0 (3)H20A—C20—H20C109.00
C2—C1—C8122.6 (3)H20B—C20—H20C109.00
C7—C1—C8118.4 (3)Si3—C21—H21A110.00
C1—C2—C3114.0 (3)Si3—C21—H21B109.00
C2—C3—C4115.4 (3)Si3—C21—H21C109.00
C3—C4—C5115.2 (4)H21A—C21—H21B110.00
C4—C5—C6114.5 (3)H21A—C21—H21C109.00
C5—C6—C7114.0 (3)H21B—C21—H21C109.00
N1—C7—C1124.1 (3)Si3—C21A—H21E109.00
N1—C7—C6114.9 (3)Si3—C21A—H21F110.00
C1—C7—C6121.0 (3)H21D—C21A—H21E109.00
N2—C8—C1122.2 (3)H21D—C21A—H21F110.00
N2—C8—C9118.9 (3)H21E—C21A—H21F109.00
C1—C8—C9118.8 (3)Si3—C21A—H21D110.00
C8—C9—C10117.9 (3)H22A—C22—H22C110.00
C8—C9—C14123.8 (3)Si3—C22—H22B109.00
C10—C9—C14118.3 (3)H22B—C22—H22C110.00
N1—C10—C9122.3 (3)Si3—C22—H22A109.00
N1—C10—C11116.7 (3)Si3—C22—H22C109.00
C9—C10—C11121.0 (3)H22A—C22—H22B109.00
Si1—C11—C10119.2 (3)Si3—C22A—H22F109.00
Si1—C11—C12123.7 (3)Si3—C22A—H22E110.00
C10—C11—C12117.1 (3)Si3—C22A—H22D109.00
C11—C12—C13124.1 (3)H22D—C22A—H22E110.00
Si2—C13—C12120.9 (3)H22D—C22A—H22F109.00
Si2—C13—C14121.9 (3)H22E—C22A—H22F110.00
C12—C13—C14117.2 (3)H23B—C23—H23C109.00
C9—C14—C13122.2 (3)H23A—C23—H23C110.00
C1—C2—H2A109.00Si3—C23—H23B109.00
C1—C2—H2B109.00Si3—C23—H23C109.00
C3—C2—H2A109.00Si3—C23—H23A109.00
C3—C2—H2B109.00H23A—C23—H23B109.00
H2A—C2—H2B108.00Si3—C23A—H23F110.00
C2—C3—H3A108.00H23D—C23A—H23E109.00
C2—C3—H3B108.00Si3—C23A—H23E109.00
C4—C3—H3A108.00Si3—C23A—H23D109.00
C4—C3—H3B108.00H23E—C23A—H23F109.00
H3A—C3—H3B108.00H23D—C23A—H23F110.00
C3—C4—H4A109.00Si4—C24—H24B109.00
C3—C4—H4B108.00Si4—C24—H24A109.00
C5—C4—H4A109.00H24B—C24—H24C110.00
C5—C4—H4B108.00H24A—C24—H24C110.00
H4A—C4—H4B107.00Si4—C24—H24C109.00
C4—C5—H5A109.00H24A—C24—H24B110.00
C4—C5—H5B109.00Si4—C25—H25B110.00
C6—C5—H5A109.00H25A—C25—H25C109.00
C6—C5—H5B109.00Si4—C25—H25C109.00
H5A—C5—H5B108.00H25A—C25—H25B109.00
C5—C6—H6A109.00Si4—C25—H25A109.00
C5—C6—H6B109.00H25B—C25—H25C109.00
C7—C6—H6A109.00Si4—C26—H26C109.00
C7—C6—H6B109.00H26A—C26—H26C109.00
H6A—C6—H6B108.00H26B—C26—H26C109.00
C11—C12—H12118.00H26A—C26—H26B110.00
C13—C12—H12118.00Si4—C26—H26A109.00
C9—C14—H14119.00Si4—C26—H26B109.00
C13—C14—H14119.00
C18—Si1—C11—C123.9 (4)C2—C1—C8—N25.8 (5)
C19—Si1—C11—C12121.6 (4)C8—C1—C7—N10.5 (5)
C20—Si1—C11—C12115.0 (4)C7—C1—C8—N2173.5 (3)
C20—Si1—C11—C1066.3 (4)C7—C1—C8—C93.3 (4)
C18—Si1—C11—C10174.9 (3)C2—C1—C7—C60.3 (5)
C19—Si1—C11—C1057.2 (4)C2—C1—C7—N1179.8 (3)
C17—Si2—C13—C14145.5 (3)C8—C1—C2—C3115.4 (4)
C15—Si2—C13—C1427.1 (4)C2—C1—C8—C9177.4 (3)
C16—Si2—C13—C1494.2 (4)C1—C2—C3—C481.3 (4)
C16—Si2—C13—C1283.4 (4)C2—C3—C4—C561.1 (5)
C17—Si2—C13—C1236.8 (4)C3—C4—C5—C660.7 (5)
C15—Si2—C13—C12155.3 (4)C4—C5—C6—C780.5 (4)
C21—Si3—N2—C823.8 (4)C5—C6—C7—C166.4 (5)
C21—Si3—N2—Si4157.0 (3)C5—C6—C7—N1114.2 (4)
C22—Si3—N2—Si482.5 (3)N2—C8—C9—C146.8 (4)
C22—Si3—N2—C896.7 (3)C1—C8—C9—C103.8 (4)
C23—Si3—N2—C8146.4 (3)C1—C8—C9—C14176.3 (3)
C23—Si3—N2—Si434.5 (3)N2—C8—C9—C10173.1 (3)
C26—Si4—N2—C8106.1 (3)C14—C9—C10—C111.5 (4)
C25—Si4—N2—Si348.5 (3)C10—C9—C14—C130.9 (4)
C25—Si4—N2—C8130.7 (3)C8—C9—C10—C11178.5 (3)
C24—Si4—N2—Si3166.5 (2)C8—C9—C14—C13179.1 (3)
C26—Si4—N2—Si374.7 (3)C8—C9—C10—N11.6 (4)
C24—Si4—N2—C812.8 (3)C14—C9—C10—N1178.5 (3)
C10—N1—C7—C11.8 (5)C9—C10—C11—Si1176.4 (2)
C7—N1—C10—C11178.7 (3)N1—C10—C11—C12177.6 (3)
C7—N1—C10—C91.2 (5)C9—C10—C11—C122.4 (5)
C10—N1—C7—C6178.7 (3)N1—C10—C11—Si13.7 (4)
Si3—N2—C8—C990.8 (3)Si1—C11—C12—C13177.7 (3)
Si4—N2—C8—C186.9 (3)C10—C11—C12—C131.0 (6)
Si4—N2—C8—C989.9 (3)C11—C12—C13—C141.3 (6)
Si3—N2—C8—C192.4 (3)C11—C12—C13—Si2179.0 (3)
C7—C1—C2—C365.3 (4)Si2—C13—C14—C9180.0 (2)
C8—C1—C7—C6179.0 (3)C12—C13—C14—C92.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N20.972.492.959 (4)110
C14—H14···N20.932.602.914 (4)101
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAkkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770–o1771.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, J. S. da, Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc. 20, 1448–1454.  CrossRef Google Scholar
First citationEkiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323–5330.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst. E70, 77–79.  CSD CrossRef IUCr Journals Google Scholar
First citationKatzman, R. N. (1986). N. Engl. J. Med. 314, 964–973.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcKenna, M. T., Proctor, G. R., Young, L. C. & Harvey, A. L. (1997). J. Med. Chem. 40, 3516–3523.  CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPeçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408–412.  Google Scholar
First citationRecanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Valenti, P., Andrisano, V., Bartolini, M. & Cavrini, V. (2000). J. Med. Chem. 43, 2007–2018.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShutske, G. M., Pierrat, F. A., Cornfeldt, M. L., Szewczak, M. R., Huger, F. P., Bores, G. M., Haroutunian, V. & Davis, K. L. (1988). J. Med. Chem. 31, 1278–1279.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShutske, G. M., Pierrat, F. A., Kapples, K. J., Cornfeldt, M. L., Szewczak, M. R., Huger, F. P., Bores, G. M., Haroutunian, V. & Davis, K. L. (1989). J. Med. Chem. 32, 1805–1813.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2809.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds