metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(3,5-Di­methyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]bis­­(nitrito-κ2O,O′)cadmium(II)

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 22 June 2010; accepted 29 June 2010; online 3 July 2010)

In the title complex, [Cd(NO2)2(C17H14N4)], the CdII ion assumes a distorted monocapped octa­hedral coordination geometry defined by an N3O4 donor set. The crystal structure is stabilized by ππ stacking inter­actions [shortest centroid–centroid distance = 3.5537 (18) Å].

Related literature

For related structures, see: Wang et al. (2009[Wang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.]); Sun et al. (2010[Sun, Y. M., Wang, Y. Q. & Ren, H.-X. (2010). Acta Cryst. E66, m663.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO2)2(C17H14N4)]

  • Mr = 478.74

  • Triclinic, [P \overline 1]

  • a = 10.0306 (15) Å

  • b = 10.4694 (15) Å

  • c = 10.5702 (15) Å

  • α = 67.697 (2)°

  • β = 83.508 (2)°

  • γ = 62.326 (2)°

  • V = 906.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 298 K

  • 0.51 × 0.46 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.570, Tmax = 0.865

  • 4759 measured reflections

  • 3305 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.03

  • 3305 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in coordination chemistry and many complexes have been published with these molecules functioning as ligands. To our knowledge, two cadmium complexes with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline derivative as the ligand have been reported (Wang et al., 2009; Sun et al., 2010). To study the relevance between the coordination geometry with anion, we synthesized the title complex, (I), and herein report its crystal structure.

The molecular structure of (I), Fig. 1, shows the CdII atom is coordinated by three N atoms and four O atoms within a distorted monocapped octahedral coordination geometry. The coordination geometry in (I) contrasts the penta-coordination found in the structures of the related di-chloride and di-thiocyanate derivatives (Wang et al., 2009; Sun et al., 2010). The non-hydrogen atoms of the 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10- phenanthroline ligand define an approximate plane with a r.m.s. value = 0.0917 Å; the maximum deviation of 0.2066 (33) Å is found for the C17 atom. The crystal structure is stabilised by ππ stacking interactions with the closest of these occurring between centrosymmetrically related C4–C8 rings [Cg1···Cg1i = 3.5537 (18) Å for i: 1-x, 2-y, -z].

Related literature top

For related structures, see: Wang et al. (2009); Sun et al. (2010).

Experimental top

A methanol (12 ml) solution of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0544 g, 0.20 mmol) was added to an aqueous (12 ml) solution of CdCl22.5H2O (0.0460 g, 0.20 mmol) and NaNO2 (0.0138 g, 0.20 mmol). The resultant mixture was stirred for a few minutes. The colorless swere obtained after the filtrate had been allowed to stand at room temperature for about a week.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for methyl-H, and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the remaining H atoms.

Structure description top

Derivatives of 1,10-phenanthroline play an important role in coordination chemistry and many complexes have been published with these molecules functioning as ligands. To our knowledge, two cadmium complexes with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline derivative as the ligand have been reported (Wang et al., 2009; Sun et al., 2010). To study the relevance between the coordination geometry with anion, we synthesized the title complex, (I), and herein report its crystal structure.

The molecular structure of (I), Fig. 1, shows the CdII atom is coordinated by three N atoms and four O atoms within a distorted monocapped octahedral coordination geometry. The coordination geometry in (I) contrasts the penta-coordination found in the structures of the related di-chloride and di-thiocyanate derivatives (Wang et al., 2009; Sun et al., 2010). The non-hydrogen atoms of the 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10- phenanthroline ligand define an approximate plane with a r.m.s. value = 0.0917 Å; the maximum deviation of 0.2066 (33) Å is found for the C17 atom. The crystal structure is stabilised by ππ stacking interactions with the closest of these occurring between centrosymmetrically related C4–C8 rings [Cg1···Cg1i = 3.5537 (18) Å for i: 1-x, 2-y, -z].

For related structures, see: Wang et al. (2009); Sun et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[2-(3,5-Dimethyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline- κ2N,N']bis(nitrito-κ2O,O')cadmium(II) top
Crystal data top
[Cd(NO2)2(C17H14N4)]Z = 2
Mr = 478.74F(000) = 476
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0306 (15) ÅCell parameters from 3811 reflections
b = 10.4694 (15) Åθ = 2.3–28.3°
c = 10.5702 (15) ŵ = 1.24 mm1
α = 67.697 (2)°T = 298 K
β = 83.508 (2)°Prism, colorless
γ = 62.326 (2)°0.51 × 0.46 × 0.12 mm
V = 906.8 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3305 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.570, Tmax = 0.865k = 1212
4759 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0902P]
where P = (Fo2 + 2Fc2)/3
3305 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cd(NO2)2(C17H14N4)]γ = 62.326 (2)°
Mr = 478.74V = 906.8 (2) Å3
Triclinic, P1Z = 2
a = 10.0306 (15) ÅMo Kα radiation
b = 10.4694 (15) ŵ = 1.24 mm1
c = 10.5702 (15) ÅT = 298 K
α = 67.697 (2)°0.51 × 0.46 × 0.12 mm
β = 83.508 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3098 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.865Rint = 0.024
4759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
3305 reflectionsΔρmin = 0.57 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8940 (4)0.7002 (4)0.0995 (4)0.0528 (8)
H10.97760.61720.08660.063*
C20.8991 (4)0.8398 (5)0.0647 (4)0.0627 (9)
H20.98570.84830.03140.075*
C30.7766 (4)0.9641 (4)0.0796 (4)0.0572 (8)
H30.77871.05830.05590.069*
C40.6478 (4)0.9489 (3)0.1308 (3)0.0458 (7)
C50.6521 (3)0.8032 (3)0.1659 (3)0.0402 (6)
C60.5225 (3)0.7823 (3)0.2193 (3)0.0398 (6)
C70.5130 (4)1.0744 (4)0.1465 (3)0.0534 (8)
H70.50951.17110.12240.064*
C80.3910 (4)1.0552 (4)0.1956 (3)0.0536 (8)
H80.30451.13860.20460.064*
C90.3936 (4)0.9079 (4)0.2340 (3)0.0470 (7)
C100.2713 (4)0.8775 (4)0.2884 (4)0.0568 (8)
H100.18180.95790.29760.068*
C110.2820 (4)0.7333 (5)0.3275 (4)0.0590 (9)
H110.20190.71370.36520.071*
C120.4179 (3)0.6140 (4)0.3094 (3)0.0437 (7)
C130.3548 (4)0.3861 (5)0.4020 (3)0.0576 (9)
C140.4446 (5)0.2345 (5)0.4242 (4)0.0641 (10)
H140.41590.15570.45930.077*
C150.5872 (4)0.2164 (4)0.3855 (3)0.0553 (8)
C160.1917 (5)0.4631 (7)0.4248 (6)0.0902 (15)
H16A0.15310.38880.45280.135*
H16B0.13710.54640.34130.135*
H16C0.17980.50380.49520.135*
C170.7278 (5)0.0756 (4)0.3908 (4)0.0706 (10)
H17A0.80180.10520.34160.106*
H17B0.70700.01860.34970.106*
H17C0.76580.01150.48460.106*
Cd10.74600 (2)0.45092 (2)0.19946 (2)0.04206 (11)
N10.7751 (3)0.6801 (3)0.1503 (3)0.0436 (6)
N20.5317 (3)0.6403 (3)0.2551 (2)0.0394 (5)
N30.4451 (3)0.4590 (3)0.3502 (2)0.0464 (6)
N40.5876 (3)0.3530 (3)0.3395 (3)0.0494 (6)
N50.7056 (4)0.4176 (4)0.0441 (4)0.0718 (9)
N61.0386 (4)0.2533 (4)0.3336 (4)0.0706 (9)
O10.6887 (5)0.5379 (4)0.0360 (3)0.0914 (11)
O20.7445 (4)0.3093 (4)0.0665 (3)0.0847 (9)
O31.0138 (3)0.3075 (5)0.2082 (4)0.0996 (12)
O40.9256 (3)0.2980 (4)0.3935 (3)0.0857 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (17)0.0449 (18)0.067 (2)0.0137 (14)0.0081 (15)0.0254 (16)
C20.059 (2)0.057 (2)0.078 (2)0.0304 (18)0.0145 (18)0.0291 (19)
C30.065 (2)0.0430 (18)0.068 (2)0.0264 (17)0.0051 (17)0.0227 (16)
C40.0537 (18)0.0334 (15)0.0454 (16)0.0130 (14)0.0035 (13)0.0169 (13)
C50.0425 (16)0.0332 (14)0.0391 (15)0.0106 (12)0.0006 (12)0.0152 (12)
C60.0390 (15)0.0357 (15)0.0355 (14)0.0066 (12)0.0021 (11)0.0161 (12)
C70.063 (2)0.0314 (15)0.057 (2)0.0089 (15)0.0054 (16)0.0211 (14)
C80.0507 (19)0.0380 (17)0.0572 (19)0.0008 (14)0.0040 (15)0.0256 (15)
C90.0441 (17)0.0416 (17)0.0455 (16)0.0058 (13)0.0003 (13)0.0231 (14)
C100.0406 (17)0.056 (2)0.061 (2)0.0068 (15)0.0097 (14)0.0309 (17)
C110.0436 (18)0.066 (2)0.062 (2)0.0187 (17)0.0184 (15)0.0306 (18)
C120.0411 (16)0.0480 (18)0.0397 (15)0.0162 (14)0.0030 (12)0.0193 (13)
C130.066 (2)0.074 (3)0.0502 (19)0.047 (2)0.0113 (16)0.0240 (18)
C140.084 (3)0.065 (2)0.061 (2)0.051 (2)0.0118 (19)0.0213 (18)
C150.070 (2)0.0457 (19)0.0455 (18)0.0277 (17)0.0049 (15)0.0077 (14)
C160.068 (3)0.107 (4)0.130 (4)0.058 (3)0.038 (3)0.065 (3)
C170.082 (3)0.041 (2)0.075 (3)0.0236 (19)0.007 (2)0.0105 (17)
Cd10.03898 (16)0.03134 (15)0.04817 (16)0.00813 (10)0.00277 (10)0.01716 (11)
N10.0372 (13)0.0351 (13)0.0507 (14)0.0087 (11)0.0027 (10)0.0181 (11)
N20.0388 (13)0.0358 (13)0.0393 (13)0.0106 (10)0.0033 (10)0.0179 (10)
N30.0468 (15)0.0499 (16)0.0406 (13)0.0229 (13)0.0040 (11)0.0141 (12)
N40.0494 (15)0.0377 (14)0.0526 (15)0.0161 (12)0.0000 (12)0.0122 (12)
N50.088 (2)0.068 (2)0.066 (2)0.0303 (19)0.0007 (18)0.0366 (19)
N60.0464 (18)0.059 (2)0.080 (2)0.0031 (15)0.0064 (16)0.0233 (17)
O10.145 (3)0.0523 (17)0.0643 (18)0.0356 (19)0.0171 (19)0.0150 (14)
O20.124 (3)0.0607 (18)0.080 (2)0.0447 (19)0.0119 (18)0.0346 (17)
O30.0577 (17)0.108 (3)0.087 (2)0.0068 (17)0.0056 (16)0.049 (2)
O40.0579 (18)0.101 (3)0.0636 (17)0.0140 (17)0.0001 (14)0.0228 (16)
Geometric parameters (Å, º) top
C1—N11.325 (4)C13—N31.384 (4)
C1—C21.390 (5)C13—C161.490 (6)
C1—H10.9300C14—C151.387 (5)
C2—C31.361 (5)C14—H140.9300
C2—H20.9300C15—N41.325 (4)
C3—C41.398 (5)C15—C171.480 (5)
C3—H30.9300C16—H16A0.9600
C4—C51.407 (4)C16—H16B0.9600
C4—C71.430 (4)C16—H16C0.9600
C5—N11.360 (4)C17—H17A0.9600
C5—C61.435 (4)C17—H17B0.9600
C6—N21.348 (4)C17—H17C0.9600
C6—C91.398 (4)Cd1—O12.339 (3)
C7—C81.346 (5)Cd1—N22.353 (2)
C7—H70.9300Cd1—N42.366 (3)
C8—C91.426 (5)Cd1—O42.383 (3)
C8—H80.9300Cd1—O32.384 (3)
C9—C101.414 (5)Cd1—N12.405 (3)
C10—C111.359 (5)Cd1—O22.405 (3)
C10—H100.9300N3—N41.368 (4)
C11—C121.413 (4)N5—O21.221 (5)
C11—H110.9300N5—O11.226 (4)
C12—N21.316 (4)N6—O41.215 (4)
C12—N31.406 (4)N6—O31.231 (5)
C13—C141.350 (6)
N1—C1—C2122.9 (3)C13—C16—H16C109.5
N1—C1—H1118.5H16A—C16—H16C109.5
C2—C1—H1118.5H16B—C16—H16C109.5
C3—C2—C1119.6 (3)C15—C17—H17A109.5
C3—C2—H2120.2C15—C17—H17B109.5
C1—C2—H2120.2H17A—C17—H17B109.5
C2—C3—C4119.4 (3)C15—C17—H17C109.5
C2—C3—H3120.3H17A—C17—H17C109.5
C4—C3—H3120.3H17B—C17—H17C109.5
C3—C4—C5117.6 (3)O1—Cd1—N2100.09 (11)
C3—C4—C7123.1 (3)O1—Cd1—N4114.23 (12)
C5—C4—C7119.2 (3)N2—Cd1—N466.36 (9)
N1—C5—C4122.3 (3)O1—Cd1—O4150.01 (13)
N1—C5—C6118.2 (3)N2—Cd1—O4108.46 (10)
C4—C5—C6119.5 (3)N4—Cd1—O486.20 (11)
N2—C6—C9122.7 (3)O1—Cd1—O399.45 (13)
N2—C6—C5118.0 (2)N2—Cd1—O3149.49 (12)
C9—C6—C5119.3 (3)N4—Cd1—O3124.70 (12)
C8—C7—C4121.3 (3)O4—Cd1—O350.74 (11)
C8—C7—H7119.3O1—Cd1—N186.96 (10)
C4—C7—H7119.3N2—Cd1—N169.42 (8)
C7—C8—C9120.5 (3)N4—Cd1—N1133.43 (8)
C7—C8—H8119.8O4—Cd1—N194.45 (11)
C9—C8—H8119.8O3—Cd1—N188.51 (12)
C6—C9—C10115.9 (3)O1—Cd1—O250.78 (11)
C6—C9—C8120.2 (3)N2—Cd1—O2125.87 (11)
C10—C9—C8124.0 (3)N4—Cd1—O284.64 (10)
C11—C10—C9121.4 (3)O4—Cd1—O2114.27 (13)
C11—C10—H10119.3O3—Cd1—O284.62 (13)
C9—C10—H10119.3N1—Cd1—O2134.93 (10)
C10—C11—C12118.3 (3)C1—N1—C5118.1 (3)
C10—C11—H11120.9C1—N1—Cd1125.9 (2)
C12—C11—H11120.9C5—N1—Cd1115.75 (19)
N2—C12—N3114.7 (3)C12—N2—C6120.2 (2)
N2—C12—C11121.5 (3)C12—N2—Cd1121.6 (2)
N3—C12—C11123.8 (3)C6—N2—Cd1117.96 (19)
C14—C13—N3105.7 (3)N4—N3—C13110.0 (3)
C14—C13—C16128.3 (4)N4—N3—C12117.2 (2)
N3—C13—C16126.0 (4)C13—N3—C12132.8 (3)
C13—C14—C15108.2 (3)C15—N4—N3106.5 (3)
C13—C14—H14125.9C15—N4—Cd1133.7 (2)
C15—C14—H14125.9N3—N4—Cd1117.23 (19)
N4—C15—C14109.6 (3)O2—N5—O1112.5 (3)
N4—C15—C17119.7 (3)O4—N6—O3113.3 (3)
C14—C15—C17130.7 (3)N5—O1—Cd199.9 (2)
C13—C16—H16A109.5N5—O2—Cd196.7 (2)
C13—C16—H16B109.5N6—O3—Cd197.7 (2)
H16A—C16—H16B109.5N6—O4—Cd198.2 (2)
N1—C1—C2—C31.6 (6)O1—Cd1—N2—C675.5 (2)
C1—C2—C3—C40.5 (6)N4—Cd1—N2—C6172.3 (2)
C2—C3—C4—C50.5 (5)O4—Cd1—N2—C695.2 (2)
C2—C3—C4—C7178.4 (3)O3—Cd1—N2—C653.6 (3)
C3—C4—C5—N10.6 (4)N1—Cd1—N2—C67.36 (19)
C7—C4—C5—N1178.3 (3)O2—Cd1—N2—C6123.9 (2)
C3—C4—C5—C6179.8 (3)C14—C13—N3—N40.8 (4)
C7—C4—C5—C61.3 (4)C16—C13—N3—N4178.2 (4)
N1—C5—C6—N22.0 (4)C14—C13—N3—C12179.0 (3)
C4—C5—C6—N2178.4 (3)C16—C13—N3—C122.0 (6)
N1—C5—C6—C9178.8 (3)N2—C12—N3—N45.0 (4)
C4—C5—C6—C90.8 (4)C11—C12—N3—N4173.2 (3)
C3—C4—C7—C8179.6 (3)N2—C12—N3—C13175.2 (3)
C5—C4—C7—C80.8 (5)C11—C12—N3—C136.6 (5)
C4—C7—C8—C90.3 (5)C14—C15—N4—N30.8 (4)
N2—C6—C9—C100.4 (4)C17—C15—N4—N3178.3 (3)
C5—C6—C9—C10179.5 (3)C14—C15—N4—Cd1160.0 (2)
N2—C6—C9—C8179.4 (3)C17—C15—N4—Cd120.9 (5)
C5—C6—C9—C80.2 (4)C13—N3—N4—C151.0 (3)
C7—C8—C9—C60.8 (5)C12—N3—N4—C15178.9 (2)
C7—C8—C9—C10178.9 (3)C13—N3—N4—Cd1163.5 (2)
C6—C9—C10—C112.0 (5)C12—N3—N4—Cd116.7 (3)
C8—C9—C10—C11177.8 (3)O1—Cd1—N4—C1583.4 (3)
C9—C10—C11—C121.5 (5)N2—Cd1—N4—C15174.1 (3)
C10—C11—C12—N20.6 (5)O4—Cd1—N4—C1573.9 (3)
C10—C11—C12—N3177.6 (3)O3—Cd1—N4—C1538.7 (3)
N3—C13—C14—C150.3 (4)N1—Cd1—N4—C15166.4 (3)
C16—C13—C14—C15178.7 (4)O2—Cd1—N4—C1541.0 (3)
C13—C14—C15—N40.3 (4)O1—Cd1—N4—N375.8 (2)
C13—C14—C15—C17178.7 (4)N2—Cd1—N4—N314.91 (19)
C2—C1—N1—C51.5 (5)O4—Cd1—N4—N3127.0 (2)
C2—C1—N1—Cd1175.4 (3)O3—Cd1—N4—N3162.1 (2)
C4—C5—N1—C10.4 (4)N1—Cd1—N4—N334.4 (3)
C6—C5—N1—C1179.2 (3)O2—Cd1—N4—N3118.2 (2)
C4—C5—N1—Cd1174.9 (2)O2—N5—O1—Cd10.8 (4)
C6—C5—N1—Cd14.7 (3)N2—Cd1—O1—N5128.0 (3)
O1—Cd1—N1—C178.3 (3)N4—Cd1—O1—N559.5 (3)
N2—Cd1—N1—C1179.8 (3)O4—Cd1—O1—N569.8 (4)
N4—Cd1—N1—C1160.7 (2)O3—Cd1—O1—N575.5 (3)
O4—Cd1—N1—C171.7 (3)N1—Cd1—O1—N5163.5 (3)
O3—Cd1—N1—C121.3 (3)O2—Cd1—O1—N50.5 (3)
O2—Cd1—N1—C159.6 (3)O1—N5—O2—Cd10.8 (4)
O1—Cd1—N1—C595.8 (2)O1—Cd1—O2—N50.5 (3)
N2—Cd1—N1—C56.14 (19)N2—Cd1—O2—N571.4 (3)
N4—Cd1—N1—C525.2 (3)N4—Cd1—O2—N5127.0 (3)
O4—Cd1—N1—C5114.2 (2)O4—Cd1—O2—N5149.6 (3)
O3—Cd1—N1—C5164.6 (2)O3—Cd1—O2—N5107.3 (3)
O2—Cd1—N1—C5114.5 (2)N1—Cd1—O2—N524.9 (3)
N3—C12—N2—C6176.1 (2)O4—N6—O3—Cd12.7 (4)
C11—C12—N2—C62.2 (4)O1—Cd1—O3—N6174.7 (3)
N3—C12—N2—Cd19.4 (3)N2—Cd1—O3—N656.1 (4)
C11—C12—N2—Cd1172.3 (2)N4—Cd1—O3—N646.3 (3)
C9—C6—N2—C121.7 (4)O4—Cd1—O3—N61.7 (3)
C5—C6—N2—C12177.5 (3)N1—Cd1—O3—N698.6 (3)
C9—C6—N2—Cd1173.0 (2)O2—Cd1—O3—N6125.9 (3)
C5—C6—N2—Cd17.9 (3)O3—N6—O4—Cd12.8 (4)
O1—Cd1—N2—C1299.1 (2)O1—Cd1—O4—N65.5 (4)
N4—Cd1—N2—C1213.1 (2)N2—Cd1—O4—N6155.9 (3)
O4—Cd1—N2—C1290.3 (2)N4—Cd1—O4—N6140.6 (3)
O3—Cd1—N2—C12131.9 (3)O3—Cd1—O4—N61.7 (3)
N1—Cd1—N2—C12178.1 (2)N1—Cd1—O4—N686.1 (3)
O2—Cd1—N2—C1250.7 (3)O2—Cd1—O4—N658.2 (3)

Experimental details

Crystal data
Chemical formula[Cd(NO2)2(C17H14N4)]
Mr478.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.0306 (15), 10.4694 (15), 10.5702 (15)
α, β, γ (°)67.697 (2), 83.508 (2), 62.326 (2)
V3)906.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.51 × 0.46 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.570, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
4759, 3305, 3098
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.03
No. of reflections3305
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.57

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

The authors thank the Shandong Provincial Natural Science Foundation of China (grant No. ZR2009BM026) for support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. M., Wang, Y. Q. & Ren, H.-X. (2010). Acta Cryst. E66, m663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds